2015高考数学(基础过关+能力训练):三角函数、三角恒等变换及解三角形 三角函数的图象和性质(含答案)
2015年全国各地高考数学试题及解答分类大全(三角函数 三角恒等变换)

4、(2015 全国新课标Ⅰ卷文、理)函数 f (x) cos( x ) 的部分图像如图所示,则 f (x) 的单调
递减区间为( )
(A)(k 1 , k 3), k Z (B)(2k 1 , 2k 3), k Z
4
4
4
4
(C) (k 1 , k 3), k Z 44
(D) (2k 1 , 2k 3), k Z
第 6页 (共 22页)
准确绘制函数图像的能力和灵活运用基础知识解决实际问题的能力. 2.(2015 湖北理)函数 f (x) 4 cos2 x cos( π x) 2sin x | ln(x 1) | 的零点个数为.
22 【答案】2
考点:1.二倍角的正弦、余弦公式,2.诱导公式,3.函数的零点.
.
6
【答案】 .
2
第 9页 (共 22页)
【考点定位】三角恒等变换及特殊角的三角函数值. 【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个
角,然后再化为一个三角函数一般地,有 a sin b cos a2 b2 sin( ) .第二种方法是
直接凑为特殊角,利用特殊角的三角函数值求解.
11 23 1 1 1
1 7
;
23
故选 A.
考点:正切差角公式.
8.(2015
重庆理)若
tan
2 tan
5
,则
cos( 3 ) 10
sin( )
5
A、1
B、2
C、3
D、4
【答案】C
【解析】
()
【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.
2015届高考数学总复基础过关+能力训练):三角函数、三角恒等变换及解三角形 解三角形应用举例(含答案)

第三章 三角函数、三角恒等变换及解三角形第8课时 解三角形应用举例1. 如图,设A 、B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,由此计算出A 、B 两点的距离为________m.答案:50 2解析:∵ ∠ACB =45°,∠CAB =105°,∴ ∠ABC =180°-105°-45°=30°.在△ABC 中,由正弦定理得AB sinC =ACsinB,∴ AB=AC·sinCsinB =50×2212=502[m].2. 如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD.已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min.若此人步行的速度为每分钟50 m ,则该扇形的半径为________m.答案:507解析:连结OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17 500,解得OC =507[m].3. 在△ABC 中,已知∠A =60°,b =2,S △ABC =23,则a +b +csinA +sinB +sinC=________.答案:4解析:由S △ABC =12bcsinA =23,∠A =60°,b =2,得c =4,从而a =b 2+c 2-2bccosA=4+16-2×2×4×12=2 3.由a sinA =b sinB =c sinC ,得a +b +c sinA +sinB +sinC =a sinA =2332=4.4. 一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是________海里.答案:10 2解析:如图,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin30°=ABsin45°,解得BC =102[海里].5. 在△ABC 中,若a cosA =b cosB =ccosC,则△ABC 的形状是________________.答案:等边三角形解析:由正弦定理得a sinA =b sinB =c sinC ,又a cosA =b cosB =c cosC ,所以sinA cosA =sinB cosB =sinCcosC,即tanA =tanB =tanC ,所以∠A =∠B =∠C ,故△ABC 为等边三角形.6. 如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是________m.答案:10 6 解析:在△BCD 中,CD =10[m],∠BDC =45°,∠BCD =15°+90°=105°,∠DBC=30°,BC sin45°=CD sin30°,BC =CDsin45°sin30°=102[m].在Rt △ABC 中,tan60°=ABBC ,AB =BCtan60°=106[m].7. 已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.答案:15 3解析:不妨设∠A =120°,c<b ,则a =b +4,c =b -4,于是由cos120°=b 2+(b -4)2-(b +4)22b (b -4)=-12,解得b =10,S =12bcsin120°=15 3.8. 若△ABC 的三边长为连续三个正整数,且A>B>C ,3b =20acosA ,则sinA ∶sinB ∶sinC =________.答案:6∶5∶4解析:由A>B>C ,得a>b>c.设a =c +2,b =c +1,则由3b =20acosA ,得3[c +1]=20[c +2]·(c +1)2+c 2-(c +2)22(c +1)c,即3[c +1]2c =10[c +1][c +2][c -3],解得c =4,所以a =6,b =5.sinA ∶sinB ∶sinC =a ∶b ∶c =6∶5∶4.9. 如图,A 、B 是海面上位于东西方向相距5[3+3]海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?解:由题意知AB =5[3+3][海里],∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴ ∠ADB =180°-[45°+30°]=105°.在△DAB 中,由正弦定理得DB sin ∠DAB =ABsin ∠ADB,∴ DB =AB·sin ∠DAB sin ∠ADB =5(3+3)·sin45°sin105°=5(3+3)·sin45°sin45°cos60°+cos45°sin60°=53(3+1)3+12=103[海里]. 又∠DBC =∠DBA +∠ABC =30°+[90°-60°]=60°,BC =203[海里],在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD·BC·cos ∠DBC =300+1 200-2×103×203×12=900,∴ CD=30[海里],则需要的时间t =3030=1[小时].即该救援船到达D 点需要1小时.10. 如图,在△ABC 中,已知AB =3,AC =6,BC =7,AD 是∠BAC 的角平分线. [1] 求证:DC =2BD ;[2] 求AB →·DC →的值.[1] 证明:在△ABD 中,由正弦定理得AB sin ∠ADB =BDsin ∠BAD①,在△ACD 中,由正弦定理得AC sin ∠ADC =DCsin ∠CAD②,又AD 平分∠BAC ,所以∠BAD =∠CAD ,sin ∠BAD =sin ∠CAD ,sin ∠ADB =sin[π-∠ADC]=sin ∠ADC ,由①②得BD DC =AB AC =36,所以DC =2BD.[2] 解:因为DC =2BD ,所以DC →=23BC →.在△ABC 中,因为cosB =AB 2+BC 2-AC 22AB ·BC=32+72-622×3×7=1121,所以AB →·DC →=AB →·错误!=错误!|错误!|·|错误!|cos[π-B]=错误!×3×7×⎝⎛⎭⎫-1121=-223. 11. 某单位设计一个展览沙盘,现欲在沙盘平面内布设一个对角线在l 上的四边形电气线路,如图所示.为充分利用现有材料,边BC ,CD 用一根5 m 长的材料弯折而成,边BA 、AD 用一根9 m 长的材料弯折而成,要求∠A 和∠C 互补,且AB =BC.[1] 设AB =x m ,cosA =f[x],求f[x]的解析式,并指出x 的取值范围; [2] 求四边形ABCD 面积的最大值.解:[1] 在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cosA. 同理,在△CBD 中,BD 2=CB 2+CD 2-2CB·CD·cosC.因为∠A 和∠C 互补,所以AB 2+AD 2-2AB·AD·cosA =CB 2+CD 2-2CB·CD·cosC =CB 2+CD 2+2CB·CD ·cosA.即x 2+[9-x]2-2x[9-x]cosA =x 2+[5-x]2+2x[5-x]·cosA.解得cosA =2x ,即f[x]=2x,其中x ∈[2,5].[2] 四边形ABCD 的面积S =12[AB·AD +CB·CD]sinA =12[x[9-x]+x[5-x]]1-cos 2A=x[7-x]1-⎝⎛⎭⎫2x 2=(x 2-4)(7-x )2=(x 2-4)(x 2-14x +49). 记g[x]=[x 2-4][x 2-14x +49],x ∈[2,5]. 由g′[x]=2x[x 2-14x +49]+[x 2-4][2x -14] =2[x -7][2x 2-7x -4]=0,解得x =4⎝⎛⎭⎫x =7和x =-12舍. 函数g[x]在区间[2,4]内单调递增,在区间[4,5]内单调递减.因此g[x]的最大值为g[4]=12×9=108.所以S 的最大值为108=6 3.答:所求四边形ABCD 面积的最大值为63m 2.。
2015届高考数学(基础过关+能力训练):三角函数、三角恒等变换及解三角形 三角函数的综合应用(含答案)

第三章 三角函数、三角恒等变换及解三角形第9课时 三角函数的综合应用1. 若函数f[x]=cos ωxcos ⎝⎛⎭⎫π2-ωx [ω>0]的最小正周期为π,则ω=________.答案:1解析:由于f[x]=cos ωxcos ⎝⎛⎭⎫π2-ωx =12sin2ωx ,所以T =2π2ω==1.2. 在△ABC 中,若∠B =π4,b =2a ,则∠C =________.答案:7π12解析:根据正弦定理可得a sinA =b sinB ,即a sinA =2a sin π4,解得sinA =12.因为b =2a>a ,所以A<B ,所以A =π6,所以C =π-A -B =7π12.3. 已知tanx -1tanx =32,则tan2x =________.答案:-43解析:由tanx -1tanx =32,可得tanx 1-tan 2x =-23,所以tan2x =2tanx 1-tan 2x=-43. 4. 已知向量a =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,1,b =[4,4cos α-3],若a ⊥b ,则sin ⎝⎛⎭⎫α+4π3=________.答案:-14解析:a·b =4sin ⎝⎛⎭⎫α+π6+4cos α-3=23sin α+6cos α-3=43sin ⎝⎛⎭⎫α+π3-3=0,所以sin ⎝⎛⎭⎫α+π3=14.所以sin ⎝⎛⎭⎫α+4π3=-sin ⎝⎛⎭⎫α+π3=-14.5. 设函数f[x]=cos[ωx +φ]-3sin[ωx +φ]⎝⎛⎭⎫ω>1,|φ|<π2,且其图象相邻的两条对称轴为x 1=0,x 2=π2,则φ=________.答案:-π3解析:由已知条件,得f[x]=2cos[ωx +φ+π3],由题意得T 2=π2,∴ T =π.∴ T =2πω,∴ ω=2.∵ f[0]=2cos ⎝⎛⎭⎫φ+π3,x =0为f[x]的对称轴,∴ f[0]=2或-2.∵ |φ|<π2,∴ φ=-π3.6. 已知函数f[x]=2sinx ,g[x]=2sin ⎝⎛⎭⎫π2-x ,直线x =m 与f[x],g[x]的图象分别交于M 、N 两点,则|MN|的最大值为________.答案:2 2解析:构造函数F[x]=2sinx -2cosx =22sin ⎝⎛⎭⎫x -π4,故最大值为2 2.7. 已知f[x]=sin ⎝⎛⎭⎫ωx +π3[ω>0],f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f[x]在区间⎝⎛⎭⎫π6,π3有最小值,无最大值,则ω=________.