熔化极气体保护焊MIG_MAG

合集下载

TIG和MIG焊接的区别

TIG和MIG焊接的区别

TIG和MIG焊接的区别1、TIG焊一般是一手持焊枪,另一只手持焊丝,适合小规模操作和修补的手工焊。

2、MIG和MAG,焊丝通过自动送丝机构从焊枪送出,适合自动焊,当然也可以用手工。

3、MIG和MAG的区别主要在保护气氛。

设备近似,但前者一般用氩气保护,适合焊接有色金属;后者在氩气里一般掺二氧化碳活性气体,适合焊接高强钢和高合金钢。

4、TIG、MIG都是惰性气体保护焊,俗称氩弧焊。

惰性气体可以是氩或者氦,但是氩便宜,所以常用,于是惰性气体弧焊一般称为氩弧焊。

钨极惰性情体保护焊是以钨或钨的合金作为电极材料,在惰性气体的保护下,利用电极与母材金属(工件)之间产生的电弧热熔化母材和填充焊丝的焊接过程。

英文称为GTAW——Gas Tungsten Arc Welding或TIG——Tungsten Inert Gas Welding1)手弧焊(STICK)焊条手弧焊,英文是Shielded Arc Welding(缩写SMAW),其原理是:在药皮焊条和母材间产生电弧,利用电弧热融化焊条和母材的焊接方法。

焊条外层覆盖焊药,遇热融化,具有使电弧稳定、形成溶渣、脱氧、精炼等作用。

焊条手弧焊焊接原理图:焊接电源使用具有下降特性的交流电焊机或直流电弧焊机。

一般使用交流电弧焊机,特别要求电弧稳定性时使用直流电弧焊机。

主要特点:焊接操作简单;焊钳轻,移动方便,适用作业范围广。

2)熔化极气保焊(CO2/MAG/MIG)消耗电极式气体保护焊接,英文是Gas meta l Arc Welding(缩写GMAW)MAG 焊接:meta l Active Gas Welding(Active Gas: 活性气体)MIG 焊接:meta l Inert Gas Welding,(Inert Gas: 惰性气体)根据保护气体的种类,大体分为MAG焊接和MIG焊接。

MAG焊接使用CO2、或在氩气内混合C02或氧气(这些称为活性气体)。

实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别

实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别

GMAW:熔化极气体保护焊含有MIG和MAGMIG:熔化极惰性气体保护焊MAG:熔化极活性气体保护焊FCAW: 药芯焊丝气体保护焊(软钢及高张力钢用药芯焊丝)SMAW:药皮焊条电弧焊SAW:埋弧自动焊实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别:1.GMAW的主要优势在于每小时的金属熔敷量,这极大地降低了劳动力成本。

