插补的基本概念、脉冲增量插补与数据采样插补的特点和区别、逐点比较法的基本原理、直线插补和圆弧插补

合集下载

逐点比较法的概念基本原理及特点【最新精选】

逐点比较法的概念基本原理及特点【最新精选】

逐点比较法的概念基本原理及特点早期数控机床广泛采用的方法,又称代数法、醉步伐,适用于开环系统。

1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。

每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。

逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。

特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。

逐点比较法直线插补(1)偏差函数构造对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye若刀具加工点为Pi(X i,Y i),则该点的偏差函数F i可表示为若F i= 0,表示加工点位于直线上;若F i> 0,表示加工点位于直线上方;若F i< 0,表示加工点位于直线下方。

(2)偏差函数字的递推计算采用偏差函数的递推式(迭代式)既由前一点计算后一点Fi =Yi Xe -XiYe若F i>=0,规定向+X 方向走一步Xi+1 = Xi +1Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye若F i<0,规定+Y 方向走一步,则有Yi+1 = Yi +1Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe(3)终点判别直线插补的终点判别可采用三种方法。

1)判断插补或进给的总步数:;2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。

(4)逐点比较法直线插补举例对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。

终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。

逐点比较法圆弧插补3.逐点比较法圆弧插补(1)偏差函数任意加工点P i(X i,Y i),偏差函数F i可表示为若F i=0,表示加工点位于圆上;若F i>0,表示加工点位于圆外;若F i<0,表示加工点位于圆内(2)偏差函数的递推计算1)逆圆插补若F≥0,规定向-X方向走一步若F i<0,规定向+Y方向走一步2)顺圆插补若F i≥0,规定向-Y方向走一步若F i<0,规定向+y方向走一步(3)终点判别1)判断插补或进给的总步数:⎩⎨⎧+-=-+-=-=++12)1(122211iiiiiiiXFRYXFXX⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧+-=--+=-=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiXFRYXFXXbabaYYXXN-+-=baxXXN-=bayYYN-=2) 分别判断各坐标轴的进给步数;(4)逐点比较法圆弧插补举例对于第一象限圆弧AB ,起点A (4,0),终点B (0,4)4.逐点比较法的速度分析fN V L式中:L —直线长度;V —刀具进给速度;N —插补循环数;f —插补脉冲的频率。

数控技术第3章插补原理

数控技术第3章插补原理

5. 运算举例(第Ⅰ 象限逆圆弧) 运算举例( 象限逆圆弧) 加工圆弧AE 起点(4,3) AE, (4,3), 终点(0,5) E=(4-0)+(5加工圆弧AE,起点(4,3), 终点(0,5) ,E=(4-0)+(53)=6 插补过程演示
三.逐点比较法的进给速度 逐点比较法的进给速度
逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 抛物线和双曲线等二次曲线。此法进给速度平稳, 抛物线和双曲线等二次曲线。此法进给速度平稳, 精度较高。在两坐标联动机床中应用普遍. 精度较高。在两坐标联动机床中应用普遍. 对于某一坐标而言, 对于某一坐标而言,进给脉冲的频率就决定了进给速 度 :
插补是数控系统最重要的功能; 插补是数控系统最重要的功能; 插补实际是数据密集化的过程; 插补实际是数据密集化的过程; 插补必须是实时的; 插补必须是实时的; 插补运算速度直接影响系统的控制速度; 插补运算速度直接影响系统的控制速度; 插补计算精度影响到整个数控系统的精度。 插补计算精度影响到整个数控系统的精度。 插补器按数学模型分类,可分为一次插补器、 插补器按数学模型分类,可分为一次插补器、二次插补器及高 次曲线插补器; 次曲线插补器; 根据插补所采用的原理和计算方法不同, 根据插补所采用的原理和计算方法不同,分为软件插补和硬件 插补。目前大多采用软件插补或软硬件结合插补。 插补。目前大多采用软件插补或软硬件结合插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。
脉冲当量: 脉冲当量:每一个脉冲使执行件按指令要求方向移动的直线 距离,称为脉冲当量, 表示。一般0.01mm 0.001mm。 0.01mm~ 距离,称为脉冲当量,用δ表示。一般0.01mm~0.001mm。 脉冲当量越小, 脉冲当量越小,则机床精度越高

