随机变量及其概率分布PPT 演示文稿
合集下载
第七章随机变量及其分布小结PPT课件(人教版)

,进一步体会概率模型的作用及概率思想和方法的特点.
第1课时 条件概率、乘法公式及全概率公式
条件概率公式:PA|B=
PAB
,
PB
加法公式:如事件 B,C 互斥,则有 P( B
C | A) P( B | A) P(C | A).
乘法公式:PAB=PBPA|B,
PAB
.
P ( A)
P ( A)
P ( B)
P ( B) 2
A产生,则B一定产生
P ( A)
由此可得, 若A B,则P ( B | A) 1,P ( A | B )
.
P ( B)
课本48页
夯实概念
2.下列说法正确的是(
)
P(B)
是可能的
P(A)
A.P(B|A)=P(AB)
B.P(B|A)=
C.0<P(B|A)<1
D.P(A|A)=0
P(AB)
1
解析:∵ P(B|A)=
,
≥1,
P(A) P(A)
∴P(B|A)≥P(AB),故 A 不正确;
当 P(A)=1 时,P(B)=P(AB),
P(B)
则 P(B|A)=P(B)=
,所以 B 正确;
P(A)
而 0≤P(B|A)≤1,P(A|A)=1,∴ C、D 不正确.
击落,求飞机被击落的概率.
解:设 A={飞机被击落},Bi={飞机被 i 人击中},i=1,2,3,则
P(A|B1)=0.2,P(A|B2)=0.6,P(A|B3)=1.
P(B1)=0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7=0.36,
P(B2)=0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7=0.41,
第1课时 条件概率、乘法公式及全概率公式
条件概率公式:PA|B=
PAB
,
PB
加法公式:如事件 B,C 互斥,则有 P( B
C | A) P( B | A) P(C | A).
乘法公式:PAB=PBPA|B,
PAB
.
P ( A)
P ( A)
P ( B)
P ( B) 2
A产生,则B一定产生
P ( A)
由此可得, 若A B,则P ( B | A) 1,P ( A | B )
.
P ( B)
课本48页
夯实概念
2.下列说法正确的是(
)
P(B)
是可能的
P(A)
A.P(B|A)=P(AB)
B.P(B|A)=
C.0<P(B|A)<1
D.P(A|A)=0
P(AB)
1
解析:∵ P(B|A)=
,
≥1,
P(A) P(A)
∴P(B|A)≥P(AB),故 A 不正确;
当 P(A)=1 时,P(B)=P(AB),
P(B)
则 P(B|A)=P(B)=
,所以 B 正确;
P(A)
而 0≤P(B|A)≤1,P(A|A)=1,∴ C、D 不正确.
击落,求飞机被击落的概率.
解:设 A={飞机被击落},Bi={飞机被 i 人击中},i=1,2,3,则
P(A|B1)=0.2,P(A|B2)=0.6,P(A|B3)=1.
P(B1)=0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7=0.36,
P(B2)=0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7=0.41,
概率论与数理统计ch2随机变量及其概率分布精品PPT课件

P( X 3) P( A1A2 A 3) (1 p)3 ;
10
X0
1
2
3
p p p(1-p) (1-p)2p (1-p)3
11
例:若随机变量X的概率分布律为
P( X k ) c k ,k 0,1, 2,, 0
k!
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
求(1)随机观察1个单位时间,至少有3人候车 的概率; (2)随机独立观察5个单位时间,恰有4个单 位时间至少有3人候车的概率。
29
解:1 P(X 3) 1 P( X 0) P( X 1) P(X 2)
1 e 4.8 (1 4.8 4.82 ) 0.8580 2!
2 设5个单位时间内有Y个单位时间是
15
对于一个随机试验,如果它的样本空间只
包含两个元素,即 S {e1, e2} ,我们总能
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
P A 1 2
如果是不放回抽样呢?
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,,n
并称X服从参数为p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
22
推导:以n=3为例,设Ai={ 第i次A发生 }
10
X0
1
2
3
p p p(1-p) (1-p)2p (1-p)3
11
例:若随机变量X的概率分布律为
P( X k ) c k ,k 0,1, 2,, 0
k!
