连续小波变换和离散小波变换.ppt

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

小波变换入门.ppt

小波变换入门.ppt

f f
(2 j , x, (2 j , x,
y)
y)
2
j
x
y
f f
(x, (x,
y) y)
a a
(x, (x,
y)
y)
2
j
grad
f
(x,
y)
a
(x,
y)
37/103
整个图像的二进小波变换即矢量:
W (1) f (2 j , x, y)
T
W
(
T
2)
f
(2
j,
x,
y)
WT
f
(2
j,
x,
尺度空间的递归嵌套关系: 0 V1 V0 V1 L2 R
小波空间 W是j 和V j 之V间j1 的差,即 时丢V 失j 的信息V j。1 推出:
V0 W0 W1 Wj V j1
V0
Vj,它Wj 捕 V捉j1 由 逼近
V j1
L2 R
V j1
Vj
多分辨率的空间关系图
19/103
两尺度方程
1 ( x, y)
(x) (y)
2 ( x, y)
(x)(y)
3 ( x, y)
(x) (y)
与 (x, y)一起就建立了二维小波变换的基础。
26/103
图像的小波变换实现
1. 正变换 图像小波分解的正变换可以依据二维小波变换按如 下方式扩展,在变换的每一层次,图像都被分解 为4个四分之一大小的图像。
线性
设: xt g t ht
WTx a,b WTg a,b WTh a,b 平移不变性
若 xt WTx a,b,则 xt WTx a,b
伸缩共变性

连续小波变换和离散小波变换.ppt

连续小波变换和离散小波变换.ppt

和 WFT 在所有时间和频率都有相同的分辨率不一 样, 小波变换在高频段有好的时间分辨率和差的频率分 辨率,而在低频段有差的时间分辨率和好的频率分辨 率。 即小尺度因子 (对应高频段) 有更好的尺度分辨率 (即能更精确地确定尺度因子的值) ,大尺度因子对应 于更差的尺度分辨率。
例 已知一信号f(t)=3sin(100πt)+2sin(68πt)+ 5cos(72πt),且该信号混有白噪声,对该信号进行连续 小波变换。小波函数取db3,尺度为1、1.2、1.4、 1.6、…、3。其MATLAB程序如下:
3.2 连续小波变换的计算
设 f(t)是一个信号,我们选好了一个母小波函数 。 一旦选好了母小波,则从 a=1 开始计算 CWT。一般 而言,由于所研究的实用信号是带限的,因此只需要计算 对应于有限区间内的尺度的 CWT。 为方便起见,计算从 a=1 开始,a 将不断增大。即计 算将从高频算到低频。 a 的第一个值对应最紧缩的小波。 当 a 的值增大时,小波将逐渐膨胀。
但是 WFT 和小波变换之间有两个不同之处。 1. 加窗信号不做 Fourier 变换; 2. 小波变换的最重要特点是在计算每个频率成分时可 改变窗口的形状。
ˆ ( ) 定义 3.1 设 ψ L2(R) L1(R)。若它的 Fourier 变换
满足
ˆ ( ) | 2 | 0 C d | |
程序输出结果如下图所示。灰度颜色越深,表示系数的值 越大。
图1.11
3.3 几种常用的连续小波基函数
Harr 小波(1910 年由数学家 A. Harr 提出)
1 0 t 1 2 1 t 1 1 2 0 else

2
h(t)=

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

第三章连续小波变换和离散小波变换解读

第三章连续小波变换和离散小波变换解读

R (t t0 )2 | (t) |2dt
= [ ]
1 || ˆ || 2
R ( 0 )2 |ˆ () |2d
1 2
则 a,b (t) 的窗口中心为 ta,b=at0+b,宽度为 ta,b=a t,ˆa,b () 的
窗口中心为
a,b=
1 a
0
,宽度为 a,b
1 da
f(t)= C 0 a2 WT f (a,b) a,b (t)db
小波分析中的尺度参数的倒数类似于地图上的比例尺。 我国的地形图比例尺有八种(即八种基本比例尺):1:5000 ,1:10000,1:25000,1:50000,1:100000,1:250000 ,1:500000,1:1000000。其中比例尺大于 1:10000 的 是大比例尺(一般小于 1:500),比例尺在 1:25000 和 1:100000 之间的是中比例尺,比例尺小于 1:250000 的 是小比例尺(一般小于 1:100 万)。
则 称 ψ 为 一 个 基 本 小 波 或 小 波 母 函 数 (mother
wavelet)。以上条件称为允许性条件,常数 C 称为允许
性常数。
小波这个词中的“小”指的是该函数是有限宽度的,它 们在时域都具有紧支集或近似紧支集。原则上,任何满足允 许性条件的函数都可以作为小波母函数,但实际上常选取时 域具有紧支集或近似紧支集(具有时域局部性)的具有正则 性(具有频域局部性)的函数作为小波母函数,以使小波母 函数在时—频两域都有较好的局部性。“波”指的是该函数 是振荡的,图像具有正负交替的波动性。因为
=
1 a