第三章 数控插补原理

第三章 数控插补原理

解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。

第5章 数控插补原理

第5章 数控插补原理

3.时间分割法插补精度 直线插补时,轮廓步长与被加工直线重合,没有插 补误差。
圆弧插补时,轮廓步长作为弦线或割线对圆弧进行 逼近,存在半径误差。
Y A(Xe,Ye) l l △X β O l △Y
α
第5章 数控装置的轨迹控制原理
FT l er 8r 8r
2
2
式中 er——最大径向误差; r——圆弧半径。 圆弧插补时的半径误差er与圆弧半径r成反比,与插补周期T和进 给速度F 的平方成正比。 插补周期是固定的,该误差取决于进给速度和圆弧半径。 当加工圆弧半径确定后,为了使径向误差不超过允许值,对进给 速度有一个限制。 例如:当要求er≤1μ m,插补周期为T=8ms,则进给速度为:
第5章 数控装置的轨迹控制原理
5.2 脉冲增量插补
-------逐点比较法
插补原理:每次仅向一个坐标轴输 出一个进给脉冲,每走一步都要通 过偏差计算,判断偏差点的瞬时坐 标同规定加工轨迹之间的偏差,然 后决定下一步的进给方向。 每个插补循环由四个步骤组成。
Y P1 P2 B
A 0
P0(x,y)
X 终点到?
设刀具由A点移动到B点,A(Xi-1,Yi-1 )为圆弧上一插补 点, B(Xi,Yi)为下一插补点。AP为A点的切线,AB为本次插补的合成 进给量,AB=f。M为AB之中点。 通过计算可以求得下一插补点B点的坐标值
X i X i1 X
Yi Yi 1 Y
第5章 数控装置的轨迹控制原理
∑=5-1=4 ∑=4-1=3 ∑=3-1=2
9
10
F8>0
F9>0
-X
-X
F9=4-2×2+1=1,X9=2-1=1,Y9=5

数控机床插补原理

数控机床插补原理
宋成伟
3.4.3.偏差计算 3.4.3.
进给一步后,计算新加工点与规定的 轮 廓的新偏差,为下一次偏差判别做准备, 根据偏差判别的结果给出计算方法. 当F≥0时,为F-Y,即沿+X方向走一步; 当F<0时,为F+X,即沿方+Y向走一步;
宋成伟
3.4.4.终点判别 3.4.4.
判断加工点是否到达终点,若已到 终点,则停止插补,否则再继续按此四 个节拍继续进行插补. 1.讨论累计步数∑的问题. 2.讨论终点坐标时所要完成的插补步数 的问题.
宋成伟
逐点比较法既可以实现直线 插补也可以实现圆弧等插补,它 的特点是运算直观,插补误差小 于一个脉冲当量,输出脉冲均匀 ,速度变化小,调节方便,因此 在两个坐标开环的CNC系统中应 用比较普遍.
宋成伟
该方法一般不用于多轴联动,应用范围 有一定限制.它的算法特点是: 3.2.1.1.每次插补的结果仅产生一个单 位的位移增量(一个脉冲当量),以一个 脉冲的方式输出给步进电机,采用以用折 线逼近曲线的思维方式.
宋成伟
3.2.3.3.该算法比脉冲增量插补算 法较为复杂,对计算机运算速度有 一定要求. 它主要用于交,直流伺服电机驱 动的闭环,半闭环CNC系统.也可 用于步进电动机开环系统.
宋成伟
3.4.直线插补计算 Y .
这种插补方法是以 阶梯折线来逼近直线和Ye 圆弧等曲线的,而阶梯 折线与规定的加工直线 或圆弧之间的最大误差 不超过一个脉冲当量,Ym 因此如果数控机床的脉 冲当量足够小,就能够 满足一定的加工精度的 0.0 要求.
宋成伟
使用数据采样插补的数控系统, 其位置伺服通过计算机及测量装置 构成闭环.计算机定时地对反馈回 路采样,采样的数据与插补程序所 产生的指令数据相比较,用其误差 信号输出去驱动伺服电动机.采样 周期一般为10ms左右.

