材料力学轴向拉伸和压缩第3节 材料在轴向拉压时的力学性能

合集下载

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

材料力学材料的力学性能优质课件

材料力学材料的力学性能优质课件
结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论

轴向拉伸和压缩

轴向拉伸和压缩

§2 轴向拉压时横截面上 的内力和应力
一.轴力及轴力图 1.轴力的概念
(1)举例
F F
N
F
N
F
用截面法将杆件分成左右两部分,利用 方向的平衡可得 :
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由杆 件处于平衡状态可知,内力合力的作用线也必然 与杆件的轴线相重合。
二、应力
1、平面假设
① 实验:受轴向拉伸的等截面直杆,在外力施加之前, 先画上两条互相平行的横向线ab、cd,然后观察该两 横向线在杆件受力后的变化情况。
a
F
a b
c
c d
F
b
② 实验现象
d
变形前,我们在横向所作的两条平行线ab、cd, 在变形后,仍然保持为直线,且仍然垂直于轴线,只 是分别移至a’b’、c’d’位置。
③ 实验结论 变形前为平面的横截面,变形后仍保持为平面。 ——平面假设
F
N
N
F
平面假设
拉杆所有纵向纤维的伸长相等 材料的均匀性 各纵向纤维的性质相同
横截面上 内力是均 匀分布的
N A
(1)
A——横截面面积
拓展

——横截面上的应力
对于等直杆, 当有多段轴力时,最大轴力所对应的截 面——危险截面。危险截面上的正应力——最大工作应力, 其计算公式应为:
2)木材
各向异性材料。 3)玻璃钢:玻璃纤维与热固性树脂粘合而成的复合材料 各向异性材料。优点是:重量轻,强度高,工艺简单,耐 腐蚀。
思考题 1、强度极限b是否是材料在拉伸过程中所承受 的最大应力? 2、低碳钢的同一圆截面试样上,若同时画有两种 标距,试问所得伸长率10 和5 哪一个大?

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学实验指导书(正文)

材料力学实验指导书(正文)

实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。

2.测定铸铁在拉伸以及压缩时的强度极限σb。

3.观察拉压过程中的各种现象,并绘制拉伸图。

4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。

二、设备及仪器1.电子万能材料试验机。

2.游标卡尺。

图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。

它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。

由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。

图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。

图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。

(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。

由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。

上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。

当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。

移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。

(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。

(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。

可即时打印出完整的试验报告和试验曲线。

工程力学课件 第6章 轴向拉伸与压缩

工程力学课件 第6章  轴向拉伸与压缩
σ称为正应力,τ称为剪应力。在国际单位制中,应力的单位 是帕斯卡(Pascal),用Pa(帕)表示,1Pa=1 N/m2。由于帕斯卡这 一单位很小,工程常用kPa(千帕)、MPa(兆帕)、GPa(吉帕)来 表明。1 KPa=103Pa,1 MPa=106Pa,1 GPa=109 Pa。
工程力学
12
二、拉压杆横截面上的正应力
在应力超过比例极限以后,图形出现了一段近似水平的小锯齿
形线段bc,说明此阶段的应力虽有波动,但几乎没有增加,却发生
了较大的变形。这种应力变化不大、应变显著增加的现象称为材料
的屈服。屈服阶段除第一次下降的最小应力外的最低应力称为屈服
极限,以σs表示。
4.强度极限
经过了屈服极限阶段,图形变为上升的曲线,说明材料恢复了
工程力学
4
1.1.1 电路的组成
列出左段杆的平衡方程得 Nhomakorabea工程力学
5
若以右段杆为研究对象,如图(c)所示,同样可得
1.1.1 电路的组成
实际上,FN与F′N是一对作用力与反作用力。因此,对同一截面, 如果选取不同的研究对象,所求得的内力必然数值相等、方向相反。
这种假想地用一个截面把杆件截为两部分,取其中一部分作为 研究对象,建立平衡方程,以确定截面上内力的方法,称为截面法。 截面法求解杆件内力的步骤可以归纳如下:
1.1.1 电路的组成
(1)计算AB段杆的轴力。沿截面1-1将杆件截开,取左段杆为研 究对象,以轴力FN1代替右段杆件对左段的作用,如图(b)所示
列平衡方程

工程力学
7
若以右段杆为研究对象,如图(c)所示
1.1.1 电路的组成
同样可得
(2)计算BC段杆的轴力,沿截面2-2将杆件截开,取左段杆为研 究对象,如图(d)所示