气体保护焊的另一个优势在于它是一种干净的工艺,这主要归功于没有使用焊剂。

在通风不良的车间会发现,从手工电弧焊或药芯焊换成气体保护焊后情况会得到改善,这是因为烟的产生减少了。

由于有各种各样的焊丝可选用,而且焊接设备变的更便于携带,气体保护焊的适用领域不断得到扩展。

该工艺的另外一个优点是可见性。

因为没有焊渣,焊工能够很容易地观察电弧和熔池的情况,从而改善控制。

GMAW还对气流和风特别敏感,它们会将保护气体吹开,留下未保护的金属。

正是这个原因,气体保护焊不大适合工地焊接。

应充分认识到,气体流量大于推荐值的上限,并不能保证对熔池适当的保护。

实际上,大的气体流量反而导致气体紊乱,并增大气孔产生的可能性,这是因为增大气体流量实际上可能将空气带入焊接区。

2.FCAW获得广泛的认可,是因为它能提供优良的性能。

可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。

它是手工焊接工艺中效率最高的。

这是由于焊丝盘提供连续不断的焊丝,同GMAW一样增加了电弧时间。

该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。

由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。

无论有无保护气体的辅助,FCAW因有焊剂,它比GMAW对母材污染有更大的容许。

正是这个原因,使得FCAW适合工地焊接,在现场,风使得保护气体流失,而GMAW会受到极大的影响。

然而,检验师应当明白该工艺有它的局限。

首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。

熔化极惰性气体保护焊、熔化极活性混合气体保护焊

熔化极惰性气体保护焊、熔化极活性混合气体保护焊
图3-2 MIG焊示意图 1-焊丝盘;2-送丝滚轮;3-焊丝;4-导电嘴;5-保护气体 喷嘴;6-保护气体;7-熔池;8-焊缝;9-母材;10-电弧
5 相关知识
MIG焊采用惰性气体作为保护气,与C〇2焊、焊条电弧焊或 其他熔化 极电弧焊相比,它具有如下一些特点:
(1) 焊接质量好。 (2) 焊接生产率高。 (3) 适用范围广。 MIG焊的缺点在于无脱氧去氢作用,因此对母材及焊丝上的油、锈很 敏感,易形成缺陷, 所以对焊接材料表面清理要求特别严格;另外熔化极 惰性气体保护焊抗风能力差,不适于野 外焊接;焊接设备也较复杂。
(2) 熟悉MIG、MAG焊设备的组成、操作使用和维护知识,掌握MIG、 MAG焊的操作要点,能根据MIG、MAG焊的使用要求,合理选择、正确 安装调试、操作使用和维护MIG、MAG焊设备;
(3) 了解MIG、MAG焊其他方法。
5 相关知识
1. MIG焊的原理、特点及应用 溶化极惰性气体保护焊,是以焊丝 作为熔化电极,采用惰性气体作为保护 气体的电弧焊方法,简称MIG焊。 这种方法通常用氩气或氦气或它们 的混合气体作为保护气,连续送进的焊 丝既作为电极又作为填充金属,在焊接 过程中焊丝不断熔化并过渡到熔池中去 而形成焊缝。其原理如图3-2所示。
100%Ar Ar + 15% 〜20%He
99%Ar + 1%02
98%Ar + 2%02
低合金高强度 钢
98%Ar + 2%2 Ar + 3% 〜 5%O2
低碳钢
Ar + 10% 〜20%O2 80%Ar + 15%CO2 +5%O2
65%Ar + 26.5%He +8%CO2 +0.5%O2

熔化极惰性气体保护焊、熔化极活性混合气体保护焊

熔化极惰性气体保护焊、熔化极活性混合气体保护焊

6 销座
11 沉头螺钉
7 导向组件 12 左连接
8 连接
13 螺母
9 防护扭矩螺母 (8 Nm)
10 双头螺栓
高速断路器典型结构和主要部件
城市轨道交通车辆检修
脱扣装置
1 杠杆 2 移动磁铁 3 板组 4 脱扣盒
5 脱扣装置盖 6 左弹簧 7 右弹簧 8 旋钮
9 前刻度板 10 脱扣指示器 11 紧固件 12 锁紧螺钉
高速断路器典型结构和主要部件
城市轨道交通车辆检修
1 叉杆 2 闭合杆 3 前盖板 4 闭合线圈 5 线圈芯组件 6 后盖板
7 闭合装置盒 8 触点压力弹簧
9 闭合装置盖 10 气缸 11 MVQ环 12 滚筒 13 六角内螺帽螺钉 14 接地柱
15 圆头螺钉 16 弹性垫圈
17 弹簧环 18 杆 19 杆
图3-1 熔化极活性混合气体 保护焊

2 学习内容
1. MIG、MAG焊的原理、特点及应用; 2. MIG、MAG焊设备; 3. MIG、MAG焊工艺; 4. MIG、MAG焊 的其他方法; 5. MIG、MAG焊的基本操作方法。
3 建议课时
6〜8学时。
城市轨道交通车辆检修
6.2 牵引及控制系统检修

高速断路器检修

牵引逆变器检修

接触器检修

牵引控制单元检修

制动电阻检修
城市轨道交通车辆检修
6.2 牵引及控制系统检修

高速断路器检修
一)高速断路器简介
在列车牵引系统的电路出现严重干扰的 情况下(如过电流、逆变器故障或线路 短路),高速断路器(HSCB)能够将各牵 引设备从受电弓线路上安全断开。

熔化极气体保护焊MIG_MAG

熔化极气体保护焊MIG_MAG

MIG/MAG焊:由于蒸发造成的合金损失
10
三、MIG/MAG焊的熔滴过渡
MIG/MAG焊的熔滴过渡形式主要有:短路过渡,滴状
过渡,喷射过渡,亚射流过渡
熔滴过渡形式主要取决于电流、电弧长度、极性、气体介
质、焊丝材质、直径、伸出长度等参数。
11
1.影响熔滴过渡的因素
(1)电弧长度的影响:同样在小电流条件下,熔滴过渡可 能是颗粒过渡、短路过渡,颗粒过渡需要长电弧,短路过
5
3.MIG/MAG焊的应用