答案:143解析:由题意知直线x =π6+π32=π4为函数的一条对称轴,且ω×π4+π3=2k π-π2[k ∈Z ],∴ ω=8k -103[k ∈Z ]. ①又π3-π6≤2πω[ω>0],∴ 0<ω≤12. ② 由①②得k =1,∴ ω=143.8. 已知函数f[x]=sin[2x +φ],其中φ为实数.f[x]≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f[π],则f[x]的单调递增区间是________. 答案:⎣⎡⎦⎤k π+π6,k π+2π3[k ∈Z ]解析:由x ∈R ,有f[x]≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f[x]取最值,∴ f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1,∴ π3+φ=±π2+2k π[k ∈Z ],∴ φ=π6+2k π或φ=-5π6+2k π[k ∈Z ].∵f ⎝⎛⎭⎫π2>f[π],∴ sin[π+φ]>sin[2π+φ],∴ -sin φ>sin φ,∴ sin φ<0.∴ φ取-5π6+2kπ[k ∈Z ].不妨取φ=-5π6,则f[x]=sin ⎝⎛⎭⎫2x -5π6.令-π2+2k π≤2x -5π6≤π2+2k π[k ∈Z ],∴ π3+2k π≤2x ≤4π3+2k π[k ∈Z ],∴ π6+k π≤x ≤2π3+k π[k ∈Z ].∴ f[x]的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π[k ∈Z ].9. 在△ABC 中,内角A 、B 、C 所对的边长分别是a 、b 、c.[1] 若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;[2] 若sinC +sin[B -A]=sin2A ,试判断△ABC 的形状.解:[1] ∵ c =2,C =π3,∴ 由余弦定理c 2=a 2+b 2-2abcosC ,得a 2+b 2-ab =4. ∵ △ABC 的面积为3, ∴ 12absinC =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.[2] 由sinC +sin[B -A]=sin2A ,得sin[A +B]+sin[B -A]=2sinAcosA , 即2sinBcosA =2sinAcosA ,∴ cosA ·[sinA -sinB]=0,∴ cosA =0或sinA -sinB =0, 当cosA =0时,∵ 0<A <π,∴ A =π2,△ABC 为直角三角形;当sinA -sinB =0时,得sinB =sinA ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴ △ABC 为等腰三角形或直角三角形.10. 已知函数f[x]=3sin ωx ·cos ωx -cos 2ωx +32[ω∈R ,x ∈R ]的最小正周期为π,且图象关于直线x =π6对称.[1] 求f[x]的解析式;[2] 若函数y =1-f[x]的图象与直线y =a 在⎣⎡⎦⎤0,π2上只有一个交点,求实数a 的取值范围.解:[1] f[x]=3sin ωx ·cos ωx -cos 2ωx +32=32sin2ωx -12[1+cos2ωx]+32=sin ⎝⎛⎭⎫2ωx -π6+1.∵ 函数f[x]的最小正周期为π,∴ 2π|2ω|=π,即ω=±1,∴ f[x]=sin ⎝⎛⎭⎫±2x -π6+1.① 当ω=1时,f[x]=sin ⎝⎛⎭⎫2x -π6+1,∴ f ⎝⎛⎭⎫π6=sin π6+1不是函数的最大值或最小值,∴ 其图象不关于x =π6对称,舍去.② 当ω=-1时,f[x]=-sin ⎝⎛⎭⎫2x +π6+1,∴ f ⎝⎛⎭⎫π6=-sin π2+1=0是最小值,∴ 其图象关于x =π6对称.故f[x]的解析式为f[x]=1-sin ⎝⎛⎫2x +π6.[2] y =1-f[x]=sin ⎝⎛⎭⎫2x +π6,在同一坐标系中作出y =sin ⎝⎛⎭⎫2x +π6和y =a 的图象:由图可知,直线y =a 在a ∈⎣⎡⎭⎫-12,12或a =1时,两曲线只有一个交点,∴ a ∈⎣⎡⎭⎫-12,12或a =1.11. [2013·江苏]如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C.假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cosA =1213,cosC =35.[1] 求索道AB 的长;[2] 问乙出发多少分钟后,乙在缆车上与甲的距离最短?[3] 为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在什么范围内?解:[1] 在△ABC 中,因为cosA =1213,cosC =35,所以sinA =513,sinC =45.从而sinB =sin[π-[A +C]]=sin[A +C]=sinAcosC +cosAsinC =513×35+1213×45=6365.由正弦定理AB sinC =ACsinB ,得AB =AC sinB ×sinC =1 2606365×45=1 040[m].所以索道AB 的长为1 040 m.[2] 假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了[100+50t]m ,乙距离A 处130t m ,所以由余弦定理得d 2=[100+50t]2+[130t]2-2×130t ×[100+50t]×1213=200[37t 2-70t +50],因0≤t ≤1 040130,即0≤t ≤8,故当t =3537[min]时,甲、乙两游客距离最短.[3] 由正弦定理BC sinA =AC sinB ,得BC =AC sinB ×sinA =1 2606365×513=500[m].乙从B 出发时,甲已走了50×[2+8+1]=550[m],还需走710 m 才能到达C.设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514[单位:m/min]范围内.。
2015届高考数学(基础过关+能力训练):三角函数、三角恒等变换及解三角形 简单的三角恒等变换(含答案)

第三章 三角函数、三角恒等变换及解三角形第6课时 简单的三角恒等变换1. 函数y =sin 2x -sin2x 的最小正周期为_________。
答案:π解析:y =sin 2x -sin2x =1-cos2x 2-sin2x =12-sin2x -12cos2x =12-52sin(2x +φ)、其中φ为参数、所以周期T =2πω=2π2=π. 2. 函数y =sin ⎝⎛⎭⎫π2+x cos ⎝⎛⎭⎫π6-x 的最大值为________. 答案:2+34解析:y =sin ⎝⎛⎭⎫π2+x cos ⎝⎛⎭⎫π6-x =cosxcos ⎝⎛⎭⎫π6-x =32cos 2x +12sinxcosx =32×1+cos2x 2+14sin2x =34+34cos2x +14sin2x =34+12sin ⎝⎛⎭⎫2x +π3、所以当sin ⎝⎛⎭⎫2x +π3=1时、函数有最大值为34+12=2+34. 3. 若3sin α+cos α=0、则1cos 2α+sin2α=________。
答案:103解析:3sin α+cos α=0cos α≠0tan α=-13、1cos 2α+sin2α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=103. 4. 当0<x <π4时、函数f(x)=cos 2x cosxsinx -sin 2x 的最小值是__________。
答案:4解析:f(x)=1-tan 2x +tanx =1-⎝⎛⎭⎫tanx -122+14、当tanx =12时、f(x)的最小值为4. 5. 若sin α+cos αsin α-cos α=12、则tan2α=________。
答案:34 解析:由sin α+cos αsin α-cos α=12、得2(sin α+cos α)=sin α-cos α、即tan α=-3.又tan2α=2tan α1-tan 2α=-61-9=34. 6. 函数f(x)=sinx +3cosx 在区间⎣⎡⎦⎤0,π2上的最小值为________。
高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
【优化方案】2015年高考数学 第三章 第4课时 简单的三角恒等变换知能演练轻松闯关 新人教A版

【优化方案】2015年高考数学 第三章 第4课时 简单的三角恒等变换知能演练轻松闯关 新人教A 版[基础达标]1.sin 20°cos 20°cos 50°=( )A .2B .22 C . 2D .12 解析:选D .sin 20°cos 20°cos 50°=12sin 40°cos 50°=12sin 40°sin 40°=12.2.若sin α=45,则sin ⎝⎛⎭⎪⎫α+π4-22cos α=( )A .225B .-225C .425D .-425解析:选A .sin ⎝⎛⎭⎪⎫α+π4-22cos α=sin αcos π4+cos α·sin π4-22cos α=45×22=225.3.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A .π4B .3π4C .π3D .π6 解析:选A .tan A =tan[π-(B +C)]=-tan(B +C)=-tan B +tan C 1-tan Btan C =--2+131-(-2)×13=1.故A =π4.4.sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α解析:选D .原式=(-sin 2α)·cos 2α(1+cos 2α)·(-sin α)=2sin α·cos α·cos 2α2cos 2α·sin α=cos α. 5.(2014·某某某某调研)已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)=( )A .-255B .-3510C .-31010D .255解析:选A .由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.6.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2=________.解析:∵α是第二象限角,∴α2可能在第一或第三象限.又sin α2<cos α2,∴α2为第三象限角,∴cos α2<0.∵tan α=-43,∴cos α=-35,∴cos α2=-1+cos α2=-55. 答案:-557.若sin x +cos x sin x -cos x =3,tan(x -y )=2,则tan(y -2x )=________.解析:由sin x +cos x sin x -cos x =3,得tan x +1tan x -1=3,即tan x =2.则tan(y -x )=-tan(x -y )=-2,∴tan(y -2x )=tan (y -x )-tan x 1+tan (y -x )tan x =-2-21-4=43.答案:438.2cos 5°-sin 25°sin 65°的值为________.解析:2cos 5°-sin 25°sin 65°=2cos 5°-sin (30°-5°)sin 65°=2cos 5°-12cos 5°+32sin 5°cos 25°=32sin 5°+32cos 5°cos 25°=3(sin 30°sin 5°+cos 30°cos 5°)cos 25°=3cos 25°cos 25°= 3.答案: 39.已知tan α=-13,cos β=55,α∈(π2,π),β∈(0,π2),求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈(0,π2), 得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.∵α∈(π2,π),β∈(0,π2),∴π2<α+β<3π2,∴α+β=5π4. 10.求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°.解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 2 5°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10° =cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10° =cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.