材料拉伸时的力学性能.ppt

(4)弹性模量E随温度上升而一直下降,泊松比μ则一 直上升。
6.2.2 高温蠕变和应力松弛
(l) 蠕变现象
(2)松弛现象
6.2.3 在动载荷下应变速率对材料力学性能的影响
§6.3 安全系数 许用应力
通常把材料破坏的极限应力σu除以大于1的 数n作为许用应力,用[σ]表示,即
u
n
n称为安全系数,对于塑性材料,σu为屈服极限 σs,对于脆性材料,σu为强度极限σb。
③强化阶段(ce) 强化现象:材料恢复抵抗变形的能力,要使应变增加,
必须增大应力值。 曲线表现为上升阶段。
应力特征性:强度极限 b ——材料能承受的最大应力值。
冷作硬化——材料预拉到强化阶段,使之发生塑性变形,
然后卸载,当再次加载时弹性极限 和屈e 服极限 提高 s、
塑性降低的现象。工程上常用冷作硬化来提高某些材料在 弹性范围内的承载能力,如建筑构件中的钢筋、起重机的 钢缆绳等,一般都要作预拉处理。但冷作硬化使材料变硬、 变脆,使加工发生困难,且易产生裂纹,这时可以采用退 火处理,部分或全部地消除材料的冷作硬化效应。
(35l0)℃强b显温著度下在降25。0 ~ (3020)~流35动0极℃限后σ,s和流比动例阶极段限消σ失p随。温度升高而下降。到
(3)延伸率δ和截面收缩率Ψ在250~350 ℃时最低, 此时钢材呈现一定程度的脆性,以后δ和Ψ又随温度上 升而增加。
低碳钢拉伸试验现象:
屈服:
颈缩:
断裂:
6.1.2 铸铁在轴向拉伸时的力学性能
铸铁拉伸直到断裂,应力和应变近似地呈 现直线关系(图6-4)。因此,铸铁直至断裂 都满足胡克定律。铸铁拉伸直到断裂,试件尺
寸几乎没有变化,所以,铸铁是脆性材料。脆

材料力学之轴向拉伸和压缩

率作为弹性模量, 称为 割线弹性模量。
铸铁经球化处理成为球 墨铸铁后, 力学性能有 显著变化, 不但有较高 的强度, 还有较好的塑 性性能。
国内不少工厂成功地用 球墨铸铁代替钢材制造 曲轴、齿轮等零件。
2.6.4 金属材料在压缩时的力学性能
低碳钢压缩时的弹性模量E和屈服极限ss都与拉
伸时大致相同。屈服阶段以后, 试样越压越扁, 横截面面积不断增大, 试样抗压能力也继续增高, 因而得不到压缩时的强度极限。
冷作时效不仅与卸载 后至加载的时间间隔 有关, 而且与试样所处 的温度有关。
2.6.3 其它金属材料在拉伸时的力学性能
工程上常用的塑性材 料, 除低碳钢外, 还有 中碳钢、高碳钢和合 金钢、铝合金、青铜、 黄铜等。
其中有些材料, 如Q345 钢, 和低碳钢一样, 有 明显的弹性阶段、屈 服阶段、强化阶段和 局部变形阶段。
并用s0.2来表示, 称为名义屈
服应力。
铸铁拉伸时的力学性能
灰口铸铁拉伸时的应 力—应变关系是一段微 弯曲线, 没有明显的直 线部分。
它在较小的拉应力下就 被拉断, 没有屈服和缩 颈现象, 拉断前的应变 很小, 伸长率也很小。 灰口铸铁是典型的脆性 材料。
铸铁拉断时的最大应力 即为其强度极限, 没有屈
比较图中的Oabcdef和d'def两条曲线, 可见在第 二次加载时, 其比例极限(亦即弹性阶段)得到了 提高, 但塑性变形和伸长率却有所降低。这种现 象称为冷作硬化。冷作硬化现象经退火后又可 消除。
工程上经常利用 冷作硬化来提高 材料的弹性阶段。 如起重用的钢索 和建筑用的钢筋, 常用冷拔工艺以 提高强度。
在屈服阶段内的 最高应力和最低 应力分别称为上 屈服极限和下屈 服极限。

材料力学--轴向拉伸和压缩


2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

材料在拉压时的力学性能

8
曲线
(4)颈缩阶段DE 应力达到强度极限后,试件的变形开始集中在最弱横截面
附近的局部区域内,出现颈缩现象。
由于局部区域横截面面积显著 减小,使试样继续伸长所需的载荷 也随之下降,应力-应变关系曲线 中用F / A 表示的应力也随之下降, 到E 点,试件在颈缩处断裂。 试件拉断后,断口呈杯锥状。
试件与设备
压缩标准试件 拉伸标准试样
d h
h = (1.5—3.0)d
l 10d 或 l 5d
2
试验设备——万能试验机
变形传感器
工程上材料的品种很多,下面以低碳钢和铸铁为主要代表, 介绍材料在拉伸时的力学性能
3
一、材料在轴向拉伸时的力学性能 低碳钢轴向拉伸时的力学性能 拉伸试验与拉伸图 ( F-Dl 曲线 )