第四章 CNC的插补原理(1)

第四章 CNC的插补原理(1)
一个脉冲所产生的进给轴移动量叫脉冲当量,用δ表 示,脉冲当量是脉冲分配计算的基本单位,根据加 工精度选择,普通机床取 δ =0.01mm,较为精密的 机床 δ =1μm or 0.5μm,插补误差不得大于一个脉冲 当量。
3.2 脉冲增量插补
运用范围:控制精度和进给速度较低,因此主要应 用于以步进电机为驱动装置的开环控制系统中。
ye=4, 用逐点比较法加工直线OE。 (要求:计算总步数,列表说明直线插补运算过程,并 绘制插补轨迹图)
一、逐点比较插补原理—圆弧插补
偏差计算(以第一象限逆圆为例)
设圆弧起点为A (xo,,yo), 终点为B (xe,ye),以圆心为
坐标圆点,设圆上任意一点为(xi,yi),圆上任一
点满足
Y
(xi2+yi2 )-(x2o+y2o)=0
如果成立插补结束
一、逐点比较插补原理—直线插补
初始化
置数 xe , ye, F=0 N = xe + ye
Y
F≥0? N
逐点比较直线插补 (第一象限)软件流程图
送一个+x 方向脉冲
偏差计算 F – ye → F
送一个+y 方向脉冲
偏差计算 F + xe → F
思考:
n → n-1
其余象限逐点比较直线插补软件流程图
A
✓ 若沿- x方向走一步 (xi+1= xi -1; yi+1= yi)
X
Fi+1 = (xi+12+yi+12 ) - (x2o+y2o) = Fi -2xi + 1
✓ 若沿+ y方向走一步 (xi+1= xi ; yi+1= yi+1)

3.1数控插补原理(2)逐点比较法

3.1数控插补原理(2)逐点比较法

开始 初始化 Xe→X,Ye→Y 0→Fi ,N =|Xe|+|Ye|
Y 进给方向:+X
F≥0 N 进给方向: +Y
Fi- Ye → Fi+1
Fi+ Xe → Fi+1
N = N -1
N =0
N
Y 结束
继续
逐点比较法Ⅰ象限直线插补流程图
例题:设欲加工第一象限直线OE,起点为坐标原点,
终点坐标为Xe=4,Ye=3,用逐点比较法插补之,并画出
+Y F6 F5 2Y5 1 4
-X F7 F6 2X6 1 1
8
F7>0
-X
F8 F7 2X7 1 0
坐标计算
X0=4,Y0=0 X1=3,Y1=0 X2=3,Y2=1 X3=3,Y3=2 X4=3,Y4=3 X5=2,Y5=3 X6=2,Y6=4 X7=1,Y7=4
X8=0,Y8=4
Fi 0, 朝 x 增大方向, Fi1 Fi ye Fi 0, 朝 y 增大方向, Fi1 Fi xe
5.2 脉冲增量插补 其它象限插补流程:
3.逐点比较法Ⅰ象限逆圆插补
(1)基本原理
①偏差判别 关键:寻找偏差函数F(x,y)
当动点N(Xi,Yi)位于圆弧上时有下式成立
Y
E(XeYe) Nˊ
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧外侧时,有下式成立
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧内侧时,有下式成立
O
N(Xi,Yi) R
N〞 S(XSYS)
X
X i2 Yi2 Xe2 Ye2 R2
I象限逆圆与动点之间的关系

插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补

插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补

插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。

脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。

而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。

脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。

数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。

逐点比较法是一种用于校正控制系统误差的方法。

其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。

逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。

直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。

直线插补的计算相对简单,只需要对坐标进行线性插值即可。

圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。

圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。

总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开始 偏差判别
坐标进给
偏差计算 到达终点? Y 结束 N
一、逐点比较法Ⅰ象限直线插补 Y 位置偏差计算 设有第一象限直线OE,起点O为坐标系原点, 终点为E(Xe,Ye),坐标系中各点坐标的单位 为脉冲当量数。 假设在直线OE附近有一个动点N(Xi,Yi), 则该点相对于轮廓OE的位置偏差,可以用轮廓终 点E的位矢和动点N的位矢与X轴的夹角正切差来 O 表示。即
E(Xe,Ye)
N(Xi,Yi) X
Yi Ye Xi Xe
使用一个正数XeXi乘以该式,最后得
Fi X eYi X iYe
(3-1)
很显然,偏差值Fi的符号反映了动点N相对于直线OE的位置偏离情况。 ① Fi = 0 时,动点N在直线上; ② Fi ≻ 0 时,动点N在直线的上方区域; ③ Fi ≺ 0 时,动点N在直线的下方区域。
开始 偏差计算 Y F>0 E(Xe,Ye)
偏差判别
坐标进给
到达终点? Y 结束 N O
F<0
X
偏差值的迭代计算公式 通过以上讨论,逐点比较法直线插补的偏差值计算公式为 Fi = XeYi – XiYe
该式有一个缺点:需要做乘法运算。对于硬件插补器或者使用汇编语言的 软件插补器,这将产生一定的困难。
插补模块
目标 位置
当前 位置 误差 实际 位置
调整运算
进给 速度
驱动装置 测量元件
工作台
位置控制软件
综上所述,各类插补算法都存在着速度与精度之间的矛盾。为解决这个 问题,人们提出了以下几种方案。 ① 软件/硬件相配合的两级插补方案 在这种方案中,插补任务分成两步完成: 首先,使用插补软件(采用数据采样法)将零件轮廓按插补周期(10~ 20ms)分割成若干个微小直线段,这个过程称为粗插补。 随后,使用硬件插补器对粗插补输出的微小直线段做进一步的细分插补, 形成一簇单位脉冲输出,这个过程称为精插补。 ② 多个CPU的分布式处理方案 首先,将数控系统的全部功能划分为几个子功能模块,每个子功能模块 配置一个独立的CPU来完成其相应功能,然后通过系统软件来协调各个CPU之 间的工作。