[能力提升]1.tan 70°·cos 10°(3tan 20°-1)等于( ) A .1 B .2 C .-1 D .-2解析:选C .tan 70°·cos 10°(3tan 20°-1) =sin 70°cos 70°·cos 10°(3·sin 20°cos 20°-1) =cos 20°cos 10°sin 20°·3sin 20°-cos 20°cos 20°=c os 10°·2sin(20°-30°)sin 20°=-sin 20°sin 20°=-1.2.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -b C .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A .π12B .π6C .π4D .π3解析:选D .依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2(α-β)=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32.故β=π3.3.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1=________.解析:∵α∈⎝⎛⎭⎪⎫0,π2,且2sin 2α-sin αcos α-3cos 2α=0,则(2sin α-3cos α)(sin α+cos α)=0,即2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213,∴sin ⎝ ⎛⎭⎪⎫α+π4sin 2α+cos 2α+1=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α) =268. 答案:2684.若α、β是锐角,且sin α-sin β=-12,cos α-cos β=12,则tan(α-β)=________.解析:∵sin α-sin β=-12,cos α-cos β=12,两式平方相加得:2-2cos αcos β-2sin αsin β=12,即2-2cos(α-β)=12,∴cos(α-β)=34.∵α、β是锐角,且sin α-sin β=-12<0,∴0<α<β<π2.∴-π2<α-β<0.∴sin(α-β)=-1-cos 2(α-β)=-74.∴tan(α-β)=sin (α-β)cos (α-β)=-73.答案:-735.已知函数f (x )=1-2sin ⎝⎛⎭⎪⎫2x -π4cos x.(1)求函数f (x )的定义域;(2)设α是第四象限角,且tan α=-43,求f (α)的值.解:(1)函数f (x )要有意义,需满足cos x ≠0, 解得x ≠π2+kπ,k ∈Z ,即f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠π2+kπ,k ∈Z . (2)∵f (x )=1-2sin ⎝⎛⎭⎪⎫2x -π4cos x=1-2⎝ ⎛⎭⎪⎫22sin 2x -22cos 2x cos x=1+cos 2x -sin 2x cos x=2cos 2x -2sin x cos x cos x=2(cos x -sin x ),由tan α=-43得sin α=-43cos α,又sin 2α+cos 2α=1,∴cos 2α=925.∵α是第四象限的角,∴cos α=35,sin α=-45,∴f (α)=2(cos α-sin α)=145.6.(选做题)已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.解:(1)∵tan α2=12,∴tan α=2tan α21-tan 2 α2=2×121-⎝ ⎛⎭⎪⎫122=43,由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45(sin α=-45舍去).(2)由(1)知cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35, 又0<α<π2<β<π,∴β-α∈(0,π),而cos(β-α)=210, ∴sin(β-α)=1-cos 2(β-α)=1-⎝ ⎛⎭⎪⎫2102=7210,于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin(β-α) =45×210+35×7210=22. 又β∈⎝ ⎛⎭⎪⎫π2,π,∴β=3π4.。
2015届高考数学文二轮专题训练专题三第2讲三角变换与解三角形
第2讲 三角变换与解三角形考情解读 1.高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系、诱导公式结合.2.利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查.1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.3.三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明. 4.正弦定理a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 5.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C . 6.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.热点一 三角变换例1 (1)已知sin(α+π3)+sin α=-435,-π2<α<0,则cos(α+2π3)等于( )A .-45B .-35C.45D.35(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2思维启迪 (1)利用和角公式化简已知式子,和cos(α+23π)进行比较.(2)先对已知式子进行变形,得三角函数值的式子,再利用范围探求角的关系. 答案 (1)C (2)B解析 (1)∵sin(α+π3)+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45, ∴cos(α+2π3)=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.设函数f (x )=cos(2x +π3)+sin 2x .(1)求函数f (x )的最小正周期和最大值;(2)若θ是第二象限角,且f (θ2)=0,求cos 2θ1+cos 2θ-sin 2θ的值.解 (1)f (x )=cos(2x +π3)+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12-32sin 2x .所以f (x )的最小正周期为T =2π2=π,最大值为1+32. (2)因为f (θ2)=0,所以12-32sin θ=0,即sin θ=33,又θ是第二象限角, 所以cos θ=-1-sin 2θ=-63. 所以cos 2θ1+cos 2θ-sin 2θ=cos 2θ-sin 2θ2cos 2θ-2sin θcos θ=(cos θ+sin θ)(cos θ-sin θ)2cos θ(cos θ-sin θ)=cos θ+sin θ2cos θ=-63+332×(-63)=6-326=2-24.热点二 解三角形例2 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =2sin A ,cos B cos C +2a c +bc =0.(1)求边c 的大小;(2)求△ABC 面积的最大值.思维启迪 (1)将cos B cos C +2a c +bc =0中的边化成角,然后利用和差公式求cos C ,进而求c .(2)只需求ab 的最大值,可利用cos C =a 2+b 2-c 22ab 和基本不等式求解.解 (1)∵cos B cos C +2a c +bc=0, ∴c cos B +2a cos C +b cos C =0,∴sin C cos B +sin B cos C +2sin A cos C =0, ∴sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =-12,∵C ∈(0,π)∴C =2π3,∴c =a sin A·sin C = 3.(2)∵cos C =-12=a 2+b 2-32ab,∴a 2+b 2+ab =3,∴3ab ≤3,即ab ≤1. ∴S △ABC =12ab sin C ≤34.∴△ABC 的面积最大值为34. 思维升华 三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破. 几种常见变形:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径; (3)sin(A +B )=sin C ,cos(A +B )=-cos C .(1)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba 等于( )A. 2 B .2 2 C. 3D .2 3(2)(2014·江西)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3 B.932C.332D .3 3答案 (1)A (2)C解析 (1)因为a sin A sin B +b cos 2A =2a ,由正弦定理得sin 2A sin B +sin B cos 2A =2sin A ,即sin B =2sin A , 即sin B sin A =2,b a =sin B sin A= 2. (2)∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得ab =6.∴S △ABC =12ab sin C =12×6×32=332.热点三 正、余弦定理的实际应用例3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35. (1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 思维启迪 (1)直接求sin B ,利用正弦定理求AB .(2)利用余弦定理和函数思想,将甲乙距离表示为乙出发后时间t 的函数.解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365.由正弦定理AB sin C =ACsin B ,得 AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537 min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.思维升华 求解三角形的实际问题,首先要准确理解题意,分清已知与所求,关注应用题中的有关专业名词、术语,如方位角、俯角等;其次根据题意画出其示意图,示意图起着关键的作用;再次将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识建立数学模型,从而正确求解,演算过程要简练,计算要准确;最后作答.如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A 地侦察发现,在南偏东60°方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民.此时,C 地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C 地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)解 过点A 作AD ⊥BC ,交BC 的延长线于点D .因为∠CAD =45°,AC =10海里, 所以△ACD 是等腰直角三角形. 所以AD =CD =22AC =22×10=52(海里). 在Rt △ABD 中,因为∠DAB =60°,所以BD =AD ×tan 60°=52×3=56(海里). 所以BC =BD -CD =(56-52)(海里).因为中国海监船以每小时30海里的速度航行,某国军舰正以每小时13海里的速度航行, 所以中国海监船到达C 点所用的时间t 1=AC 30=1030=13(小时),某国军舰到达C 点所用的时间t 2=BC 13=5×(6-2)13≈5×(2.45-1.41)13=0.4(小时).