b
o

铸铁压缩时的曲线和破坏形状
15


衡量材料的力学性能的指标主要有:
p , e, s , b , E , ,
衡量材料强度的指标:
s, b
对塑性材料,把屈服极限 s 作为材料的极限应力 对脆性材料,把强度极限 b 作为材料的极限应力 衡量材料塑性的指标:
,
17
13
二、材料在轴向压缩时的力学性能
1、低碳钢轴向压缩时的力学性能 低碳钢是典型的塑性材料,其压缩时的曲线如图所示。最初 阶段应力与应变成正比关系,其压缩时的弹性模量、比例极限及 屈服极限都与拉伸时基本相同。 当应力超过屈服极限后, 试件产生显著的横向塑性变 形,试件越压越扁,横截面 面积不断增大,试样的抗压 能力也持续增强,如果材料 o 塑性好的话,可被压成扁圆 盘而仍不断裂,因此得不到 压缩时的强度极限。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、材料在压缩时的力学性质
• 低碳钢的压缩试验 压缩试验所用的金 属试件常做成短圆柱形 试件,其高度是直径的 1.5~3.0 倍。 低碳钢压缩时的应 力应变曲线如图所示。 图中虚线是为了便于比 较而绘出的拉伸的 - 曲线。从图中可以看出,低碳 钢压缩时的弹性模量与拉伸时相同,但由于是塑性材 料,所以试件愈压愈扁,可以产生很大的塑性变形而 不破坏,因而没有抗压强度极限。
屈服阶段:bc段近似水平,既应力几乎不再增加, 而变形却增加很快,表明材料暂时失去了抵抗变形 的能力。这种现象称为屈服现象或流动现象。bc段 最低点对应的应力称为屈服极限,以“s ”表示。
强化阶段:过了屈服阶段,材料又恢复了抵抗变形 的能力,要使试件继续变形必须再增加载荷,这种 现象称为材料的强化,故 - 曲线图中的 ce 段称为 强化阶段,最高点 e 点所对应的应力称为材料的强 度极限,以“b”表示,它是材料所能承受的最大 应力,所以b是衡量材料强度的另一个重要指标。
• 铸铁的压缩试验 铸铁压缩时的 – 曲线如图所示。其线性阶段 不明显,强度极限 b 比拉伸时高 2~4 倍,破坏突然 发生,断口与轴线大致成 45~55 的倾角。 结 论 由于脆性 材料抗压强 度高,宜用 于制作承压 构件。
表2-2 几种常用材料的力学性能
材料名称 或牌号 35钢 45钢 Q235A钢 QT600-2 HT150 屈服极限 s 抗拉强度 b (MPa) (MPa) 216~314 256~353 216~235 412 — 432~530 530~598 373~461 538 伸长率 (%) 15~20 13~16 25~27 2 — 断面收缩率 (%) 28~45 30~40 — — —
0.2
锰钢
硬铝 退火球墨铸铁 45钢
0.2%
• 铸铁的拉伸试验 铸铁是典型的脆性材料, 其拉伸 - 曲线如图所示,图 中无明显的直线部分,但应力 较小时接近于直线,可近似认 为服从胡克定律。工程上有时 以曲线的某一割线斜率作为弹 性模量。铸铁拉伸时无屈服现 象和颈缩现象,断裂是突然发 生的。强度指标b是衡量铸铁 强度的唯一指标。
低碳钢的应力–应变曲线可分成四个阶段:
弹性阶段:由直线段oa 和微弯段ab 组成。oa 段称为 比例阶段或线弹性阶段,在此阶段内,材料服从胡 克定律,即 =E 适用,a点所对应的应力值称为材 料的比例极限,并以“P ”表示。 曲线ab段称为非线弹性阶段,只要应力不超过 b点,材料的变形仍是弹性变形。所以b点对应的应 力称为弹性极限,以“e ”表示。
颈缩阶段:载荷达到最高值后,可以看到在试件的 某一局部范围内的横截面迅速收缩变细,形成颈缩 现象。应力应变曲线图中的ef段称为颈缩阶段。
材料的两个塑性指标
试件拉断后,弹性变形消失,只剩下残余变形, 残余变形标志着材料的塑性。工程中常用延伸率 和 断面收缩率 作为材料的两个塑性指标。分别为
l1 l0 100 % l
A0 A1 100% A0
• 一般把 >5% 的材料称为塑性材料,把 <5%的材 料称为脆性材料。低碳钢的延伸率 =20~30%,是 典型的塑性材料。 • 截面收缩率 也是衡量材料塑性的重要指拉伸时的力学性质 • 锰钢、硬铝、退火球墨铸铁 和 45 钢的应力—应变曲线; • 锰钢、硬铝、退火球墨铸铁 和45钢都是塑性材料,但前 三种材料没有明显的屈服阶 段; • 对于没有明显屈服点的塑性 材料,工程上规定,取试件 产生 0.2% 的塑性应变时, 所对应的应力值作为材料的 名义屈服极限,以 0.2 表示
拉 98~275
压 637
一、低碳钢拉伸时的力学性质
低碳钢的拉伸试验
在做拉伸试验时, 要求将金属材料按国家 标准《金属材料拉伸试 验法》制成标准试件。 一般金属材料采用圆形 截面试件 ( 图a ) 或矩形 截面试件 ( 图b )。 试件的有效工作总 长度称为标距 l0 。
低碳钢的拉伸图(FN-l 曲线 )
低碳钢的拉伸时的应力–应变曲线图(- 曲线 )
相关文档
最新文档