50年代初应用于铝及铝合金,以后扩展到铜及铜合金的焊接
实际上适用于几乎所有的材料 但是成本高,所以一般用在有色金属及其合金的焊接,不锈钢的焊接中
6
4. MIG/MAG焊的对比

MIG以Ar或He作为保护气体
MAG在Ar或He中加入活性气体,如O2,CO2 MAG焊在电弧形态、熔滴过渡、电弧特性等方面与氩弧 相似,活性气体的量一般小于30% MAG焊可消除指状熔深 MAG焊由于氧化性气体的存在金属的氧化是不可避免的, 在选择焊丝时应注意在成分上给与补充。
§4 熔化极气体保护焊
Metal Inert Gas Arc Welding(MIG) Metal Active Gas Arc Welding(MAG) CO2气体保护焊
1
内容
一、MIG/MAG焊的原理、特点及应用
二、MIG/MAG焊的冶金特点
三、MIG/MAG焊的熔滴过渡
四、MIG/MAG焊接设备、焊材及焊接工艺参数
Ar+CO2+O2

用80%Ar+15%CO2+5%O2混合气体焊接低碳钢、 低合金钢,焊缝成形、接头质量以及金属熔滴过渡和 电弧稳定性方面都非常满意。

MIG、MAG、TIG、SMAW

MIG、MAG、TIG、SMAW

TIG 钨极氩弧焊,MIG 熔化极惰性气体保护焊,MAG 熔化极活性气体保护焊,SMAW焊条手工电弧焊MIG焊(熔化极气体保护电弧焊)这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬嘴喷出的气体来保护电弧进行焊接的。

熔化极气体保护电弧焊通常用的保护气体有氩气,氦气,二氧化碳气或这些的混合气体。

以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上称为MIG焊)。

熔化极气体保护电弧焊的主要优点是可以方便的进行各种位置的焊接,同时也具有焊接速度较快,熔敷率较高的优点。

熔化极活性气体保护电弧焊可适用于大部分主要金属的焊接,包括碳钢,合金钢。

熔化极惰性气体保护电弧焊适用于不锈钢,铝,镁,铜,钛,镐及镍合金。

利用这种焊接方法还可以进行电弧点焊。

TIG Tungsten Inert Gas,缩写TIG。

直译就是钨极惰性气体焊。

钨极氩弧焊按操作方式分为手工焊、半自动焊和自动焊三类。

手工钨极氩弧焊时,焊枪的运动和添加填充焊丝完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝可以用冷丝或热丝的方式添加。

热丝是指提高熔敷速度。

某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。

TIG为今日各主要焊接方法中的一种,其特点为焊接品质佳,及具焊接薄板的能力,由于没有使用焊剂,故可减少夹渣机会,如此可提升焊道的品质,TIG已被需高品质焊接的航天工业所引用。

MAG(metal active-gas welding)是熔化极活性气体保护焊的简称,熔化极活性气体保护焊是焊接工艺的一种,其通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。

MAG的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。

熔化极气体保护电弧焊以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气体保护电弧焊(在国际上简称为MAG焊)。

熔化极气体保护焊

熔化极气体保护焊

PPT学习交流
11
1.影响熔滴过渡的因素
(1)电弧长度的影响:同样在小电流条件下,熔滴过渡可 能是颗粒过渡、短路过渡,颗粒过渡需要长电弧,短路过 渡需要短电弧。
PPT学习交流
12
1.影响熔滴过渡的因素
(2)电流的影响:
小于临界电流I1,颗粒过渡,过渡频率低 ;大于临界电流 I1,喷射过渡,过渡频率高 。
PPT学习交流
13
1.影响熔滴过渡的因素
PPT学习交流
14
1.影响熔滴过渡的因素
气体介质:
➢ 在Ar中加入少量的O2,表面张 力降低,减小了熔滴过渡阻力, 喷射临界电流减小;
➢ 但是过多的O2会因O2的电离使 电弧收缩,临界电流提高;
➢ 加入CO2使得喷射临界电流提 高
临界电流:产生跳弧的最小电流
似,活性气体的量一般小于30%
MAG焊可消除指状熔深
MAG焊由于氧化性气体的存在金属的氧化是不可避免的, 在选择焊丝时应注意在成分上给与补充。
MAG焊主要用于高强钢及高合金钢的焊接。
PPT学习交流
7
5.MIG焊的保护气体及焊丝
1 保护气体 1)单一气体 Ar或者He 2)混合气体Ar+He 2 对气体的要求
PPT学习交流
5
3.MIG/MAG焊的应用
• 50年代初应用于铝及铝合金,以后扩展到铜及铜合金的焊接 • 实际上适用于几乎所有的材料 • 但是成本高,所以一般用在有色金属及其合金的焊接,不锈钢的焊接中
PPT学习交流
6
4. MIG/MAG焊的对比
MIG以Ar或He作为保护气体
MAG在Ar或He中加入活性气体,如O2,CO2 MAG焊在电弧形态、熔滴过渡、电弧特性等方面与氩弧相

