[整式的乘法与因式分解]整式乘法

合集下载

整式的乘法与因式分解

整式的乘法与因式分解

整式的乘法与因式分解基础知识1 同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

2 幂的乘方,底数不变,指数相乘。

3、积的乘方法则:nn n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

4、同底数幂的除法法则:nm n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

5、零指数和负指数;10=a ,即任何不等于零的数的零次方等于1。

p p a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单 项式里含有的字母,则连同它的指数作为积的一个因式。

①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘法法则对于三个以上的单项式相乘同样适用。

⑤单项式乘以单项式,结果仍是一个单项式。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)①积是一个多项式,其项数与多项式的项数相同。

②运算时要注意积的符号,多项式的每一项都包括它前面的符号。

③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。

8、多项式与多项式相乘的法则;多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再 把所的的积相加。

9、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式 里含有的字母,则连同它的指数作为商的一个因式。

10、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的 的商相加。

整式的乘法与因式分解精选全文完整版

整式的乘法与因式分解精选全文完整版

可编辑修改精选全文完整版整式的乘法与因式分解一:[整式的乘法与因式分解]初二数学知识点之整式乘除与因式分解讲解及汇总1.单项式的乘法法那么:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.单项式与多项式的乘法法那么:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法那么:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法那么:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.多项式除以单项式的法那么:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言表达:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言表达:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学知识点解析:二次函数的应用,希望对大家的学习有一定帮助。

2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),那么此抛物线的解析式为().3.某公司的生产利润原来是a元,经过连续两年的增长到达了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()4.把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.那么当y最大时,x所取的值是()A.0.5B.0.4C.0.3D.0.6【考点归纳】1.二次函数的解析式:(1)一般式:();(2)顶点式:();(3)交点式:().2.顶点式的几种特殊形式.线()对称,顶点坐标为(,).⑴当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是();⑵当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是().【典型例题】一、例1橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如下图).假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外6.以下函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆心角为120°的扇形面积S与半径R之间的关系小编为大家整理的初二数学知识点解析:二次函数的应用相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三局部:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底〞;②如果多项式的第一项的系数是负的,一般要提出“-〞号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

人教版八年级上册数学精品教学课件 第14章整式的乘法与因式分解 第1课时 单项式与单项式、多项式相乘

人教版八年级上册数学精品教学课件 第14章整式的乘法与因式分解 第1课时 单项式与单项式、多项式相乘

pa + pb + pc
知识要点 单项式乘多项式的法则
单项式与多项式相乘,就 p p
是用单项式乘多项式的每一 项,再把所得的积相加.
a
b
注意(1)依据是乘法分配律; (2)积的项数与多项式的项数相同.
p c
典例精析 例3 计算:
(1) (-4x) ·(2x2 + 3x-1);
解:原式=(-4x) ·(2x2) + (-4x) ·3x + (-4x) ·(-1)
解:由题意得
3m 1 n 2n 3 m
6 4, 1,
解得
m 2, n 3.

m2
+
n
=
7.
方法总结:单项式乘单项式就是把它们的系数和同底
数幂分别相乘,结合同类项的定义,列出二元一次方
程组求出参数的值,然后代值计算即可.
二 单项式与多项式相乘
问题 如图,试问三块草坪的的总面积是多少?
问题2 如果将上式中的数字改为字母,比如 ac5 ·bc2, 怎样计算这个式子?
ac5 ·bc2 = (a ·b) ·(c5 ·c2) (乘法交换律、结合律) = abc5+2 (同底数幂的乘法) = abc7.
根据以上计算,想一想如何计算单项式乘单项式?
知识要点 单项式与单项式的乘法法则
单项式与单项式相乘,把它们的系数、同底数 幂分别相乘,对于只在一个单项式里含有的字母, 则连同它的指数作为积的一个因式.
八年级数学上(RJ) 教学课件
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法
第1课时 单项式与单项式、多项式相乘
导入新课