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
求(1)随机观察1个单位时间,至少有3人候车 的概率; (2)随机独立观察5个单位时间,恰有4个单 位时间至少有3人候车的概率。
29
解:1 P(X 3) 1 P( X 0) P( X 1) P(X 2)
1 e 4.8 (1 4.8 4.82 ) 0.8580 2!
2 设5个单位时间内有Y个单位时间是
15
对于一个随机试验,如果它的样本空间只
包含两个元素,即 S {e1, e2} ,我们总能
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
P A 1 2
如果是不放回抽样呢?
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,,n
并称X服从参数为p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
22
推导:以n=3为例,设Ai={ 第i次A发生 }
2.2 离散型随机变量及其概率分布.ppt

2019-11-27
1 3 1 3 42 4
感谢你的阅读
5
例 袋中有5个球,其中2个白球,3个黑球, 从中随机地一次抽取3个球,求取得白球数的 概率分布.
解 令 X表示“取得的白球数”,则X 可
能取值为0,1,2,
可以求得的分布律为
2019-11-27
感谢你的阅读
6
P{X
0}
C33 C53
P( X xk ) pk
xk x
xk x
pk P(X xk ) F(xk ) F(xk1)
其中 xk1 xk .
F( x) 是分段阶梯函数, 在 X 的可能取
值 xk 处发生间断.
2019-11-27
感谢你的阅读
3
例: 设随机变量的分布律为
X -1 2
§2.2 离散型随机变量及其概率分布
离散随机变量及分布律
定义 若随机变量 X 的可能取值是有限多个 或无穷可列多个,则称 X 为离散型随机变量
描述离散型随机变量的概率特性常用它的概率 分布或分布律,即
或 P( X xk ) pk , k 1,2,
X
x1
x2
… xK
…
2019-11-27
15
20
2019-11-27
感谢你的阅读
13
二项分布中最可能的成功次数 的定义与推导
若 P( X k) P( X j), j X 可取的一切值 则称 k 为最可能出现的次数
记 pk P( X k) Cnk pk (1 p)nk , k 0,1,, n
pk1 (1 p)k 1 pk p(n k 1)
感谢你的阅读
随机变量及分布PPT课件

P( y X y ) FX ( y ) FX ( y )
fY
(
y
)
dFY ( dy
y
)
1
2
y
0,
fX
(
y ) fX(
y ) , y 0 y0
y 1
fX (
y
)
2
0
y 1
0
y 1
fX (
y
)
2
1 y 0
其它
0
其它
则 Y=X2 的概率密度为:
1
fY
(
y)
2
( y
0
y 1 2
U 的概率密度
P{ X
u 1} 3
FX
{
u
3
1)
fU (u)
dFU (u) du
f
X
(
u
3
1
)
(
u
3
1
)u
fU
(u)
2.
u
3
1
.
1 3
0
即
fU
(u)
2 9
(u
1)
0
0 u1 1 3
其它
1 u 2 其它
例4(P62-例3) 设随机变量X的概率密度为fX(x)(x R),求:
z0
0
z0
(3)备用方式: 系统L的寿命 Z=X+Y
fZ (z) fX ( x) fY (z x)dx
积分区域
z
x
x
0
0
即0 x z
fZ (z)
z e x e (zx)dx e z
0
z e( ) xdx
概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
随机变量及其分布PPT课件

35
例8. 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯
泡数 . X ~ B (3, 0.8),
P(X k)C3k (0.8)k (0.把2)观3察k ,一个k 灯泡0,的1,2使,3用
1 6
)k
(
5)3k 6
,
k0,1,2,3
32
例7. 已知100个产品中有5个次品,现从中 有放回地取3次,每次任取1个,求在所取的 3个中恰有2个次品的概率.
解: 因为这是有放回地取3次,因此这3 次试验
的条件完全相同且独立,它是贝努里试验. 依题意,每次试验取到次品的概率为0.05. 设X为所取的3个中的次品数,
请思考: 古典概型与贝努里概型不同,有何区别?