熔化极惰性气体保护电弧焊 (MIG metal inert-gas arc welding )

熔化极惰性气体保护电弧焊  (MIG metal inert-gas arc welding )
熔化极惰性气体保护电弧焊 (MIG :metal inert-gas arc welding )
第一节
MIG焊的特点及应用
焊接过程动画
一、MIG焊的基本原理 定义:MIG焊(metal inertgas welding)
是利用外加的惰性气体作为电弧 介质、利用焊丝作熔化电极的电弧 焊。
另:MAG 例如:O2 (2%~5%) +Ar
1、焊接电源
熔化极气体保护焊电源与SAW电源及CO2焊电源相似, 细丝通常用平特性电源配等速送丝系统, 粗丝通常用陡降外特性电源配变速送丝系统。
逆变电源的使用越来 越多,是发展方向。
2、送丝机构
与CO2焊的送丝机构相似,有推丝式、拉丝式和推拉式。
但由于MIG焊较多地用于有色金属,尤其是铝合金的焊接,所以其推 丝式送丝机构应是双主动送丝(CO2专用焊机的送丝机构可以用单主动 送丝)。
第三节 MIG焊工艺
一、熔滴过渡特点
熔滴过渡形式:短路过渡、喷射过渡、脉冲喷射过渡。
亚射流过度
MIG焊多用来焊接铝合金,这使它对熔滴过渡方式的使用受到限制。
1 对于短路过渡,由于其处于小参数区间(<200A),而(尤其大厚度)铝合金 的导热很快,所以较少采用短路过渡。 2 对于喷射过渡,由于其冲力大,而铝合金密度低,所以打底、盖面的效果均欠 佳,用于填充焊尚可。 3 脉冲喷射过渡的焊接效果较好,厚薄板、打底/填充/盖面、全位置焊均可,但 要有带脉冲功能的焊机(普通焊机不可)。
混合气体
参考配比 1~2% O2
适用范围 不锈钢或高合金钢 碳钢和低合金钢
Ar+O2 O2max≤20%
Ar+CO2
配比可任意调整(CO2≥25% 时呈CO2电弧特性 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ar气纯度:99.9%
3 焊丝的选择
MIG焊的焊丝成份要求与母材接
近.(冶金反应较单纯,合金元素基本没有烧损)
8
6.MAG焊的保护气体及焊丝 Ar+CO2+O2

用80%Ar+15%CO2+5%O2混合气体焊接低碳钢、 低合金钢,焊缝成形、接头质量以及金属熔滴过渡和 电弧稳定性方面都非常满意。
不同保护气体的焊缝成形
(3)电流极性的影响
17
2.射流过渡
原理:射滴过渡时电弧成钟罩形,弧根
面积大,包围整个熔滴,斑点力不仅作 用在熔滴底部,同时也作用于熔滴上部, 推动熔滴的过渡,由于电流是发散状的, 电磁收缩力会形成较强的推力,阻碍熔 滴过渡的仅是表面张力,所以熔滴过渡 的加速度大于大滴过渡的重力加速度。
焊丝 MAG焊应采用高Mn高Si焊丝,补充烧损
9
二、MIG/MAG焊的冶金特点

MIG焊:以Ar或He为保护气体,不与金属发生冶金反应
氩气是制氧的副产品,如果氧含量超标会引O2,CO2 ,金属发生氧化反应 Al+O2 → Al2O3 Fe + CO2 → FeO + CO ↑ Si + 2CO2→ SiO2 + 2CO ↑ Mn + CO2 → MnO + CO ↑ Si + 2O → SiO2 Mn + O → MnO C + O → CO Fe + O → FeO
5
3.MIG/MAG焊的应用

50年代初应用于铝及铝合金,以后扩展到铜及铜合金的焊接 实际上适用于几乎所有的材料 但是成本高,所以一般用在有色金属及其合金的焊接,不锈钢的焊接中
6
4. MIG/MAG焊的对比

MIG以Ar或He作为保护气体 MAG在Ar或He中加入活性气体,如O2,CO2 MAG焊在电弧形态、熔滴过渡、电弧特性等方面与氩弧
相似,活性气体的量一般小于30%

MAG焊可消除指状熔深 MAG焊由于氧化性气体的存在金属的氧化是不可避免的, 在选择焊丝时应注意在成分上给与补充。 MAG焊主要用于高强钢及高合金钢的焊接。
7

5.MIG焊的保护气体及焊丝
1 保护气体 1)单一气体 Ar或者He 2)混合气体Ar+He 2 对气体的要求
12
1.影响熔滴过渡的因素
(2)电流的影响:
小于临界电流I1,颗粒过渡,过渡频率低 ;大于临界电流 I1,喷射过渡,过渡频率高 。
13
1.影响熔滴过渡的因素
14
1.影响熔滴过渡的因素


气体介质:
在Ar中加入少量的O2,表面 张力降低,减小了熔滴过渡阻 力,喷射临界电流减小; 但是过多的O2会因O2的电离 使电弧收缩,临界电流提高; 加入CO2使得喷射临界电流提 高
Ar He Ar +He Ar +O 2 Ar +CO 2 Ar +CO 2+O 2 CO 2
CO2气体保护焊
GMAW 惰性气体保护焊( MIG ) 氧化性混合气体保护焊
CO 2+
GMAW 实心 MIG / MAG / CO 2 药芯( FCAW ) 按焊丝分为: 药芯( FCAW ) O 2 CO 2+O 2 CO 2 Ar +CO 2 Ar +O 2 4 本章将重点介绍CO2气体保护焊和MIG/MAG焊。
2 气体保护焊--特点
1 电弧和熔池的可见性好,焊接过程中可根据熔池情况调节 焊接参数。 2 焊接过程操作方便,没有熔渣或很少有熔渣,焊后基本上 不需清渣。 3 电弧在保护气流的压缩下热量集中,焊接速度较快,熔池 较小,热影响区窄,焊件焊后变形小。 4 有利于焊接过程的机械化和自动化,特别是空间位置的机 械化焊接。 5 可以焊接化学活泼性强和易形成高熔点氧化膜的镁、铝、 铜及其合金。 6 可以焊接薄板。 7 在室外作业时,需设挡风装置,否则气体保护效果不好, 甚至很差。 8 电弧的光辐射很强。 9 焊接设备比较复杂,比焊条电弧焊设备价格高。
§4 熔化极气体保护焊
Metal Inert Gas Arc Welding(MIG) Metal Active Gas Arc Welding(MAG) CO2气体保护焊
1
内容
一、MIG/MAG焊的原理、特点及应用
二、MIG/MAG焊的冶金特点 三、MIG/MAG焊的熔滴过渡 四、MIG/MAG焊接设备、焊材及焊接工艺参数 五、 熔化极氩弧焊常用的焊接工艺
MIG/MAG焊:由于蒸发造成的合金损失
10
三、MIG/MAG焊的熔滴过渡
MIG/MAG焊的熔滴过渡形式主要有:短路过渡,滴状
过渡,喷射过渡,亚射流过渡
熔滴过渡形式主要取决于电流、电弧长度、极性、气体介
质、焊丝材质、直径、伸出长度等参数。
11
1.影响熔滴过渡的因素
(1)电弧长度的影响:同样在小电流条件下,熔滴过渡可 能是颗粒过渡、短路过渡,颗粒过渡需要长电弧,短路过 渡需要短电弧。
2
1.MIG/MAG焊的原理
3
熔化极气体保护焊 (GMAW)
1 定义:利用气体作为电弧介质并保护电弧和焊接区 的电弧焊称为气体保护电弧焊,简称气体保护焊。 2 分类
Ar HeGMAW Ar +He Ar +O 2 Ar +CO 2 Ar 按保护气体分为: CO2 气体保护 惰性气体保护焊( MIG ) 氧化性混合气体保护焊 ( MAG )


临界电流:产生跳弧的最小电流
15
影响临界电流的因素
焊丝材质:相同条件下钢焊
丝的喷射临界电流高于铝焊丝。
铝焊丝更容易从滴状过渡变到射
滴过渡,而钢焊丝则存在更容易 从滴状过渡变到射流过渡。
焊丝直径:焊丝直径越小,
临界电流越低
伸出长度:伸出长度增加使
得电阻热增加,有利于熔滴过渡
16
1.影响熔滴过渡的因素
相关文档
最新文档