《添括号法则》整式的乘法与因式分解

《添括号法则》整式的乘法与因式分解

要点二
详细描述
例如,化简分式$\frac{2x - 6}{x^{2} - 4x + 4}$,可以 先通分,得到$\frac{2(x - 3)}{(x - 2)^{2}}$,再化简得 到$\frac{2}{x - 2}$。最后代入$x = 5$,计算得值为 $\frac{2}{5 - 2} = \frac{2}{3}$。
当需要将一个多项式分解成几个多项式的积的形式时,可以 将这个多项式用括号括起来,然后再进行因式分解。例如, (x+y)(x-y) = x^2 - y^2。
常见错误与避免方法
常见错误
在应用添括号法则时,容易出现忘记括号或者添加多余的括号的情况,导致计算 结果错误。
避免方法
要准确理解添括号法则的实质,注意运算顺序和多项式的形式,不要轻易省略或 添加括号。在进行整式乘法和因式分解时,要反复检查计算过程,以确保结果的 准确性。
医学应用
在医学中,整式的乘法与 因式分解可以用来解决诸 如药物剂量的计算、生理 数据的分析等问题。
05
整式的乘法与因式分解的 技巧与策略
选择合适的运算方法
直接运算
对于简单的整式乘法或因 式分解,可直接根据运算 规则进行计算。
分配律
在整式乘法中,灵活运用 分配律可以简化计算过程 。
提取公因式
在因式分解中,根据需要 将公因式提取出来,以便 更好地进行分组和分解。
热学应用
在热学中,整式的乘法与因式分 解可以用来解决诸如热量传递、
热效应等问题。
日常生活中的整式运算与因式分解
01
02
03
金融计算
整式的乘法与因式分解在 金融计算中有着广泛的应 用,如利息的计算、股票 的涨跌等。

整式的乘法和因式分解

整式的乘法和因式分解

同底数幂的乘法:a m×a n=a m+na 可以是单项式,底数为正数还是负数,括号外为奇数次方还是偶数次方,若偶次方有没有对着负号,运算过后把底数都化为正数,再利用同底数幂的乘法。

若为同类项再把系数相加减。

a 若为多项式时,看底数是相同的还是相反数,若相反的把相反的化为相同的,若指数为偶数次方,直接改变;若指数为奇数次方,前面添负号,把底数化为相同的。

若指数中有子母,求字母的值,把底数化为相同的,一般化为最小的,再按同底数幂相乘,两个式子相等,底数一样,则指数也相等。

公式的倒用:给两个幂的值,求一个更复杂幂的值,见指数的和转化为同底数幂的乘,见指数的差转化为同底数幂的差,以所给的式子为目标进行变形出来,再代入求值。

比较几个幂的大小:根据题中给的形式,把底数化为相同的或把指数化为相同的形式,有一个相同,另一个谁大总体谁就大了。

指数比较大的幂相乘:把指数都化成最小的,根据积的乘方的倒算,把底数相乘,结果往往为±1,再算剩余的。

整式的乘法:1)几个单项式相乘,若题中有幂的乘方或积的乘方先进行自身计算,再进行其他的计算。

2)给积和一个因式,求另一个因式,利用乘法除法来做均可以,若为多项式注意带括号。

3)单项式×多项式,利用乘法的分配率来做题。

4)两个多项式乘开后没有几次项,就是看哪些项相乘可以得到几次项,利用合并同类项把系数写在一起,则总系数为0.5)多项式×多项式利用乘法的分配率来做,有公式的先用公式,先用平方差再用完全平方公式。

6)给一个等式,求字母的值:这类题是左边为多项式×多项式,右边为一个二次三项式;把左边按多项式×多项式乘开,两个多项式相等,二次项系数等于二次项系数,一次项系数等于一次项系数,常数项等于常数项。