34
贝努里概型对试验结果没有等可能的 要求,但有下述要求: (1)每次试验条件相同;
(2)每次试验只考虑两个互逆结果A或 A ,
且P(A)=p ,P( A) 1 p;
(3)各次试验相互独立. 可以简单地说, 二项分布描述的是n重贝努里试验中出现 “成功”次数X的概率分布.
随后单调减少.
..
0
n=13,p=0.5
..n
当(n+1)p为整数时,二项概率P(X=k) 在k=(n +1)p和k =(n+1)p-1处达到最大 值.
课下请自行证明上述结论.
31
例6. 将一枚均匀骰子抛掷3次, 令X 表示3次中出现“4”点的次数
不难求得,
X的概率分布列是:
P{
X
k}C3k
(
第三章
随机变量及其分布
例8. 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯
泡数 . X ~ B (3, 0.8),
P(X k)C3k (0.8)k (0.把2)观3察k ,一个k 灯泡0,的1,2使,3用
1 6
)k
(
5)3k 6
,
k0,1,2,3
32
例7. 已知100个产品中有5个次品,现从中 有放回地取3次,每次任取1个,求在所取的 3个中恰有2个次品的概率.
解: 因为这是有放回地取3次,因此这3 次试验
的条件完全相同且独立,它是贝努里试验. 依题意,每次试验取到次品的概率为0.05. 设X为所取的3个中的次品数,
请思考: 古典概型与贝努里概型不同,有何区别?
34
贝努里概型对试验结果没有等可能的 要求,但有下述要求: (1)每次试验条件相同;
(2)每次试验只考虑两个互逆结果A或 A ,
且P(A)=p ,P( A) 1 p;
(3)各次试验相互独立. 可以简单地说, 二项分布描述的是n重贝努里试验中出现 “成功”次数X的概率分布.
随后单调减少.
..
0
n=13,p=0.5
..n
当(n+1)p为整数时,二项概率P(X=k) 在k=(n +1)p和k =(n+1)p-1处达到最大 值.
课下请自行证明上述结论.
31
例6. 将一枚均匀骰子抛掷3次, 令X 表示3次中出现“4”点的次数
不难求得,
X的概率分布列是:
P{
X
k}C3k
(
第三章
随机变量及其分布
随机变量及其分布PPT课件

0
F
(
x)
Ax2
1
x0 0 x1 x 1
求常数A及其概率密度
函数 f (x)。
例2. 设连续型随机变量X的概率密度函数为
f (x) Cex2 x ,-∞ < x < +∞,
求常数C。
34
第34页/共67页
注意:一般的,同一个连续型随机变量X的概 率密度函数可以有很多个,但它们只在有限个 点或可数个点上取值不同。
对于随机试验而言,仅仅知道可能出现的 随机事件并不重要,重要的是这些事件出现的 可能性有多大。
对于随机变量X来说,就是X取什么值不 重要,重要的是X取这些值的概率有多大。
4
第4页/共67页
定义:设X是一个随机变量, x R 是一个实
数,函数 F(x) P(X x) 就称为随机变量X
的概率累积分布函数(cdf: cumulative
,n
求正数 a 的值。
例2. 设离散型随机变量X的分布列
P( X k) C pk , k 1, 2, k!
其中, 0 p 1 为已知,求常数C。
12
第12页/共67页
离散型随机变量X的分布函数为
F(x) P(X x) pk xk x
例3. 求随机变量X的分布函数。
X的分布列为 X 0 1 2 3
pap设随机变量x只可能取0和1两个数值它的分布律为第15页共67页162二项分布binomialdistribution若随机变量x的分布律为其中则称x服从参数为np的二项分布记为二项分布随机变量x对应n重贝努里试验中成功的次数
§2.1 随机变量
从概率的定义我们知道,概率是自变量为 集合的特殊函数;为了能用变量、函数及微积 分等工具来研究事件发生的概率,需要引入概 率论中的重要概念――随机变量。
随机变量及其分布复习课件.ppt

有
F(x) x f(t)dt,
则称X为连续型随机变量,其中f(x)称为X的概率 密度函数,简称概率密度。
(II)概率密度的性质
( 1 ) 非 负 性 : f( x ) 0 , x R .