因为13<0.4,所以中国海监船能及时赶到.1.求解恒等变换问题的基本思路一角二名三结构,即用化归转化思想“去异求同”的过程,具体分析如下:(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心.(2)其次看函数名称之间的关系,通常“切化弦”. (3)再次观察代数式的结构特点. 2.解三角形的两个关键点(1)正、余弦定理是实现三角形中边角互化的依据,注意定理的灵活变形,如a =2R sin A ,sin A =a2R (其中2R 为三角形外接圆的直径),a 2+b 2-c 2=2ab cos C 等,灵活根据条件求解三角形中的边与角.(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sin A +B 2=cos C2等,利用“大边对大角”可以解决解三角形中的增解问题等.3.利用正弦定理、余弦定理解决实际问题的关键是如何将实际问题转化为数学问题,抽象出三角形模型.真题感悟1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.2.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c . 由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab22ab≥2⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab=6-24, 故6-24≤cos C <1,且3a 2=2b 2时取“=”. 故cos C 的最小值为6-24. 押题精练1.在△ABC 中,已知tanA +B2=sin C ,给出以下四个结论: ①tan A tan B=1;②1<sin A +sin B ≤2;③sin 2A +cos 2B =1;④cos 2A +cos 2B =sin 2C . 其中一定正确的是( )A .①③B .②③C .①④D .②④ 答案 D解析 依题意,tan A +B2=sinA +B 2cos A +B 2=2sin A +B 2cos A +B22cos 2A +B2=sin (A +B )1+cos (A +B )=sin C1+cos (A +B )=sin C .∵sin C ≠0,∴1+cos(A +B )=1,cos(A +B )=0.∵0<A +B <π,∴A +B =π2,即△ABC 是以角C 为直角的直角三角形.对于①,由tan Atan B =1,得tan A =tan B ,即A =B ,不一定成立,故①不正确;对于②,∵A +B =π2,∴sin A +sin B =sin A +cos A =2sin(A +π4),∴1<sin A +sin B ≤2,故②正确;对于③,∵A +B =π2,∴sin 2A +cos 2B =sin 2A +sin 2A =2sin 2A ,其值不确定,故③不正确;对于④,∵A +B =π2,∴cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故④正确.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,q =(2a,1),p =(2b -c ,cos C ),且q ∥p .(1)求sin A 的值;(2)求三角函数式-2cos 2C1+tan C+1的取值范围.解 (1)∵q =(2a,1),p =(2b -c ,cos C )且q ∥p ,∴2b -c =2a cos C , 由正弦定理得2sin A cos C =2sin B -sin C , 又sin B =sin(A +C )=sin A cos C +cos A sin C , ∴12sin C =cos A sin C . ∵sin C ≠0,∴cos A =12,又∵0<A <π,∴A =π3,∴sin A =32. (2)原式=-2cos 2C 1+tan C+1=1-2(cos 2C -sin 2C )1+sin C cos C =1-2cos 2C +2sin C cos C =sin 2C -cos 2C =2sin(2C -π4),∵0<C <23π,∴-π4<2C -π4<1312π,∴-22<sin(2C -π4)≤1, ∴-1<2sin(2C -π4)≤2,即三角函数式-2cos 2C1+tan C+1的取值范围为(-1,2].(推荐时间:60分钟)一、选择题1.(2014·浙江)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位答案 C解析 因为y =sin 3x +cos 3x =2sin(3x +π4)=2sin[3(x +π12)],又y =2cos 3x =2sin(3x +π2)=2sin[3(x +π6)],所以应由y =2cos 3x 的图象向右平移π12个单位得到.2.已知α∈(π2,π),sin(α+π4)=35,则cos α等于( )A .-210B.7210 C .-210或7210D .-7210答案 A解析 ∵α∈(π2,α).∴α+π4∈(34π,54π).∵sin(α+π4)=35,∴cos(α+π4)=-45,∴cos α=cos(α+π4)cos π4+sin(α+π4)sin(π4)=-45×22+35×22=-210.3.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( ) A.13B.12C.15D.14答案 D解析 由正弦定理:c a =sin C sin A=3, 由余弦定理:cos B =a 2+c 2-b 22ac =c 2-52ac 2ac =12×c a -54=32-54=14. 4.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形. 5.已知tan β=43,sin(α+β)=513,其中α,β∈(0,π),则sin α的值为( ) A.6365B.3365C.1365D.6365或3365 答案 A解析 依题意得sin β=45,cos β=35.注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=6365. 6.已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且tan B =2-3a 2-b 2+c2,BC →·BA →=12,则tan B 等于( )A.32B.3-1C .2D .2- 3 答案 D解析 由题意得,BC →·BA →=|BC →|·|BA →|cos B=ac cos B =12,即cos B =12ac, 由余弦定理,得cos B =a 2+c 2-b 22ac =12ac⇒a 2+c 2-b 2=1, 所以tan B =2-3a 2-b 2+c 2=2-3,故选D. 二、填空题7.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=________. 答案 -255解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010. 故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α) =22sin α=-255. 8.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,则b =________.答案 4解析 由sin A cos C =3cos A sin C 得:a 2R ·a 2+b 2-c 22ab =3·b 2+c 2-a 22bc ·c 2R , ∴a 2+b 2-c 2=3(b 2+c 2-a 2),a 2-c 2=b 22, 解方程组:⎩⎪⎨⎪⎧a 2-c 2=2b a 2-c 2=b 22,∴b =4. 9.已知0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45,则cos(α+π4)=________. 答案 82-315 解析 因为0<α<π2<β<π,所以π4<β-π4<3π4,π2<α+β<3π2. 所以sin(β-π4)>0,cos(α+β)<0. 因为cos(β-π4)=13,sin(α+β)=45, 所以sin(β-π4)=223,cos(α+β)=-35. 所以cos(α+π4)=cos[(α+β)-(β-π4)] =cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4) =-35×13+45×223=82-315.10.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.答案 40013解析 如题图,在△ABD 中,BD =400米,∠ABD =120°.因为∠ADC =150°,所以∠ADB =30°.所以∠DAB =180°-120°-30°=30°.由正弦定理,可得BD sin ∠DAB =AD sin ∠ABD . 所以400sin 30°=AD sin 120°,得AD =4003(米). 在△ADC 中,DC =800米,∠ADC =150°,由余弦定理,可得AC 2=AD 2+CD 2-2×AD ×CD ×cos ∠ADC=(4003)2+8002-2×4003×800×cos 150°=4002×13,解得AC =40013(米). 故索道AC 的长为40013米.三、解答题11.(2014·安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值. 解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ·a 2+c 2-b 22ac.因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13. 由于0<A <π,所以sin A =1-cos 2A =1-19=223. 故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝⎛⎭⎫-13×22=4-26. 12.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1, 从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 13.已知角A 、B 、C 是△ABC 的三个内角,若向量m =(1-cos(A +B ),cos A -B 2),n =(58,cos A -B 2),且m ·n =98. (1)求tan A tan B 的值;(2)求ab sin C a 2+b 2-c 2的最大值.解 (1)m ·n =58-58cos(A +B )+cos 2A -B 2=98-18cos A cos B +98sin A sin B =98, ∴cos A cos B =9sin A sin B 得tan A tan B =19. (2)tan(A +B )=tan A +tan B 1-tan A tan B =98(tan A +tan B )≥98·2tan A tan B =34. (∵tan A tan B =19>0, ∴A ,B 均是锐角,即其正切值均为正)ab sin C a 2+b 2-c 2=sin C 2cos C =12tan C =-12tan(A +B )≤-38, 所求最大值为-38.。
【高考解码】(新课标)2015届高考数学二轮复习 三角恒等变换与解三角形