整式的除法:若有积的乘方或幂的乘方,先用积的乘方或幂的乘方进行自身运算,再利用同底数幂的除法。

用同底数幂的乘或除,关键是化为相同的,可以同带负号,也可以都是正的,若不同应化为相同的。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 整式乘法的基本概念理解整式的定义及表示方法掌握整式乘法的基本原理1.2 整式的乘法法则学习整式乘法的基本法则练习整式乘法的计算方法1.3 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法1.4 单项式乘多项式理解单项式乘多项式的概念掌握单项式乘多项式的计算方法第二章:平方差公式与完全平方公式2.1 平方差公式推导平方差公式练习应用平方差公式解题2.2 完全平方公式推导完全平方公式练习应用完全平方公式解题2.3 平方根与乘方理解平方根与乘方的概念掌握平方根与乘方的计算方法第三章:因式分解3.1 因式分解的概念理解因式分解的定义及意义掌握因式分解的基本方法3.2 提取公因式法学习提取公因式法的方法练习提取公因式法解题3.3 公式法学习公式法的方法练习公式法解题3.4 分组分解法学习分组分解法的方法练习分组分解法解题第四章:应用题与综合练习4.1 应用题解法学习应用题的解法练习解决实际问题4.2 综合练习综合运用所学知识解决实际问题提高解题能力与思维水平第五章:复习与总结5.1 复习重点知识复习整式的乘法与因式分解的重点知识巩固所学内容5.2 总结全章内容总结整式的乘法与因式分解的主要概念和方法提高学生的综合运用能力第六章:多项式的乘法与除法6.1 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法6.2 单项式乘多项式与多项式乘单项式理解单项式乘多项式与多项式乘单项式的概念掌握单项式乘多项式与多项式乘单项式的计算方法6.3 多项式除以单项式理解多项式除以单项式的概念掌握多项式除以单项式的计算方法6.4 多项式除以多项式理解多项式除以多项式的概念掌握多项式除以多项式的计算方法第七章:分式与分式方程7.1 分式的概念与性质理解分式的定义及表示方法掌握分式的基本性质7.2 分式的运算学习分式的运算规则练习分式的计算方法7.3 分式方程理解分式方程的定义及解法掌握解分式方程的方法7.4 应用题与综合练习学习解决实际问题中涉及分式与分式方程的问题提高解决实际问题的能力第八章:二次三项式的因式分解8.1 二次三项式的概念理解二次三项式的定义及表示方法掌握二次三项式的性质8.2 二次三项式的因式分解学习二次三项式的因式分解方法练习二次三项式的因式分解技巧8.3 应用题与综合练习学习解决实际问题中涉及二次三项式的因式分解的问题提高解决实际问题的能力第九章:方程的解法与应用9.1 方程的解法学习方程的解法掌握解一元二次方程的方法9.2 方程的应用理解方程在实际问题中的应用练习解决实际问题中涉及方程的问题9.3 应用题与综合练习学习解决实际问题中涉及方程的问题提高解决实际问题的能力第十章:复习与总结10.1 复习重点知识复习本章的重点知识巩固所学内容10.2 总结全章内容总结本章的主要概念和方法提高学生的综合运用能力重点和难点解析1. 整式乘法的基本概念和原理:理解整式乘法的定义和表示方法,掌握整式乘法的原理是学习整式乘法的基础,需要重点关注。

整式的乘法与因式分解

整式的乘法与因式分解

整式的乘法与因式分解知识点的回顾1、单项式: 都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式)。

2、多项式: 几个单项式的和叫做多项式。

3、整式:单项式和多项式统称整式。

4、一个单项式中,所有字母的指数 和叫做这个单项式的 次数;一个多项式中,次数最高的项的次数 叫做这个多项式的次数。

(单独一个非零数的次数是 0) 5、整式的 加减运算法则 :去括号法则 整式的加减合并同类项法则练一练 :1、下列代数式中,单项式共有 个,多项式共有个。

- 1a 2 , 5 a23b 2, 2 , ab , 1 ( x y) ,1(a b) , a ,x 2 1 , x y34a27 πx 2 y 3z2、( 1)单项式的系数是 ,次数是 ;2(2) π 的次数是。

(3) 3ab 2c 2a 2b ab 2是单项式的和,次数最高的项是,它是 次 项式,二次项是,常数项是3、一个多项式加上 -2x 3+4x 2y+5y 3 后,得 x 3-x 2y+3y 3,求这个多项式, 并求当 x=- 1 ,y= 1时,22这个多项式的值。

第一讲 . 整式的乘法1、同底数幂的乘法同底数幂的乘法, 底数不变,指数相加。

即: ma n a m n,( m , n都是正整数)。

a例1 (1) 35 36 ( 2) b 2 m b m 1(3)( y) y 2 ( y) 31提示:①三个或三个以上的同底数幂相乘,法则也适用,即a m a n a p a m np ,( m, n, p 都是正整数);②不要忽视指数为一的因数;③底数不一定是一个数或者一个字母,也可以是单项式或多项式;④注意法则的逆用,即 a mna m a n2、幂的乘方幂的乘方,底数不变,指数相乘。

即:a m n a mn,(m , n都是正整数)。

例2 (1)32=()b 5 522(3)x2 n 1 3( 4) (x 3x m) 3=3、积的乘方积的乘方等于每一个因数乘方的积。

整式的乘法及因式分解单元总结与归纳

整式的乘法及因式分解单元总结与归纳

《整式的乘法及因式分解》单元总结与归纳【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【答案与解析】解:依题意得:21x x +=,∴3223x x ++,=3223x x x +++,=22()3x x x x +++,=23x x ++,=4;类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【答案与解析】解:()()2259x x x x x -+--, =322359x x x x -+--,=249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【答案与解析】解:()()()32224422x xy x x y x x y x y -=-=+-, 当x =10,y =10时,x =10,2x +y =30,2x -y =10,故密码为103010或101030或301010.4、因式分解:(1)()()269a b a b ++++;(2)222xy x y --- (3)()()22224222x xy y x xy y -+-+.【答案与解析】 解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x yx y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+=()()24222x xy y x y -+=- 5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x x x x +++-.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++ ②()()271234y y y y -+=--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[整式的乘法与因式分解]整式乘法【其他范文】整式乘法篇(1):整式的乘法教学计划课型:复习学习目标:1、巩固对整式乘法法则的理解,会用法则进行计算2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。

3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。

4、进一步培养学生有条理的思考和表达能力。

学习重点:整式乘法的法则运用学习难点:整式乘法中学生思维能力的培养学习过程1. 学习准备1. 你能写出整式乘法的法则吗?试一试。

2. 谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?利用课下时间和同学交流一下,能解决吗?2. 合作探究1. 练习(1)(-5a2b)(2 a2bc) (2)(- ax)( - bx3)(3)(2x104)(6x105) (4) ( x) ?2x3 ?( -3x2)2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?3、练习(1)(-3x)(4x2- x+1) (2)(-xy)(2x-5y-1)(3)(2x+3) (4x+1) (4)(x+1)(x2-2x+3)4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。

3. 自我测试1、3x2? (-4xy) ?(- xy)=2、若(mx3)?(2xn)=-8x18,则m=3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是4、若m2-2m=1,则2m2-4m+2008的值是5、解方程:1-(2x+1)(x-2)= x2-(3x-1)(x+3)-116、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=- .8、(2009 北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。

9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平方米草坪260元,则为修建该草坪需投资多少元?整式乘法篇(2):整式的乘法教学反思整式的乘法教学目标是掌握整式的乘法的法则,会进行单项式与单项式的乘法的运算,熟练地进行整式的计算与化简。

以下是小编整理的整式的乘法教学反思,欢迎阅读。

整式的乘法教学反思1《整式的乘法》是华师大版八年级上学期第十三章的一部分内容,主要包括同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法公式。

整式乘法是整式乘除与因式分解的基础,是学好本章的关键,是教学的重点内容。

而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。

在这一部分教学时,我主要采用归纳式教学法。

首先举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。

例如a×a=a2,a×a×a=a3,a2×a3=a×a×a×a×a=a5···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。

这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。

得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题,在相互纠正的过程中让学生逐步掌握运算法则,并能熟练的应用法则进行运算。

教学时发现学生很容易把一些运算的法则搞混淆。

例如:进行以下计算(a2)3=a5,a3×a4=a12,这就是混淆了运算的法则。

出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。

数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。

所以,通过本章的教学,使我更进一步的认识到数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。

在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。

对于发现的问题,应及时解决,趁热打铁。

数学知识是逻辑严密的知识体系,前面知识掌握的好坏会直接影响学生后面知识的学习效果。

很多同学学会了有关幂的运算,但是在计算单项式乘单项式和单项式乘多项式时,还是出现了很多问题。

主要问题出在正负号的变换,以及乘完后没有合并同类项,或者不会合并同类项。

这两块内容都属于七年级时学生已经掌握的内容,在教学过程中就忽略了,没有再次进行强调,经过一段时间,学生容易将以前学过的知识遗忘,更难以将已有知识和新知识进行有机结合,从而找到它们之间的联系。