注:作为一种数学变换,伸缩变换用于膨胀或紧缩一个信号 。大尺度因子对应于信号的膨胀,而小尺度因子对应于信号 的紧缩。

小波变换简介PPT课件

小波变换简介PPT课件
[H,V,D] = detcoef2 ('all',C,S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
从小波和正弦波的形状可以看出,变化剧烈的信号, 用不规则的小波进行分析比用平滑的正弦波更好, 即用小波更能描述信号的局部特征。
18
连续小波基函数
将小波母函数 进行伸缩和平移后得到 函数
a,b(t)a1 2(t ab),a0,bR
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
39
小波重构
重构概念
把分解的系数还原成原始信号的过程叫做小波重构 (wavelet reconstruction)或合成(synthesis),数学上叫做 逆离散小波变换(inverse discrete wavelet transform, IDWT)
两个过程
在使用滤波器做小波变换时包含滤波和降采样 (downsampling)两个过程,在小波重构时也包含升采 样(upsampling)和滤波两个过程。
Wavevlet “dB1”二级分解
水平细节分量cH
近似分量cA 垂直细节分量cV 对角细节分量cD
[C,S] = wavedec2(X,N,'wname')
returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname‘. Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a,b (t ) 为依赖于参数
a,b 的小波基函数。由于 a,b 是连续取
值,故称对应的小波基函数族{ a,b (t ) }为连续小波基函数。
记小波母函数ψ(t)的窗口半径为 t,中心为 t0,它的 Fourier 变换ˆ ( ) 的窗口半径为 ,中心为 0,则 t0= || ||
ˆ (0) = R (t )dt =0。“母”指的是小波变换中用到的基函数
都是从它生成的。即母小波是生成其它窗函数的样本。
定义 3.2 设 ψ(t)是一个小波函数。 对它进行伸缩和平移变 换得
a ,b (t )
1 t b ( ),a 0,b R a |a|
其中 a 为伸缩因子(尺度因子,scale) ,b 为平移因子。称
2)海森堡测不准原理告诉我们:在任何尺度因子 a 和 平移因子 b 上,小波基函数 a,b (t ) 的时—频窗面积是不变的, 即时间、尺度分辨率是相互制约的,不可能同时提得很高。
小尺度因子 高频 持续时间短 窄的时间窗口,宽的频率窗口 大尺度因子 低频 持续时间长 宽的时间窗口,窄的频率窗口
1
2

2
R
t | (t ) | 2 dt ,
2
0= || ˆ || R | ˆ ( ) |

1
d
t= || || [
2
1
R
(t t 0 ) 2 | (t ) | 2 dt
] ,
1
1 2

=
1 ˆ || 2 ||
[
R
ˆ ( ) | 2 d ] 2 ( 0 ) 2 |
在地图中,在同样的图幅中,比例尺越大,地图所表示 的范围越小,图内表示的内容越详细,精度越高;比例尺越 小,地图上所表示的范围越大,反映的内容越简略,精确度 越低。小比例尺(小于一百万分之一)得到的是整个地区的 地形概貌,细节不多,而大比例尺(大于万分之一)得到的 是局部地区的细节。类似地,在信号分析中,低频率段(大 尺度因子段,相当于小比例尺)对应一个信号的整体信息( 时间跨度大),而高频率段(小尺度因子段,相当于大比例 尺)对应信号中一个内在模式的详细信息(时间跨度小)。
பைடு நூலகம்
ˆ a,b () 的 则 a,b (t ) 的窗口中心为 ta,b=at0+b, 宽度为 ta,b=a t,
1 a , b 0 ,宽度为 窗口中心为 a,b= =a 。
1 a
注:作为一种数学变换,伸缩变换用于膨胀或紧缩一个信号 。大尺度因子对应于信号的膨胀,而小尺度因子对应于信号 的紧缩。 在数学上, 设 f(t)是一个给定函数, 则当 s>1 时, f(st) 表示 f(t)的一个紧缩,当 s<1 时,则表示 f(t)的膨胀。 在小波变换中,当尺度因子 a>1 时基函数被膨胀,当 a<1 时基函数被紧缩。
第三章 连续小波变换和离散小波变换
3.1 连续小波变换(CWT, Continuous Wavelet Transform)
CWT 用来代替窗口傅里叶变换(WFT)以克服分辨率不 能随时间与频率的不同而改变不变的问题。 当窗口函数选定 之后,对 WFT 来说,时-频窗的窗口形状是固定的,它不能 随着所欲分析的信号成分是高频信息或低频信息而相应变 化,而非平稳信号都包含丰富的频率成分,所以,它们对非 平稳信号的分析能力是很有限的。小波变换类似于 WFT, 即信号用小波相乘,对时域信号的不同时间段计算小波变 换。
但是 WFT 和小波变换之间有两个不同之处。 1. 加窗信号不做 Fourier 变换; 2. 小波变换的最重要特点是在计算每个频率成分时可 改变窗口的形状。
ˆ ( ) 定义 3.1 设 ψ L2(R) L1(R)。若它的 Fourier 变换
满足
ˆ ( ) | 2 | 0 C d | |
定义 3.3 设ψ(t)是一个小波函数, 则连续小波变换(CWT) 定义如下:WT f(a,b)=
1 a

R
f (t ) (
t b )dt a
从定义可知,小波变换与 Fourier 变换一样,都是一种 积分变换,但从上述方程可以看出,变换后的信号是两个变 量的函数:一个是平移参数 b,另一个是尺度参数 a。即小 波变换将一个时域函数变换到二维的时间—尺度相平面上。 函数 f(t)在某一尺度因子 a、平移参数 b 上的小波变换系数 ,表征的是在 b 位置处,时间段 2a t 内包含的中心频率为
0 a
、宽度为 2 a 的频窗内的频率成分的大小。

定 义 3.4
设 ψ (t) 是 一 个 小波 函 数 , 则 连 续 小 波 变 换
(CWT)的逆变换定义如下:
1 f(t)= C


0
da a2



WT f (a, b) a,b (t )db
小波分析中的尺度参数的倒数类似于地图上的比例尺。 我国的地形图比例尺有八种 (即八种基本比例尺) : 1:5000 , 1:10000, 1:25000, 1:50000, 1:100000, 1:250000 ,1:500000,1:1000000。其中比例尺大于 1:10000 的 是大比例尺(一般小于 1:500),比例尺在 1:25000 和 1:100000 之间的是中比例尺,比例尺小于 1:250000 的 是小比例尺(一般小于 1:100 万)。
故关于时—频窗口中心及形状随尺度因子 a 的变化有 如下几个规律: 1) 平移的意义在小波变换中和 WFT 中一样, 它与窗口 的位置有关,表示窗口在信号中的移动。这显然与变换域中 的时间信息相关。但和 WFT 不一样,小波变换中没有频率 参数, 而有尺度参数。 尺度因子 a 的倒数在一定意义上对应 于频率。尺度因子越小,对应频率越高,尺度因子越大,对 应频率越低。

则 称 ψ 为 一 个 基 本 小 波 或 小 波 母 函 数 (mother wavelet)。以上条件称为允许性条件,常数 C 称为允许 性常数。
小波这个词中的“小”指的是该函数是有限宽度的,它 们在时域都具有紧支集或近似紧支集。原则上,任何满足允 许性条件的函数都可以作为小波母函数,但实际上常选取时 域具有紧支集或近似紧支集(具有时域局部性)的具有正则 性(具有频域局部性)的函数作为小波母函数,以使小波母 函数在时—频两域都有较好的局部性。“波”指的是该函数 是振荡的,图像具有正负交替的波动性。因为
相关文档
最新文档