三角恒等变换与解三角形1.(2014·某某高考)函数y =32sin 2x +cos 2x 的最小正周期为________. 【解析】 y =32sin 2x +cos 2x =32sin 2x +1+cos 2x 2=32sin 2x +12cos 2x +12=sin(2x +π6)+12. ∴T =2π2=π.【答案】 π2.(2014·高考)在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.【解析】 c 2=a 2+b 2-2ab cos C=1+4-2×1×2×14=4,则c =2又cos C =14,则sin C =154,由csin C =a sin A 得sin A =158. 【答案】 21583.(2014·全国新课标Ⅰ高考)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________m.【解析】 在△AMC 中,∵∠MAC =75°,∠MCA =60°,∴∠AMC =180°-75°-60°=45°. 由正弦定理:AMsin ∠MCA =ACsin ∠AMC,又△ABC 中,∠ABC =90°,∠CAB =45°,BC =100, ∴AC =1002,∴AM =1002sin 45°·sin 60°=1003,在△AMN 中,MN ⊥AN , ∠NAM =60°,∴MN =AM ·sin 60°=1003×32=150.【答案】 1504.(2014·某某高考)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎪⎫A +π4的值.【解】 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ·a 2+c 2-b 22ac.因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13.由于0<A <π,所以sin A =1-cos 2A =1-19=223.故sin ⎝ ⎛⎭⎪⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝ ⎛⎭⎪⎫-13×22=4-26.从近三年高考来看,该部分高考命题的热点考向为: 1.三角恒等变换及求值①利用两角和与差的三角函数公式进行三角恒等变换及求值是高考必考内容.该类问题出题背景选择面广,解答题中易出现与三角函数的图象和性质等知识交汇综合命题.②该类题目在选择、填空、解答题中都有可能出现,属中、低档题. 2.三角函数与平面向量的结合①向量与三角函数相结合是高考的重要考查内容,在近几年的高考中,年年都会出现,成为了高考的主流趋势.这类问题一般比较综合,考查综合应用知识分析问题、解决问题的能力.一般以向量为工具,考查三角恒等变换及三角函数的性质等.②多以解答题的形式出现,难度中档. 3.正、余弦定理及应用①该类问题是解三角形的主要考查类型,常以三角形中的边长、角度、面积为知识载体,融平面向量、三角恒等变换等知识于其中,考查正弦(余弦)定理的应用,预计将会成为今后高考题的一个热点.②多以解答题形式出现,有时也在选择、填空题中出现.可单独命题,也可在知识交汇处命制题目,重在体现三角函数知识的工具性,突出考查学生的运算能力,属中档题.三角恒等变换及求值【例1】 (2014·某某高考)已知α∈⎝⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值. 【解】 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55 =-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2 sin 2α=1-2×⎝⎛⎭⎪⎫552=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45 =-4+3310.【规律感悟】 三角函数恒等变换“六策略”:(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦;(5)公式的变形应用:如sin α=cos αtan α,tan α+tan β=tan(α+β)(1-tan αtan β)等;角的合成及三角函数名的统一:运用辅助角公式合成角及统一三角函数名称.[创新预测]1.(1)(2014·全国新课标Ⅰ高考)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2【解析】 tan α=sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcos α ∴sin αcos β-cos αsin β=cos α,即sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α 又∵-π2<α-β<π2,0<π2-α<π2.∴α-β=π2-α,即2α-β=π2,故选B.【答案】 B(2)(2013·某某高考)4cos 50°-tan 40°=( )A. 2B.2+32C. 3 D .22-1【解析】 借助商数关系,三角恒等变换及角度拆分求解.4cos 50°-tan 40°=4sin 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=sin 80°+sin 60°+20°-sin 60°-20°cos 40°=sin 80°+2cos 60°sin 20°cos 40°=sin 80°+sin 20°cos 40°=sin 50°+30°+sin 50°-30°cos 40°=2sin 50°cos 30°cos 40°=3·cos 40°cos 40°= 3.【答案】 C三角函数与平面向量的结合【例2】 (2014·某某高考)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.【解】 (1)由题意知f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2,所以错误! 即错误!解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z .所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π, k ∈Z .【规律感悟】 向量与三角函数的综合,实质上是借助向量的工具性,考查三角恒等变换及三角函数的性质等问题.解这类问题的基本思路是将向量转化为代数运算,常用到向量的数乘、向量的代数运算,以及数形结合的思想.本题对向量的考查主要体现在向量的工具性.解决这类问题的基本思路就是先通过向量的基本运算,脱去向量的“外衣”,将问题转化为三角函数式的化简求值等问题.[创新预测]2.(2013·某某高考)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.【解】 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x=32sin 2x -12cos 2x +12=sin(2x -π6)+12,当x =π3∈[0,π2]时,sin(2x -π6)取最大值1.所以f (x )的最大值为32.正、余弦定理及应用【例3】 (1)(2014·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A 的值为( ) A .-19 B.13C .1 D.72(2)(2014·某某高考)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mzC .120(3-1)mD .30(3+1)m(3)(2014·高考)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】 (1)2sin 2B -sin 2A sin 2A =2b 2-a 2a 2=2·(b a )2-1=2×94-1=72. (2)由题意知AB =60sin 75°,∠C =30°,∠BAC =45°.在△ABC 中,由正弦定理得AB sin 30°=BC sin 45°,BC =602sin 75°∴BC =120(3-1),故选C.(3)【解】 ①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos ∠B -cos ∠ADC sin ∠B =437×12-17×32=3314. ②在△ABD 中,由正弦定理得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos ∠B=82+52-2×8×5×12=49.所以AC =7.【答案】 (1)D (2)C (3)①3314②7【规律感悟】 1.在解三角形时,正、余弦定理可解决的几类问题: (1)正弦定理可解决两类问题:①已知两角及任一边,求其他边或角; ②已知两边及一边的对角,求其他边或角. (2)余弦定理可解决两类问题:①已知两边及夹角求第三边和其他两角; ②已知三边,求各角.2.应用解三角形知识解决实际问题的步骤:①读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;②图解.根据题意画出示意图,并将已知条件在图形中标出;③建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;④验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.[创新预测]3.(1)(2014·全国新课标Ⅱ高考)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1【解析】 ∵S △ABC =12a ·c sin B =12×2×1×sin B =12,∴sin B =22,∵B ∈(0,π),∴B =π4或3π4.当B =π4时,由余弦定理b 2=a 2+c 2-2ac ·cos B =2+1-22×1×22=1,∴b =1,∴△ABC 为等腰直角三角形,不符合题意,舍去.∴B =3π4时,由余弦定理:b 2=a 2+c 2-2ac ·cos B =5,∴b =5,故选B.【答案】 B(2)(2013·某某高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【解析】 利用余弦定理的变形将角的余弦值转化为三角形边之间的关系. ∵b cos C +c cos B=b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac=b 2+a 2-c 2+c 2+a 2-b 22a=2a22a=a =a sin A ,∴sin A =1. ∵A ∈(0,π),∴A =π2,即△ABC 是直角三角形.故选B.【答案】 B[总结提升] 通过本节课的学习,需掌握如下三点: 失分盲点(1)忽视角的X 围:既要关注条件中角的X 围还应考虑到隐含条件. (2)忽视对解的检验:已知两边及其中一边的对角,利用正弦定理时,应注意对解进行检验(大边对大角).答题指导(1)看到三角形内角,想到三角形内角和定理.(2)看到有边又有角的等式,想到利用正、余弦定理进行边角之间的互化. (3)看到求某个角,想到求该角的某种三角函数值. 方法规律1.(1)弦切互化法:主要利用公式tan α=sin αcos α.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ;(sin θ+cos θ)2+(sin θ-cos θ)2=2的关系,进行变形转化.(3)“1”的代换法:利用1=sin 2θ+cos 2θ=(sin θ+cos θ)2-2sin θcos θ=tanπ4. 2.(1)减元法:利用A +B +C =π及诱导公式可得到以下公式:sin(A +B )=sin C ,cos(A +B )=-cos Csin A +B 2=cos C 2,cos A +B 2=sin C2. (2)边角互化法:利用正、余弦定理进行边角之间的转化.正、余弦定理的合理运用运算的合理性是提高运算能力的核心,运算错误往往是由运算不合理带来的.在运算中由于选择和运用的概念、公式、定理不同,运算往往简繁各异.学会运算并不困难,困难的是怎样进行灵活、简捷的运算,使运算不会走入误区.【典例】 (2014·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.【解】 (1)由题意可知:c =8-(a +b )=72.由余弦定理得:cos C =a 2+b 2-c22ab=22+522-7222×2×52=-15.(2)由sin A cos 2B2+sin B cos 2A2=2sin C 可得:sin A ·1+cos B 2+sin B ·1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知:a +b =3c . 又因a +b +c =8,故a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,b =3.【规律感悟】 本题考查正弦定理和余弦定理,在化简方程中应用了三角恒等变换公式,三角形的内角和定理.在化简方程时考查了对式子的变形能力,整个求解过程中考查运算求解能力、推理论证能力和分析问题、解决问题的能力.建议用时 实际用时错题档案45分钟一、选择题1.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .3【解析】 利用两角和的正切公式求解.