a0 a1 a2 a3 a4 a5 a6 a7 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9
(a)
(b)
(4)有关插补问题的几点说明
① 插补运算可以采用数控系统硬件或数控系统软件来完成。 硬件插补器:速度快,但缺乏柔性,调整和修改都困难。 软件插补器:速度慢,但柔性高,调整和修改都很方便。 早期硬件数控系统:采用由数字逻辑电路组成的硬件插补器; CNC系统:采用软件插补器,或软件、硬件相结合的插补方式。
刀具进给 逐点比较法刀具进给方向的选择原则: ① 平行于某个坐标轴; ② 减小动点相对于零件轮廓的位置偏差。 根据这个原则可以判断出直线插补的刀具进给方向为: ① 当动点在直线上方区域时, 应 +X 方向进给一步; ② 当动点在直线下方区域时,应 +Y 方向进给一步; ③ 动点在直线上时, 既可以+X方向也可以+Y方向进给一步,在此约定 取+X方向。
③ 采用单台高性能微型计算机方案
第二节 逐点比较法 逐点比较法的基本原理 在刀具运动过程中,不断比较刀具与零件轮廓之间的相对位置,并根据 比较结果使刀具平行于坐标轴向减小偏差的方向进给。 逐点比较法的特点 ① 可以实现直线插补和圆弧插补; ② 每次插补运算后,只有一个坐标轴方向有进给; ③ 插补误差不超过一个脉冲当量; ④ 运算简单直观,输出脉冲均匀。 缺点:不容易实现两坐标以上的联动插补。 在两坐标联动的数控机床中应用比较普遍。
Y E(Xe,Ye)
F>0
F<0 O X
终点判别 确定刀具是否已经抵达直线终点。如果到了终点,则停止插补计算;否 则继续循环处理插补计算。常用的终点判别方法有以下三种。 ① 总步长法 在插补处理开始之前,先设置一个总步长计数器∑,其初值为: ∑=|Xe|+ |Ye| 其中, |Xe|:在X轴方向上刀具应该走的总步数; |Ye|:在Y轴方向上刀具应该走的总步数; ∑ :整个插补过程中,刀具应该走的总步数。 在插补过程中,每进行一次插补计算,无论哪根坐标轴进给一步,计数 器∑都做一次减1操作。当计数器∑内容减到零时,表示刀具已经走了规定的 步数,应该已经抵达直线轮廓的终点,系统停止插补计算。
② 投影法 在插补处理开始之前,先确定直线轮廓终点坐标绝对值中较大的那根轴, 并求出该轴运动的总步数,然后存放在总步长计数器∑ 中。 ∑=max(|Xe|, |Ye|) 在插补过程中,每进行一次插补计算,如果终点坐标绝对值较大的那根坐 标轴进给一步,则计数器∑做减1操作。当计数器∑内容减到零时,表示刀具 在终点坐标绝对值较大的那根坐标轴方向上已经走了规定的步数,应该已经抵 达直线轮廓的终点,系统停止插补计算。 ③ 终点坐标法 在插补处理开始之前,先设置两个步长计数器∑1 和∑2 ,分别用来存放 刀具在两个坐标轴方向上应该走的总步数: ∑1 = |Xe|, ∑2 = |Ye| 在插补过程中,每进行一次插补计算,如果X方向进给一步,则计数器∑1 做减1操作;如果Y方向进给一步,则计数器∑2做减1操作。当两个步长计数器 都为零时,表示刀具已经抵达直线轮廓的终点,系统停止插补计算。
插补运算处理
产生刀具坐标移动的实际控制信号
插补模块是数控系统软件中的一个及其重要的功能模块,其算法选择将 直接影响到数控系统的运动精度、运动速度和加工能力等。
(2)数控机床的运动特点 ① 在数控机床中,刀具的基本运动单位是脉冲当量,刀具沿各个坐标轴方 向的位移的大小只能是脉冲当量的整数倍。 因此,数控机床的运动空间被被离散化为一个网格区域,网格大小为一个 脉冲当量,刀具只能运动到网格节点的位置。 如下图所示。
为简化偏差值Fi的计算,通常采用迭代公式,即根据当前点的偏差值推算 出下一点的偏差值。 根据这个思想,对上述偏差值计算公式进行离散处理,最后有如下结论。
① 当 Fi ≥ 0 时,动点在直线上 或 在直线上方区域 向 +X 方向进给一步 新位置的偏差计算公式为: Fi+1 = Fi – Ye ② 当 Fi < 0时,动点在直线下方区域 向 +Y 方向进给一步 新位置的偏差计算公式为: Fi+1 = Fi + Xe ③ 开始加工直线轮廓时,刀具总是处在直线轮廓的起点位置。因此偏差 值的初始值 F0 = 0
(5)插补算法分类 脉冲增量插补算法 通过向各个运动轴分配驱动脉冲来控制机床坐标轴相互协调运动,从而加工出一 定轮廓形状的算法。 特点: ① 每次插补运算后,在一个坐标轴方向(X、Y或Z) ,最多产生一个单位脉冲 形式的步进电机控制信号,使该坐标轴最多产生一个单位的行程增量。 每个单位脉冲所对应的坐标轴位移量称为脉冲当量,一般用δ或BLU来表示。 ② 脉冲当量是脉冲分配的基本单位,它决定了数控系统的加工精度。 普通数控机床: δ = 0.01mm; 精密数控机床: δ = 0.005mm 、 0.0025mm 或0.001mm; ③ 算法比较简单,通常只需要几次加法操作和移位操作就可以完成插补运算,因 此容易用硬件来实现。 ④ 插补误差 < δ;输出脉冲频率的上限取决于插补程序所用的时间。因此该算法 适合于中等精度( δ = 0.01mm )和中等速度(1~4m/min)的机床数控系统。
② 在数控机床的加工过程中,刀具只能以折线的形式去逼近需要被加工的 曲线轮廓,其实际运动轨迹是由一系列微小直线段所组成的折线,而不是光滑 的曲线,如下图所示。
a0
a1 a2 a3 a4 a5 a6 a7
a0
a1
a2 a3 a4 a5 a6 a7 a8 a9
(a)
(b)
(3)插补定义 在机床运动过程中,为了实现轮廓控制,数控系统必须根据零件轮廓 的曲线形式和进给速度的要求 ,实时计算出介于轮廓起点和终点之间的所 有折线端点的坐标(a1、a2、a3、…、),这种实时运算操作就是插补运 算。
当前 位置 误差 实际 位置
插补模块
目标 位置
调整运算
进给 速度
驱动装置 测量元件
工作台
位置控制软件
特点: ① 每次插补运算的结果不再是某坐标轴方向上的一个脉冲,而是与各坐标 轴位置增量相对应的几个数字量。此类算法适用于以直流伺服电机或交流伺服 电机作为驱动元件的闭环或半闭环数控系统。 ② 数据采样插补程序的运行时间已不再是限制加工速度的主要因素。加工 速度的上限取决于插补精度要求以及伺服系统的动态响应特性。
数据采样插补算法 根据数控加工程序所要求的进给速度,按照插补周期的大小,先将零件轮 廓曲线分割为一系列首尾相接的微小直线段,然后输出这些微小直线段所对应 的位置增量数据,控制伺服系统实现坐标轴进给。 采用数据采样插补算法时,每调用一次插补程序,数控系统就计算出本插 补周期内各个坐标轴的位置增量以及各个坐标轴的目标位置。 随后伺服位置控制软件将把插补计算求得的坐标轴位置与采样获得的坐标 轴实际位置进行比较求得位置跟踪误差,然后根据当前位置误差计算出坐标轴 的进给速度并输出给驱动装置,从而驱动移动部件向减小误差的方向运动。
② 直线和圆弧是构成零件轮廓的基本线型,所以绝大多数数控系统都 具有直线插补和圆弧插补功能。 本课程将重点介绍直线插补和圆弧插补的计算方法。
③ 插补运算速度是影响刀具进给速度的重要因素。为减少插补运算时 间,在插补运算过程中,应该尽量避免三角函数、乘、除以及开方等复杂运 算。因此插补运算一般都采用迭代算法。 ④ 插补运算速度直接影响数控系统的运行速度;插补运算精度又直接 影响数控系统的运行精度。 插补速度和插补精度之间是相互制约、互相矛盾的,因此只能折中选择。
逐点比较法的工作过程 逐点比较法插补过程的每一步都要经过以下四 个工作节拍。 ① 偏差判别 根据偏差值的符号,判别当前刀具相对于零件 轮廓的位置偏差。 ② 坐标进给 根据偏差判别的结果,控制相应的坐标轴进给 一步,使刀具向零件轮廓靠拢。 ③ 偏差计算 刀具进给一步后,针对新的刀具位置,计算新 的偏差值。 ④ 终点判别 刀具进给一步后,需要判别刀具是否已经到达 零件轮廓的终点。 如果已经到达终点,则停止插补过程; 如果未到达终点,则返回到第①步,重复上述 四个节拍。
相关文档
最新文档