在教学过程中,我不经意的就通过主观判断来判断学生,对一些自己认为简单的问题,想着学生会很容易的学会并掌握,然而事实并非这样,相当一部分的同学并没有将知识融会贯通,而我却没有高度重视,这样这些学生的问题会越积越多,最后导致部分同学对这部分内容掌握的不好。

最后不得不再花时间进行有针对性的训练,以解决这个问题。

通过对本章的教学我还发现,对学生容易出错问题要时时提醒。

学生出现的问题,我以前常常当时提醒后就没有及时进行再反馈,认为学生应该掌握了,但实际情况是学生在下一次还会重复一样的错误。

所以在以后的教学活动中更要利用有效的方法和针对性的措施去掌握学生的反馈情况,这样才能有针对性的做好教学设计,提高教学效率。

精讲多练才能促进学生主动学习。

精讲要有选择的选取例题,例题要有适中的难度,针对某些易错的问题,要多举例子进行辨析解答。

讲完后一定要让学生进行由浅入深的练习,通过练习看学生的掌握情况和问题所在。

出现的问题要当堂解决。

整式乘法公式许多人会背但不会用,或者是漏掉其中的某些项。

例如:有的同学会这样运算(x+y)2=x2+y2。

不会使用具体表现在,不能把一些式子进行简单的变形,转化成满足公式的形式。

没有整体的思想,不能把一个多项式作为一个整体去运算。

学生对老师依赖性强,缺乏主动钻研的习惯和精神。

许多学生的自学能力很差,对于已经学过的知识点,说不清掌握了哪些,还有哪些问题没有解决,并且也提不出问题。

学生对于练习中不会做的题或作业中不会做题,好多学生很少问,觉得老师都会讲,所以不用问。

甚至,对于老师不布置的题目不主动去做的原因就是老师没有布置。

课堂教学中老师布置的自学或思考讨论时,很多学生消极参与,被动地等待老师讲解。

合作讨论探究效率极低,如果留足够的时间让学生合作交流,则很难完成教学任务,若直接给学生讲解,学生被动学习,不主动思考,又很难取得好的教学效果。

针对上述遇到的问题,在右后的教学过程中,应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。

在教学活动中,要把基本理念转化为自己的教学行为, 处理好讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现课程目标。

整式的乘法教学反思2通过本节课的教学实践,我再次体会到:课堂上的真正主人应该是学生。

教师只是一名引导者,是一名参与者。

一堂好课,师生一定会有共同的、积极的情感体验。

本节课教学中,各知识点均是学生通过探索发现的,学生充分经历了探索与发现的过程,这正是新课程标准所倡导的教学方法。

教学中没有将重点盯在大量的练习上,而是定位在知识形成的过程的探索,这是更加注重学生学习能力的培养的体现,实践证明这种做法是成功的。

今后的教学中要继续注重引导学生自我探索与自我发现,注重挖掘教材的能力生长点,挖掘教材的内涵,着眼于学生终身发展的需要,为学生的终身发展奠定基础。

整式的乘法教学反思3这节课最为欣赏的是通过类比的方法学生自主的掌握单项式乘法法则,不足的是步子较慢,没有完成预设的内容。

这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。

这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。

从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

三、混合运算中符号及各种运算法则混淆不清,运用还不够熟练。

对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

整式的乘法教学反思4《整式的乘法》是八年级上学期的最后一部分内容,也是比较有难度的内容。

主要包括,同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法的两个公式。

整式乘法是整式乘除与因式分解的基础,是学好最后一章的关键,因此是我教学的重点内容。

而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。

在这一部分教学时,我主要采用归纳式教学法。

首先,举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。

例如:a×a=a,a×a×a=a,a×a=5a×a×a×a×a=a···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。

这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。

得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题。

教学时发现学生很容易把一些运算的法则搞混淆。

相关文档
最新文档