∵tan α,tan β是方程x 2-3x +2=0的两根, ∴tan α+tan β=3,tan αtan β=2,∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.【答案】 A2.(创新题)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( )A.22B.12C .0D .-1【解析】 利用向量垂直及倍角公式求解.∵a ⊥b ,∴a ·b =-1+2cos 2θ=0,∴cos 2θ=12,∴cos 2θ=2cos 2θ-1=1-1=0.【答案】 C 3.发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是关于时间t 的函数:I A =I sin ωt ,I B =I sin(ωt +2π3),I C =I sin(ωt +φ),且I A +I B +I C =0,0≤φ<2π,则φ等于( )A.π3B.2π3C.4π3D.5π3【解析】 由I A +I B +I C=I sin ωt +I sin(ωt +23π)+I sin(ωt +φ)=I sin(ωt +π3)+I sin(ωt +φ)=0,得sin(ωt +φ)=-sin(ωt +π3)=sin(ωt +43π).故φ=43π.【答案】 C4.(2013·某某高考)已知α∈R ,sin α+2cos α=102,则tan 2α=( )A.43B.34C.34D.43【解析】 先利用条件求出tan α,再利用倍角公式求tan 2α.把条件中的式子两边平方,得sin 2α+4sin αcos α+4cos 2α=52,即3cos 2α+4sinαcos α=32,所以3cos 2α+4sin αcos αcos 2α+sin 2α=32,所以3+4tan α1+tan 2α=32,即3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,所以tan 2α=2tan α1-tan 2α=-34.【答案】 C5.(2013·某某高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C+c sin B cos A =12b ,且a >b ,则∠B =( )A.π6B.π3C.2π3D.5π6【解析】 根据正弦定理与和角公式求解.由正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,又因为sin B ≠0,所以sin A cos C +sin C cos A =12,所以sin(A +C )=sin B =12.因为a >b ,所以∠B =π6.【答案】 A 二、填空题6.(2014·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sinB =3sinC ,则cos A 的值为________.【解析】 ∵2sin B =3sin C ,由正弦定理得2b =3c ,∴b =32c ,又b -c =14a ,∴a =4(b -c ),∴a =2c .cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22·32c 2=-14.【答案】 -147.(2014·东北三城联考)若cos(α+π6)-sin α=335,则sin(α+5π6)=________.【解析】 ∵cos(α+π6)-sin α=335,∴cos αcos π6-sin αsin π6-sin α=335,∴32cos α-32sin α=335,∴cos(α+π3)=35. ∴sin(α+5π6)=cos ⎣⎢⎡⎦⎥⎤π2-α+5π6=cos(α+π3)=35. 【答案】 358.(2014·某某潍坊3月模拟)如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是____________米.【解析】 在三角形BCD 中,可得CD =10,∠BCD =105°,∠BDC =45°,由正弦定理可得BC sin 45°=10sin 30°⇒BC =102,在直角三角形ABC 中可得AB =102tan 60°=10 6. 【答案】 10 6三、解答题9.(2014·某某某某质检)如图,A ,B 是海平面上的两个小岛,为测量A ,B 两岛间的距离,测量船以15海里/小时的速度沿既定直线CD 航行,在t 1时刻航行到C 处,测得∠ACB =75°,∠ACD =120°,1小时后,测量船到达D 处,测得∠ADC =30°,∠ADB =45°,求A ,B 两小岛间的距离.(注:A ,B ,C ,D 四点共面)【解】 由已知得CD =15,∠ACD =120°,∠ADC =30°,∴∠CAD =30°,在△ACD 中,15sin 30°=AD sin 120°, ∴AD =15 3.∵∠BDC =75°,∠BCD =45°,∴∠CBD =60°,在△BCD 中,15sin 60°=BD sin 45°, ∴BD =5 6.在△ABD 中,∠ADB =45°,AB =AD 2+BD 2-2AD ·BD cos ∠ADB=1532+562-2×153×56cos 45°=515,故两小岛间的距离为515海里.10.(2014·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B 2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.【解】 (1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2,化简得-2cos A cos B +2sin A sin B =2,故cos(A +B )=-22. 所以A +B =3π4,从而C =π4. (2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =32,由余弦定理c2=a2+b2-2ab cos C,得c=10.。
2015届高考数学总复习:三角函数、三角恒等变换及解三角形 任意角和弧度制及任意角的三角函数(含答案)
第三章 三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数1. 角α的终边过点P(-1,2),则sin α=________.答案:255解析:sin α=y r =25=255.2. 已知点P(3,y)在角α的终边上,且满足y<0,cos α=35,则tan α=________.答案:-43解析:∵cos α=39+y 2=35,且y<0,∴y =-4,∴tan α=-43.3. 已知点P ⎝⎛⎭⎫sin3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ=________. 答案:7π4解析:由sin 3π4>0,cos 3π4<0,知角θ在第四象限.∵tan θ=cos 3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.4. 已知扇形的周长是6cm ,面积是2cm 2,则扇形的中心角的弧度数是________.答案:1或4解析:设此扇形的半径为r ,弧长是l ,则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2,从而α=lr=41=4或α=l r =22=1. 5. 已知角α的终边过点P(-8m ,-6sin30°),且cos α=-45,则m =________.答案:12解析:因为r =64 m 2+9,所以cos α=-8m 64 m 2+9=-45,所以m>0,所以4m 264m 2+9=125,即m =±12.又m>0, 故m =12.6. 若点P 在角2π3的终边上,且|OP|=2,则点P 的坐标是________.答案:(-1,3)解析:23π的终边在第二象限,P(x ,y),sin 23π=y 2,∴ y = 3.cos 23π=x2,x =-1.7. 若角α的终边上有一点P(-4,a),且sin α·cos α=34,则a =________. 答案:-43或-433解析:∵ sin α·cos α=34>0,∴ sin α、cos α同号,∴ 角α在第三象限,即P(-4,a)在第三象限,∴ a<0.根据三角函数的定义a 16+a 2·-416+a 2=34,解得a =-43或-433. 8. 点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达点Q ,则点Q的坐标为________.答案:⎝⎛⎭⎫-12,32解析:由弧长公式l =|α|r ,l =2π3,r =1得点P 按逆时针方向转过的角度为α=2π3,所以点Q 的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,即⎝⎛⎭⎫-12,32.9. (改编题)若α的终边落在x +y =0上,求出在[-360°,360°]之间的所有角α. 解:若角α的终边落在第二象限,则{α|α=3π4+2k π,k ∈Z };若角α的终边落在第四象限,则{α|α=7π4+2k π,k ∈Z },∴ α终边落在x +y =0上角的集合为{α|α=3π4+2k π,k ∈Z }∪{α|α=7π4+2k π,k ∈Z }={α|α=3π4+k π,k ∈Z }.令-2π≤3π4+k π≤2π,∴ k ∈{-2,-1,0,1},∴ 所求α∈{-5π4,-π4,3π4,7π4}.10. 已知角α终边上一点P 的坐标为(-15a ,8a)(a ≠0),求角α的正弦、余弦、正切函数值.解:设点P 到原点O 的距离为r , 则r =(-15a )2+(8a )2=17|a|.① 当a>0时,r =17a ,∴ sin α=8a 17a =817,cos α=-15a 17a =-1517,tan α=8a -15a=-815. ② 当a<0时,r =-17a ,∴ sin α=8a -17a =-817,cos α=-15a -17a =1517,tan α=8a -15a =-815.11. 如图,单位圆(半径为1的圆)的圆心O 为坐标原点,单位圆与y 轴的正半轴交于点A ,与钝角α的终边OB 交于点B(x B ,y B ),设∠BAO =β.(1) 用β表示α;(2) 如果sin β=45,求点B(x B ,y B )的坐标;(3) 求x B -y B 的最小值.。
三角函数、三角恒等变换、解三角形(含答案)
三角函数、三角恒等变换、解三角形学校:___________姓名:___________班级:___________考号:___________1.已知1sin 2α=,则cos()2πα-=( )A. 2-B. 12-C. 12D. 2 2.200︒是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.已知()1cos 03ϕϕπ=-<<,则sin 2ϕ=( )A.9B.9-C.9D.9-4.函数 )321sin(π+=x y 的图像可由函数x y 21sin =的图像( ) A .向左平移32π个单位得到 B .向右平移3π个单位得到C .向左平移6π个单位得到 D .向左平移3π个单位得到5.函数5sin(2)2y x π=+图像的一条对称轴方程是( ) A .2π-=x B . 4π-=x C . 8π=x D .45π=x6.函数())24x f x π=-,x R ∈的最小正周期为( )A .2πB .πC .2πD .4π7.给出以下命题:①若α、β均为第一象限角,且βα>,且βαsin sin >;②若函数⎪⎭⎫⎝⎛-=3cos 2πax y 的最小正周期是π4,则21=a ; ③函数1sin sin sin 2--=x xx y 是奇函数;④函数1|sin |2y x =-的周期是π; ⑤函数||sin sin x x y +=的值域是]2,0[. 其中正确命题的个数为( )A . 3B . 2C . 1D . 0 8.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如图示,则将()y f x =的图像向右平移6π个单位后,得到的图像解析式为( )A .x y 2sin = B.x y 2cos = C.)322sin(π+=x y D.)62sin(π-=x y 9.函数()sin 2f x x =的最小正周期是 .10.300tan 480sin +的值为________.11.在ABC ∆中,已知内角3A π=,边BC =,则ABC ∆的面积S 的最大值为 .12.比较大小:sin1 cos1(用“>”,“<”或“=”连接).13.已知角α的顶点在坐标原点,始边在x 轴的正半轴,终边经过点(1,,则cos ____.α=14.已知3cos()(,)41024x x πππ-=∈. (Ⅰ)求sin x 的值; (Ⅱ)求sin(2)3x π+的值.15.已知x x x x x f 424cos 3)cos (sin sin 3)(-++=.(1)求()f x 的最小值及取最小值时x 的集合; (2)求()f x 在[0,]2x π∈时的值域;(3)在给出的直角坐标系中,请画出()f x 在区间[,]22ππ-上的图像(要求列表,描点).16.已知3cos()(,)424x x πππ-=∈. (1)求sin x 的值; (2)求sin(2)3x π+的值.17.(1)化简:︒--︒︒︒-20sin 1160sin 20cos 20sin 212;(2)已知α为第二象限角,化简ααααααcos 1cos 1sin sin 1sin 1cos +-++-.18.函数(其中)的图象如图所示,把函数)(x f 的图像向右平移4π个单位,再向下平移1个单位,得到函数)(x g y =的图像.(1)若直线m y =与函数)(x g 图像在]2,0[π∈x 时有两个公共点,其横坐标分别为21,x x ,求)(21x x g +的值;(2)已知ABC ∆内角AB C 、、的对边分别为a b c 、、,且0)(,3==C g c .若向量(1,sin )m A = 与(2,sin )n B =共线,求a b 、的值.19.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值与最小值.参考答案1.C 【解析】 试题分析:由1cos()sin 22παα-==,故选C. 考点:诱导公式. 2.C 【解析】试题分析:因为第一象限角α的范围为36036090,k k k z α⋅<<⋅+∈ ; 第二象限角α的范围为36090360180,k k k z α⋅+<<⋅+∈ ; 第三象限角α的范围为360180360270,k k k z α⋅+<<⋅+∈ ; 第四象限角α的范围为360270360360,k k k z α⋅+<<⋅+∈ ;200∴︒是第三象限角,故选C.考点:象限角的概念. 3.D 【解析】试题分析:0ϕπ<< ,sin 0ϕ∴>,故sin ϕ===,因此sin 2ϕ=12sin cos 2339ϕϕ⎛⎫=⨯-=- ⎪⎝⎭,故选D. 考点:1.同角三角函数的基本关系;2.二倍角公式4.A 【解析】试题分析:因为1sin()23y x π=+可化为12sin ()23y x π=+.所以将x y 21sin =向左平移32π.可得到12sin ()23y x π=+.故选 A.本小题关键是考查1ω≠的三角函数的平移,将0x ωϕ+=时的x 的值,与0x =是对比.即可知道是向左还是向右,同时也可以知道移了多少单位.考点:1.三角函数的平移.2.类比的思想. 5.A 【解析】试题分析:5sin(2)sin(22)sin(2)cos 2222y x x x x ππππ=+=++=+= ,由c o s y x =的对称轴()x k k Z π=∈可知,所求函数图像的对称轴满足2()x k k Z π=∈即()2k x k Z π=∈,当1k =-时,2x π=-,故选A. 考点:1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式. 6.C 【解析】 试题分析:这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如sin(),cos()y A x k y A x k ωϕωϕ=++=++的最小正周期为2||T πω=,而t a n ()y A x k ωϕ=++的最小正周期为||T πω=,故函数()tan()24x f x π=-的最小正周期为212T ππ==,故选C.考点:三角函数的图像与性质. 7.D 【解析】试题分析:对于①来说,取390,60αβ=︒=︒,均为第一象限,而1sin 60390sin 3022=︒=︒=,故s i n s i n αβ<;对于②,由三角函数的最小正周期公式214||2T a a ππ==⇒=±;对于③,该函数的定义域为{}|s i n 10|2,2x x x x k k Zππ⎧⎫-≠=≠+∈⎨⎬⎩⎭,定义域不关于原点对称,没有奇偶性;对于④,记1()|sin |2f x x =-,若T π=,则有()()22f f ππ-=,而1()|1| 1.522f π-=--=,1()|1|0.522f π=-=,显然不相等;对于⑤,0sin sin ||2sin y x x x ⎧=+=⎨⎩(0)(0)x x <≥,而当()2sin (0)f x x x =≥时,22sin 2x -≤≤,故函数sin sin ||y x x =+的值域为[2,2]-;综上可知①②③④⑤均错误,故选D.考点:1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域. 8.D 【解析】试题分析:通过观察图像可得1A =,311341264T πππ=-=,所以T π=,所以222T ππωπ===,又因为函数()f x 过点(,1)6π,所以s i n ()12()332k k Z πππϕϕπ+=⇒+=+∈,而||2πϕ<,所以当0k =时,6πϕ=满足要求,所以函数()sin(2)6f x x π=+,将函数向右平移6π个单位,可得()s i n [2()]s i n (2)666f x x x πππ=-+=-,故选D.考点:1.正弦函数图像的性质.2.正弦函数图像的平移.3.待定系数确定函数的解析式. 9.π 【解析】试题分析:直接利用求周期公式2T πω=求得.考点:周期公式.10. 【解析】 试题分析:sin 480tan 300sin(120360)tan(36060)sin120tan 60sin 60tan 60+=︒+︒+︒-︒=︒-︒=︒-︒,故sin 480tan 300+==考点:1.诱导公式;2.三角恒等变换.11.【解析】试题分析:∵2222cos a b c bc A =+-,∴2212b c bc =+-,∵222b c bc +≥,∴122b c b c +≥,∴12bc ≤,∴1sin 2S bc A ∆==≤ 考点:1.余弦定理;2.基本不等式;3.三角形面积.12.>. 【解析】试题分析:在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0. 考点:三角函数线.13.-12. 【解析】试题分析:由题意可得 x=-1,r 2=x 2+y 2=4,r=2,故cos =x r =-12. 考点:任意角的三角函数的定义.14.(1)45;(2)2450+-.【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换.15.(1)当1-,},12|{Z k k x x ∈-=ππ;(2)[1,3];(3)详见解析. 【解析】试题分析:先根据平方差公式、同角三角函数的基本关系式、二倍角公式化简所给的函数()2sin(2)13f x x π=-+.(1)将23x π-看成整体,然后由正弦函数sin y x =的最值可确定函数()f x 的最小值,并明确此时x 的值的集合;(2)先求出23x π-的范围为2[,]33ππ-,从而sin(2)13x π≤-≤,然后可求出]2,0[π∈x 时,函数()f x 的值域;(3)根据正弦函数的五点作图法进行列表、描点、连线完成作图.试题解析:化简424()(sin cos )f x x x x x =++222222cos )(sin cos )sin 2sin cos cos x x x x x x x =-++++22cos )2sin cos 1x x x x =-++sin 221x x =+2sin(2)13x π=-+ 4分(1)当sin(2)13x π-=-时,()f x 取得最小值211-+=-,此时22,32x k k Z πππ-=-+∈即,12x k k Zππ=-∈,故此时x 的集合为},12|{Z k k x x ∈-=ππ 6分(2)当]2,0[π∈x 时,所以]32,3[32πππ-∈-x ,所以sin(2)13x π≤-≤,从而12sin(2)133x π+≤-+≤即]3,13[)(+-∈x f 9分(3)由()2sin(2)1f x x π=-+知故()f x 在区间[,]22ππ-上的图象如图所示:13分.考点:1.三角恒等变换;2.三角函数的图像与性质.16.(1)45;(2).【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换. 17.(1)1-;(2)0. 【解析】试题分析:本题主要考查同角三角函数基本关系式与诱导公式的应用.(1)将分子中的1变形为22sin 20cos 20︒+︒,从而分子进一步化简为cos20sin 20︒-︒,分母s i n 16n 20︒︒利用诱导公式与同角三角函数的基本关系式转化为s i n 20c o s 2︒-︒,最后不难得到答案;(2)1sin |cos |αα-=,1cos |sin |αα-=,然后根据三角函数在第二象限的符号去绝对值进行运算即可.试题解析:(1)原式=cos 20sin 201sin 20cos 20sin 20cos 20︒-︒==-︒-︒︒-︒6分(2)解:原式cos sin 1sin 1cos cos |sin |cos |sin |αααααα--=⨯+⨯ 1cos 1cos cos sin 0cos sin αααααα--=⨯+⨯=- 6分. 考点:1.同角三角函数的基本关系式;2.三角恒等变换;3.诱导公式.18.(1)123()2g x x +=-;(2)a b ⎧=⎨=⎩【解析】试题分析:本题主要考查三角函数的图像和性质,向量共线的充要条件以及解三角形中正弦定理余弦定理的应用,考查分析问题解决问题的能力和计算能力,考查数形结合思想和化归与转化思想.第一问,先由函数图像确定函数解析式,再通过函数图像的平移变换得到()g x 的解析式,由于y m =与()g x 在[0,]2π上有2个公共点,根据函数图像的对称性得到2个交点的横坐标的中点为3π,所以122()()3g x x g π+=得出函数值;第二问,先用()0g c =在ABC ∆中解出角C 的值,再利用两向量共线的充要条件得到sin 2sin B A =,从而利用正弦定理得出2b a =,最后利用余弦定理列出方程解出边,a b 的长.试题解析:(1)由函数)(x f 的图象,ωπππ2)3127(4=-=T ,得2=ω, 又3,32πϕπϕπ=∴=+⨯,所以)32sin()(π+=x x f 2分 由图像变换,得1)62sin(1)4()(--=--=ππx x f x g 4分由函数图像的对称性,有23)32()(21-==+πg x x g 6分 (Ⅱ)∵ ()sin(2)106f C C π=--=, 即sin(2)16C π-= ∵ 0C π<<,112666C πππ-<-<, ∴ 262C ππ-=,∴ 3C π=. 7分 ∵ m n 与共线,∴ sin 2sin 0B A -=.由正弦定理 sin sin a b A B=, 得2,b a = ① 9分 ∵ 3c =,由余弦定理,得2292cos 3a b ab π=+-, ② 11分解方程组①②,得a b ⎧=⎨=⎩ 12分 考点:1.函数图像的平移变换;2.函数图像的对称性;3.正弦定理和余弦定理;4.函数的周期性;5.两向量共线的充要条件.19.(1)T =π;(2)最大值2;最小值-1.【解析】试题分析:(1)本小题首先需要对函数的解析式进行化简()⎪⎭⎫ ⎝⎛+=62sin 2πx x f ,然后根据周期公式可求得函数的周期T =π;(2)本小题首先根据.32626,46πππππ≤+≤-≤≤-x x 所以,然后结合正弦曲线的图像分别求得函数的最大值和最小值.试题解析:(1)因为1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π(2)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2; 当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. 考点:三角函数的图像与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 三角函数、三角恒等变换及解三角形第3课时
三角函
数的图象和性质
1. 将函数y =sin(x +φ)的图象F 向左平移π
6
个单位长度后得到图象F′、若F′的一个对称
中心为⎝⎛⎭
⎫π
4,0、则φ=________。
答案:k π-5π
12
、k ∈Z
解析:图象F′对应的函数y′=sin ⎝⎛⎭⎫x +π6+φ、其一个对称中心为⎝⎛⎭
⎫π
4,0、则π4+π6+
φ=k π、k ∈Z 、即φ=k π-5π
12
、k ∈Z .
2. 把函数y =sin ⎝
⎛⎭⎫5x -π
2的图象向右平移π4个单位、再把所得函数图象上各点的横坐标
缩短为原来的1
2
、所得的函数解析式为________。
答案:y =sin ⎝
⎛⎭⎫10x +π
4
解析:将原函数的图象向右平移π4个单位、得到函数y =sin[5(x -π4)-π
2
]=
sin ⎝⎛⎭⎫5x -74π的图象、再把所得函数图象上各点的横坐标缩短为原来的1
2
、得到函数y =sin ⎝⎛⎭⎫10x -7π4的图象、即y =sin ⎝
⎛⎭⎫10x +π
4.
3. 若函数f(x)=2sin(ωx +φ)(ω>0)的图象的相邻两条对称轴的距离是π、则ω=________。
答案:1
解析:函数y =f(x)的图象的相邻两条对称轴的距离是π、所以T
2
=π、即T =2π、所
以2π
ω
=2π、解得ω=1. 4. 将函数f(x)=sin ωx(ω>0)的图象向右平移π4个单位长度、所得图象经过点⎝⎛⎭
⎫3π
4,0、
则ω的最小值是________。
答案:2
解析:函数向右平移π4得到函数g(x)=f ⎝⎛⎭⎫x -π4=sin ω⎝
⎛⎭⎫x -π
4、因为此时函数过点
⎝⎛⎭⎫3π4,0、所以sin ω⎝⎛⎭⎫3π4-π4=0、即ω·⎝⎛⎭⎫3π4
-π4=ωπ2=k π、所以ω=2k 、k ∈Z 、所以
ω的最小值为2.
5. 若函数y =Asin(ωx +φ)⎝
⎛⎭⎫A>0,ω>0,|φ|<π
2的最小值为-2、其图象上相邻最高点
与最低点的横坐标之差为π
2
、且图象过点(0、3)、则其解析式是________________。
答案:y =2sin ⎝
⎛⎭⎫2x +π
3
解析:由题意、得A =2、T 2=π
2
、所以T =π、ω=2、所以f(x)=2sin(2x +φ)。
由f(0)
=2sin φ=3、|φ|<π2、得φ=π3、从而y =2sin ⎝
⎛⎭⎫2x +π
3.
6. 若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增、在区间⎣⎡⎦
⎤π3,π
2上单调递减、
则ω=________。
答案:32
解析:由于f(x)=sin ωx 图象过原点、由已知条件画图象可知、π
3
为该函数的四分之一
周期、所以2πω=4π3、ω=3
2.
7. 函数y =sin(ωx +φ)(ω>0、0<φ<π)的周期为π、且函数图象关于点⎝⎛⎭
⎫-π
3,0对称、
则函数解析式为____________。
答案:y =sin ⎝
⎛⎭⎫2x +2π
3
解析:T =2πω
、∴ ω=2.又图象关于⎝⎛⎭⎫-π
3,0对称、
∴ sin ⎣⎡⎦
⎤2⎝⎛⎭⎫-π3+φ=0、φ-23π=k π(k ∈Z )、φ=2
3π+k π(0<φ<π)、∴ k =0、φ
=23
π. ∴ y =sin ⎝
⎛⎭⎫2x +2π
3.
8. (2013·南通三模)函数f(x)=Asin(ωx +φ)(A >0、ω>0、0≤φ<2π)在R 上的部分图象如图所示、则f(2 013)=________。
答案:-53
2
解析:从图象可知、A =5、周期T =2(5+1)=12、ω=π
6
、f(0)>0、f(5)=0、0≤φ<
2π、故φ=π6、f(x)=5sin ⎝⎛⎭⎫π6x +π6、f(2 013)=f(9)=5sin ⎝⎛⎭⎫π6
×9+π6=-5cos π6=-53
2.
9. 已知函数y =Asin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象过点P ⎝⎛⎭
⎫π
12,0、图象上与
点P 最近的一个顶点是Q ⎝⎛⎭
⎫π
3,5.
(1) 求函数的解析式;
(2) 求函数f(x)的递增区间。
解:(1) 依题意得A =5、周期T =4⎝⎛⎭
⎫π3-π
12=π、
∴ ω=2π
π
=2.
故y =5sin(2x +φ)。
又图象过点P ⎝⎛⎭⎫π12,0、∴ 5sin ⎝⎛⎭⎫π
6+φ=0、
由已知可得π
6+φ=k π、k ∈Z 、
∴ φ=-π6、∴ y =5sin ⎝⎛⎭⎫2x -π
6.
(2) 由-π2+2k π≤2x -π6≤π
2+2k π、k ∈Z 、
得-π6+k π≤x ≤π
3
+k π、k ∈Z 、
故函数f(x)的递增区间为[k π-π6、k π+π
3](k ∈Z )。
10. 函数f(x)=Asin ⎝
⎛⎭⎫ωx -π
6+1(A>0、ω>0)的最大值为3、其图象相邻两条对称轴之
间的距离为π
2
.
(1) 求函数f(x)的解析式;
(2) 设α∈⎝
⎛⎭⎫0,π
2、f ⎝⎛⎭⎫α2=2、求α的值。
解:(1) 由题意、A +1=3、所以A =2.
因为函数图象相邻两条对称轴之间的距离为π
2
、所以最小正周期T =π、所以ω=2.故
函数f(x)=2sin ⎝⎛⎭⎫2x -π
6+1.
(2) 因为f ⎝⎛⎭⎫α2=2sin ⎝
⎛⎭⎫α-π6+1=2、 所以sin ⎝
⎛⎭⎫α-π6=1
2.又0<α<π2、
所以α-π6=π6、即α=π
3
.
11. 已知函数f(x)=Asin(ωx +φ)(A>0、ω>0、|φ|<π
2
、x ∈R )的部分图象如下图所示。
(1) 求函数f(x)的解析式;
(2) 当x ∈⎣
⎡⎦⎤-6,-2
3时、求函数y =f(x)+f(x +2)的最大值与最小值及相应的x 的值。
解:(1) 由图象知A =2、T =8.∵ T =2πω
=8、∴ ω=π
4.
又图象经过点(-1、0)、
∴ 2sin ⎝⎛⎭⎫-π
4+φ=0.
∵ |φ|<π2、∴ φ=π4、∴ f(x)=2sin ⎝⎛⎭⎫π4
x +π
4.
(2) y =f(x)+f(x +2)=2sin(π4x +π4)+2sin(π4x +π2+π4)=2sin ⎝⎛⎭⎫π4x +π4+2cos ⎝⎛⎭⎫π4
x +π
4 =22sin ⎝⎛⎭⎫π4
x +π
2=22cos π4x.∵ x ