各类不等式的解法

合集下载

不等式的解法

不等式的解法

x
4
0
3x 5 x 4
x
x
x
5 3 4 1 2
x4,
4. x23x10 x4
解:
x2 3x10 0 x4 0
x 5或 x 2
x
4
x2 3x 10 (x 4)2
x
26 5
x
5,
26 5
不等式解法的两个极其重要的思想:
⒈转化:即将绝对值不等式即其他不等式向代数 不等式或代数不等式组转化,再对其求解.
一.一次不等式和不等式组的解法 二.二次不等式的解法 三.高次不等式的解法 四.分式不等式的解法 五.绝对值不等式的解法 六.无理不等式的解法
一元一次不等式和不等式组的解法
一元一次不等式即为形如ax>b的不等式。
当a>0 则x> b a
当a<0 则x< b a
当a=0 且b 0 则为
当a=0 且b<0 则为R
解:1.当a=0时,不等式为:-x>0,解集为:{x|x<0}
2. 当a≠0时,不等式为:(ax-1)(x-a)>0, (1)当a>0时,不等式为:(x-1/a)(x-a)>0,
①a>1,a>1/a,解集为:{x|x<1/a或x>a}, ② 0<a<1,a<1/a,解集为:{x|x<a或x>}, ③ a=1,a=1/a=1,解集为:{x|x∈R且x≠1}; (2)当a<0时,(x-1/a)(x-a)<0, ①-1<a<0,a>1/a,解集为:{x|1/a<x<a} ②a<-1,a<1/a,解集为:{x|a<x<1/a}, ③a=-1,a=1/a=-1,解集为:x∈Φ。
列表法: f(x)的根把实数集分成若干个区间,

解不等式的方法

解不等式的方法

解不等式的方法解不等式是代数学中的重要内容,它在数学建模、优化问题、函数图像等方面都有着重要的应用。

在解不等式的过程中,我们需要掌握一些基本的方法和技巧,下面我将为大家介绍几种解不等式的常用方法。

一、一元一次不等式的解法。

对于一元一次不等式ax+b>c,我们可以按照以下步骤来解题:1. 将不等式转化为等价的形式,即ax+b-c>0;2. 根据a的正负情况进行讨论:a. 若a>0,则不等式的解集为x>-b/a+c;b. 若a<0,则不等式的解集为x<-b/a+c。

二、一元二次不等式的解法。

对于一元二次不等式ax^2+bx+c>0,我们可以按照以下步骤来解题:1. 求出二次函数的判别式Δ=b^2-4ac的值;2. 根据Δ的正负情况进行讨论:a. 若Δ>0,则二次函数有两个不等实根,即x的取值范围为x<x1或x>x2;b. 若Δ=0,则二次函数有两个相等的实根,即x的取值范围为x=x1=x2;c. 若Δ<0,则二次函数无实根,即不等式无解。

三、绝对值不等式的解法。

对于绝对值不等式|ax+b|<c,我们可以按照以下步骤来解题:1. 分情况讨论:a. 若a>0,则不等式的解集为-b<c<ax+b;b. 若a<0,则不等式的解集为-b<c<-ax-b。

四、分式不等式的解法。

对于分式不等式f(x)>0,我们可以按照以下步骤来解题:1. 求出分式的定义域;2. 求出分式的零点;3. 根据零点的正负情况进行讨论:a. 若零点为实数且大于0,则不等式的解集为定义域内使分式大于0的实数;b. 若零点为实数且小于0,则不等式的解集为空集。

五、不等式组的解法。

对于不等式组{f(x)>0, g(x)>0},我们可以按照以下步骤来解题:1. 求出每个不等式的解集;2. 将每个不等式的解集取交集,得到不等式组的解集。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。