(2)规 范 性 :f(x)dx1. 4
( 3 )对 于 任 意 实 数 a b, 有
P{aXb}abf(x)dx . F(b)F(a)
求这个区间的端点,分二种情形讨论之:
17
(1)区间的一个端点是无穷大,即已知P(X < x) = p1 或P(X > x) = p2,求x .
利用 或
然后反查标准正态分布表,即可求出x (2)区间关于μ对称,不妨设为(μ−a,μ+a),而 P(μ−a<X<μ+a) = p,求a
18
四.随机变量的函数的分布 1.离散型随机变量函数的分布
几种重要的 离散型分布
均指 正 匀数 态 分分 分 布布 布
二项分布的 正态近似
二项分布的 泊松近似
二项 分布
泊几
松何
分分 布 布 21
例题选讲
例1 甲、乙、丙3人进行独立射击 每人的命中率依 次为03 04 06 设每人射击一次 试求3人命中总 数之概率分布律 分析 求离散型随机变量的概率分布的步骤为:(1) 写
23
例2 投掷一个均匀骰子n 次,求(1)恰好得到一个6点的概 率;(2)至少得到一个6点的概率;(3)为了以0.5的概率保 证至少得到一个6点,则至少要投掷几次?
所以至少要投掷4次.
24
例3 设 X 的分布律为 X 1012 1111 p 4444
求 Y X 2 的分布律 .
解 Y 的可能值为 (1)2, 02,12, 22; 即 0, 1, 4.
F(x) x f(t)dt,
则称X为连续型随机变量,其中f(x)称为X的概率 密度函数,简称概率密度。
(II)概率密度的性质
( 1 ) 非 负 性 : f( x ) 0 , x R .
(2)规 范 性 :f(x)dx1. 4
( 3 )对 于 任 意 实 数 a b, 有
P{aXb}abf(x)dx . F(b)F(a)
求这个区间的端点,分二种情形讨论之:
17
(1)区间的一个端点是无穷大,即已知P(X < x) = p1 或P(X > x) = p2,求x .
利用 或
然后反查标准正态分布表,即可求出x (2)区间关于μ对称,不妨设为(μ−a,μ+a),而 P(μ−a<X<μ+a) = p,求a
18
四.随机变量的函数的分布 1.离散型随机变量函数的分布
几种重要的 离散型分布
均指 正 匀数 态 分分 分 布布 布
二项分布的 正态近似
二项分布的 泊松近似
二项 分布
泊几
松何
分分 布 布 21
例题选讲
例1 甲、乙、丙3人进行独立射击 每人的命中率依 次为03 04 06 设每人射击一次 试求3人命中总 数之概率分布律 分析 求离散型随机变量的概率分布的步骤为:(1) 写
23
例2 投掷一个均匀骰子n 次,求(1)恰好得到一个6点的概 率;(2)至少得到一个6点的概率;(3)为了以0.5的概率保 证至少得到一个6点,则至少要投掷几次?
所以至少要投掷4次.
24
例3 设 X 的分布律为 X 1012 1111 p 4444
求 Y X 2 的分布律 .
解 Y 的可能值为 (1)2, 02,12, 22; 即 0, 1, 4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
.
课堂练习:
3.设随机变量x 的分布表为 则q ( D ) A、 1
2 2 B、 1 C、 1 2 2
x
1
P
1 2 1 2q q 2
0
1
2 1 D、 2
4.设随机变量 x 只能取5、6、7、· · · 、16这12个值, 2 且取每一个值的概率均相等,则 若 P )(x 8 , 3 1 P (x x的取值范围是 ) 则实数 . 5,6 12
1 12
3 2
思考.一个口袋里有5只球,编号为1,2,3,4,5, 在袋中同时取出3只,以ξ表示取出的3个球中 的最小号码,试写出ξ的分布表. 解: 随机变量ξ的可取值为 1,2,3. 2 3 P(ξ=1)= C4 / C5 =3/5; 同理可得 P(ξ=2)=3/10;P(ξ=3)=1/10.