2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。

3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。

4.倒数不等式公式:若a>b>0,则1/a<1/b。

5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。

若a<0且n为奇数整数,则a^n<0。

常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。

2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。

3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。

通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。

4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。

5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。

以上是基本不等式的一些公式和常用解法。

对于不同的不等式,我们需要根据具体情况选择合适的解法。

希望以上内容对您有所帮助。

数学解不等式的方法总结

数学解不等式的方法总结

数学解不等式的方法总结引言不等式在数学中占据着重要的地位,它不仅是数学分析和代数的基础,也是应用数学中的重要工具。

解不等式是数学学习中的一项基本技能,因此,掌握解不等式的方法对于学生来说至关重要。

本文将总结几种常见的解不等式的方法,帮助读者更好地理解和应用这些方法。

一、一元一次不等式一元一次不等式是最基本的不等式类型,其解法与一元一次方程类似。

首先,将不等式转化为等式,然后通过移项、合并同类项等方法将其化简为标准形式,即形如ax+b>0或ax+b<0的形式。

接下来,根据系数a的正负情况,可以得到不等式的解集。

例如,对于不等式3x+2>5,我们首先将其转化为等式3x+2=5,然后移项得到3x=3,最后除以系数3得到x=1。

因此,不等式3x+2>5的解集为x>1。

二、一元二次不等式一元二次不等式的解法相对复杂一些。

首先,将不等式转化为等式,然后通过求解二次方程的方法得到其解集。

需要注意的是,解二次方程得到的解集并不一定满足原不等式,还需要通过判断不等式的符号来确定最终的解集。

例如,对于不等式x^2-4x+3>0,我们首先将其转化为等式x^2-4x+3=0,然后求解得到x=1和x=3。

接下来,我们需要判断不等式在这两个解的区间上的符号。

通过代入一个测试点,如x=2,我们可以得到不等式在x<1和x>3的区间上为负,而在1<x<3的区间上为正。

因此,不等式x^2-4x+3>0的解集为x<1或x>3。

三、绝对值不等式绝对值不等式是一类常见的不等式类型,其解法与一元一次不等式类似。

首先,将不等式转化为等式,然后根据绝对值的定义将其化简为两个不等式,其中一个去掉绝对值符号,另一个取相反的不等号。

接下来,根据不等式的符号确定解集。

例如,对于不等式|2x-1|<3,我们首先将其转化为等式|2x-1|=3,然后化简得到两个不等式2x-1=3和2x-1=-3。

不等式的解法

不等式的解法

不等式的解法不等式,即数学中用来表示大小关系的符号,它与等式不同的地方在于,不等式可以有无数个解,而不像等式只有一个解。

解不等式的方法有很多种,接下来将介绍几种常见的解不等式的方法。

一、一元一次不等式一元一次不等式是最基本的不等式,它的形式通常为ax+b>0或ax+b<0,其中a和b为已知数,x为未知数。

解一元一次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在数轴上画出所给不等式的解集来解不等式。

首先,我们将不等式中的x系数作为直线的斜率,常数项作为直线的截距,画出不等式对应的直线。

然后,根据不等式符号的方向,涂色标记出不等式的解集。

例如,对于不等式3x+2>0,我们可以画出直线y=3x+2,并根据大于号的方向,将直线上大于0的部分涂色。

2. 代数法代数法是通过代数运算解不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行加法、减法、乘法和除法运算,将未知数x的系数和常数项移到不等式的一侧,使得不等式变为0的形式。

最后,通过考察几个关键点的取值情况,确定不等式的解集。

二、一元二次不等式一元二次不等式是一元二次方程的不等式形式,它的形式通常为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为已知数,x为未知数。

解一元二次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在坐标平面上画出所给不等式的解集来解不等式。

首先,我们将不等式转化为对应的一元二次方程,找到方程的判别式,判断方程的根的情况。

根据根的位置,将坐标平面分为几个区域,并确定每个区域对应的不等式的正负。

然后,将不等式对应的曲线画在坐标平面上,并根据不等式符号的方向,将曲线上符合条件的部分涂色。

2. 代数法代数法是通过代数运算解一元二次不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行移项、配方、因式分解等运算,将不等式变为一元二次方程的零点形式。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的问题,解不等式可以帮助我们找到满足特定条件的数值范围。

本文将介绍几种常用的不等式的解法。

一、一元一次一元一次不等式是形如ax+b>c或ax+b<c的不等式,其中a、b、c都是已知的实数,x是未知数。

1. 等价变形法通过对不等式进行等价变形,使得未知数x单独在一边,从而得到不等式的解。

例如,对于不等式3x+4>10,我们可以通过减4,并除以3来消去4和3,得到x>2。

所以x的取值范围为大于2的所有实数。

2. 符号法考虑不等式中的符号,根据不等式关系的性质确定解的范围。

例如,对于不等式5x-7≥8,我们观察到不等式中的符号是≥,根据≥的意义,我们知道等号成立时也是一个解。

所以我们可以解得5x-7=8,得到x=3。

因此,x的取值范围为大于等于3的所有实数。

二、一元二次一元二次不等式是形如ax^2+bx+c>d或ax^2+bx+c<d的不等式,其中a、b、c、d都是已知的实数,x是未知数。

1. 图像法将一元二次不等式转化为二次函数的图像,通过观察函数图像来确定不等式的解。

例如,对于不等式x^2-4x<3,我们可以将不等式转化为方程x^2-4x=3,并求得其根为x=1和x=3。

然后绘制出函数图像y=x^2-4x的图像,在图像上观察x轴上落在1和3之间的部分,即得到不等式的解为1<x<3。

2. 化简法将一元二次不等式进行化简,将不等式转化为一个或多个一元一次不等式,然后求解这些一元一次不等式的解。

例如,对于不等式x^2+2x-3>0,我们可以将不等式因式分解为(x-1)(x+3)>0。

然后我们考虑两个因式的正负情况,得到两个一元一次不等式x-1>0和x+3>0。

解这两个一元一次不等式,得到x>1和x>-3。

因此,x的取值范围为大于1和大于-3的所有实数。

三、多元多元不等式是包含两个或多个未知数的不等式,解多元不等式可以使用代入法、图像法或数学方法。

不等式的解法

不等式的解法

不等式的解法不等式是数学中的一种基本关系符号,用于表示两个数的大小关系。

解不等式就是找到使不等式成立的数值范围,即满足不等式条件的数值。

在解不等式时,我们需要注意不等式的不同类型,包括一元一次不等式、一元二次不等式、绝对值不等式等。

下面将分别介绍这些类型不等式的解法。

一元一次不等式的解法:一元一次不等式的一般形式为:ax + b > c,其中a、b、c为已知常数,x为未知数。

我们可以按照以下步骤来解一元一次不等式:1. 将不等式转化为等价的形式,即去掉不等号,得到ax + b = c。

2. 根据已知条件和不等式的类型,确定不等号方向。

3. 利用正、负数的性质,将不等式中的未知数系数与常数项分离,得到x > c/a的形式。

4. 根据解集的要求,确定解的范围,即x的取值范围。

一元二次不等式的解法:一元二次不等式的一般形式为:ax^2 + bx + c > 0,其中a、b、c为已知常数,x为未知数。

解一元二次不等式的一种常用方法是利用因式分解和区间判断法,具体步骤如下:1. 将不等式转化为等价的形式,即ax^2 + bx + c = 0。

2. 根据已知条件和不等式的类型,确定不等号方向。

3. 利用因式分解将二次项拆解,得到(x + m)(x + n) > 0的形式。

4. 根据区间判断法,确定(x + m)(x + n)的符号性质,并绘制出二次函数的图像。

5. 根据二次函数图像和解集的要求,确定不等式的解集。

绝对值不等式的解法:绝对值不等式的一般形式为:|ax + b| > c,其中a、b、c为已知常数,x为未知数。

解绝对值不等式的一种常用方法是利用绝对值的性质和分情况讨论,具体步骤如下:1. 将不等式转化为等价的形式,即ax + b > c或ax + b < -c。

2. 将不等式分为两种情况讨论:- 当ax + b > c时,得到ax + b - c > 0的形式,利用绝对值的非负性质得到ax + b - c = ax + b - c > 0,即ax + b - c = ax + b > c。

不等式的类型及解法

不等式的类型及解法

不等式的类型及解法一、一元一次不等式一元一次不等式是指只含有一个未知数的一次方程,形如ax+b>0或ax+b<0的不等式,其中a和b为已知实数,且a≠0。

解法:1. 将不等式转化为等式,即ax+b=0,求得方程的解x0。

2. 根据a的正负性,将解x0进行分类讨论:- 当a>0时,若x>x0,则ax+b>0;若x<x0,则ax+b<0。

- 当a<0时,若x>x0,则ax+b<0;若x<x0,则ax+b>0。

二、一元二次不等式一元二次不等式是指含有一个未知数的二次方程,形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b和c为已知实数,且a≠0。

解法:1. 将不等式转化为等式,即ax^2+bx+c=0,求得方程的解x1和x2。

2. 根据a的正负性和二次函数的凸凹性,将解x1和x2进行分类讨论:- 当a>0时,若x1<x<x2,则ax^2+bx+c>0;若x<x1或x>x2,则ax^2+bx+c<0。

- 当a<0时,若x<x1或x>x2,则ax^2+bx+c>0;若x1<x<x2,则ax^2+bx+c<0。

三、绝对值不等式绝对值不等式是指含有绝对值符号的不等式,形如|f(x)|>g(x)或|f(x)|<g(x),其中f(x)和g(x)为已知函数。

解法:1. 对于|f(x)|>g(x),将不等式拆分为两个不等式:f(x)>g(x)和f(x)<-g(x)。

2. 分别解出这两个不等式的解集,然后求并集即为原不等式的解集。

四、分式不等式分式不等式是指含有分式的不等式,形如f(x)/g(x)>0或f(x)/g(x)<0,其中f(x)和g(x)为已知函数。

解法:1. 将分式不等式转化为分子和分母的符号相同的不等式:f(x)g(x)>0或f(x)g(x)<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各类不等式的解法一、不等式的基本性质 不等式的基本性质有:(1)对称性或反身性:a>b ⇔b<a ; (2)传递性:若a>b ,b>c ,则a>c ;(3)可加性:a>b ⇒a+c>b+c ,此法则又称为移项法则; (4)可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。

不等式运算性质:(1)同向相加:若a>b ,c>d ,则a+c>b+d ;(2)正数同向相乘:若a>b>0,c>d>0,则ac>bd 。

特例:(3)乘方法则:若a>b>0,n ∈N +,则n n b a >; (4)开方法则:若a>b>0,n ∈N +,则n1n1b a >;(5)倒数法则:若ab>0,a>b ,则b1a 1<。

例1: 1)、5768--与的大小关系为 .2)、设1->n ,且,1≠n 则13+n 与n n +2的大小关系是 .3)已知,αβ满足11123αβαβ-+⎧⎨+⎩≤≤≤≤, 试求3αβ+的取值范围.例2.比较()21+a 与12+-a a 的大小。

例3.解关于x 的不等式m x x m +>+)2(。

二、一元二次不等式的解法一元二次不等式)0(02>>++a c bx ax 或 )0.(02><++a c bx ax 的求解原理:利用二次函数的图象通过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集。

0=∆0<∆c bx ax y ++=2c bx ax y ++=2c bx ax y ++=21.解下列不等式:(1)02322≥--x x (2)01692>++x x (3)542<-x x (4)0122≤++x x2.解不等式组(1)22371002520x x x x ⎧--≤⎨-+>⎩ (2)2223054x x x x ⎧-->⎨->⎩3.若不等式02>++c bx ax 的解集为(-2,3),求不等式02<-+b ax cx 的解集.4.当k 为何值时,不等式08322<-+kx kx 对于一切实数x 都成立? 三、分式不等式与高次不等式的解法1.分式不等式解法⎩⎨⎧≠≤⋅⇔≤⎩⎨⎧≠≥⋅⇔≥<⇔<>⇔>0)(0)()(0)()(0)(0)()(0)()(0)()(0)()(0)()(0)()(x g x g x f x g x f x g x g x f x g x f x g x f x g x f x g x f x g x f2.高次不等式解法:数轴标根法(奇穿偶切)典型例题例1解下列不等式(1)x -3x +7 <0 (2)3+2x <0 (3)4x -3 >2-x 3-x -3 (4) 3x >1例2 解下列不等式:(1)(x+1)(x-1)(x-2)>0 (2)(-x-1)(x-1)(x-2)<0(3) x(x-1)2(x+1)3(x+2)≤0 (4)(x-3)(x+2)(x-1)2(x-4)>0(5) (6).(7) (8)四、无理不等式的解法解无理不等式的基本方法就是将其转化为有理不等式组,在转化过程中一定要注意等价变换015223>--x x x 0)2()5)(4(32<-++x x x 22123+-≤-x x 12731422<+-+-x x x x题型Ⅰ:⎪⎩⎪⎨⎧>⇒⎭⎬⎫≥≥⇔>)()(0)()0)(()()(x g x f x g x f x g x f 定义域型 例1 解不等式⑴0231≤---x x ⑵125->-x x 题型Ⅱ:⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或型 例2 解不等式x x x 211322+>+- 题型Ⅲ:⎪⎩⎪⎨⎧>>≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f 型例3解不等式x x x 211322+<+-例4解不等式1112-+>+x x例5解不等式36922>-+-x x x五、绝对值不等式的解法含有绝对值的不等式的解法关键就在于去掉绝对值,而去掉绝对值,则需要对绝对值中的零点进行讨论,一般来说一个零点分两个范围,两个零点分三个零点,依次类推. (1)含有一个绝对值:不等式)0(><a a x 的解集是{}a x a x <<-; 不等式)0(>>a a x 的解集是{}a x a x x -<>或,不等式)0(><+c c b ax 的解集为 {})0(|><+<-c c b ax c x ;不等式)0(>>+c c b ax 的解集为 {})0(,|>>+-<+c c b ax c b ax x 或 (2)含有多个绝对值:零点分段法例1 解不等式(1)5500≤-x . (2)752>+x (3)32≥-x(4)1≤ | 2x-1 | < 5. (5) |4x-3|>2x+1例2解不等式:(1)|x -3|-|x +1|<1. (2)|x |-|2x +1||>1.例3 已知函数f (x )=|x -2|-|x -5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x +15的解集.六、指数不等式与对数不等式利用指数函数及对数函数的单调性转化为代数不等式()()()()()1.(1)()();(01)()()2.(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>()0log ()log ()(1)()0;()()()0log ()log ()(01)()0()()a a a a f x f x g x a g x f x g x f x f x g x a g x f x g x >⎧⎪>>⇔>⎨⎪>⎩>⎧⎪><<⇔>⎨⎪<⎩例1.解不等式66522252.0-+---≥x x x x例2.解不等式154log <x .例3.解不等式:)10(log 31log ≠<-<-a x x a a例4.1>a 时解关于x 的不等式0]1)2(2[log 12>++-+x x x x aa a七、基本不等式(也叫均值不等式) 1.基本不等式(1)a 2+b 2≥2ab (a ,b ∈R) (2)ab ≤(a +b2)2(a ,b ∈R) (3)a 2+b 22≥(a +b 2)2(a ,b ∈R) (4)b a +a b ≥2(a ,b 同号且不为零)上述四个不等式等号成立的条件都是a =b. 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值设x ,y 都是正数.(1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P.(2)如果和x +y 是定值S ,那么当x =y 时积xy 有最大值14S 2.练习1.已知两个正数a ,b 的等差中项为4,则a ,b 的等比中项的最大值为( ) A .2 B .4 C .8 D .162.若a ,b ∈R ,且ab>0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b≥2ab C.1a +1b ≥2ab D.b a +ab ≥23.若x +2y =4,则2x +4y 的最小值是( ) A .4 B .8 C .22 D .4 24.当x>1时,求函数f(x)=x +1x -1的最小值________.5.已知x ,y>0,且满足x 3+y4=1,则xy 的最大值为________.6.某公司一年购买某种货物 400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________.7. 已知a 、b 、c 为正实数,且a +b +c =1,求证:(1a -1)(1b -1)(1c -1)≥8.八、不等式的证明 (一)比较法:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论 例1 求证:x 2 + 3 > 3x例2 a ,b ∈ R +,且a b ≥,求证:a b b a b a b a ab b a ≥≥+2)((二)综合法1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.2.用综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学 定理、性质和公式,推出结论的一种证明方法。

例3已知a ,b ,c 是不全相等的正数,求证:abc b a c a c b c b a 6)()()(222222>+++++例4 已知a ,b ∈R ,证明:log 2(2a +2b )≥22++b a .(三)分析法1.分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。

2.用分析法证明不等式的逻辑关系是:12n B B B B A ⇐⇐⇐⇐⇐3.分析法的思维特点是:执果索因。

4.分析法的书写格式: 要证明命题B 为真,只需要证明命题1B 为真,从而有…… 这只需要证明命题2B 为真,从而又有…… ……这只需要证明命题A 为真.而已知A 为真,故命题B 必为真。

例5 求证5273<+例6若a ,b ,c 是不全等的正数,求证lglg lg lg lg lg .222a b b c c aa b c +++++>++(四)反证法1.定义:反证法:一般地,假设原命题不成立,(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法。

相关文档
最新文档