因此,ξ的分布如下表所示
X P
3.已知随机变量的分布是
X -2 -1 P
1 12
1 4
0
1 3
1
1 12
2
1 6
1 12
3
1 若 Y X 1, 则Y的分布为 2
Y P
3.已知随机变量的分布是
X -2 -1 P
1 12
1 4
0
1 3
1
1 12
2
1 6
1 12
3
若Z=X 2-2X , 则Z的分布为
Y P
4.一盒子中有9个正品和3个次品零件, 每次 取一个零件, 如果取出的次品不再放回, 求 在取得正品前已取出次品数X的概率分布. (如果取出的次品允许放回呢?)
P
x
1 12
1 4
1 3
1 12
1 6
1 12
3 1 1 1 解: 由 x 可得1的取值为-1、 、 0、 、 1、 1 2 2 2 2 且相应取值的概率没有变化
1 求出随机变量1 2 x
的分布表.
∴
1 的分布表为:
1
P
-1
1 12
1 2
1 4
0
1 3
1 12
1 2
1
1 6
ξ p 1 2 3/5 3/10 3 1/10
课堂练习: 1.设随机变量 x 的分布表如下: x 1 2 3 4 1 1 1 p P 6 6 3 1 则 p 的值为 .
3
1 2.设随机变量x 的分布列为 P (x i ) a , i 1, 2, 3
i
则 a的值为
27 13
定义:概率分布 设离散型随机变量ξ可能取值为 x1 , x2 , , xi ξ取每一个值xi (i 1, 2, )的概率 P(x xi ) pi 简称x的分布列. 表 ξ x1 x 2 … xi …
p
称为随机变量x的概率分布表 说明:离散型随机变量的分布列具有下述 两个性质:
(1) pi ≥ 0, i 1 , 2, 3,
x
3.一盒中放有大小相同的4个红球、1个绿 球、2个黄球,现从该盒中随机取出一个 球,若取出红球得1分,取出黄球得0分, 取出绿球得-1分,试写出从该盒中取出一 球所得分数ξ的分布列。
数学应用
1.篮球运动员在比赛中, 每次罚球命中得1 分, 不中得0分, 已知某运动员罚球命中的 概率为0.7, 求他罚球一次的得分的分布.
(1)求常数a;(2)求P(1<ξ<4)
解:(1)由随机变量的分布的性质有
a a 2 0.16 a 0.3 1 10 5 3 9 解得: a (舍)或 a
10
5
(2)P(1<ξ<4)=P(ξ=2)+P(ξ=3)=0.12+0.3=0.42
练习2:已知随机变量 的分布表如下: x -2 -1 0 1 2 3
X P 1 0.7 0 0.3
2.将3个不同的小球任意地放入4个大玻璃 杯中, 杯子中球的最大数目为X , 求X的 分布.
X P 1 3/8 2 9/16 3 1/16
3.数字1, 2, 3 , 4任意排成一列, 如果数 字k恰好出现在第k个位置上, 则称有一个巧 合, 求巧合数X的分布.
X P
0
1
2
3
4 1/24
3/8 1出, 设出现6点的骰 子次数是X , 则P(X<2)=___________ .
P( X 2) P( X 0) P( X 1)
125 75 25 216 216 27
2. 5张卡片上分别标有号码1 , 2 , 3 , 4 , 5 , 从中任取3张, 设3张卡片中最大 号码数为X , 则X的分布为:
(2) p1 p2 p3 1
p1
p2
…
pi
…
作业中 1.一袋中装有6个同样大小的小球,编号为1、2、 3、4、5、6,现从中随机取出3个小球,以 x 表 示取出球的最大号码,求 x 的分布列.
x
P
3
1 20
4
3 20
5
3 10
6
1 2
练习1.随机变量ξ的分布列为
ξ p -1 0.16 0 a/10 1 a2 2 a/5 3 0.3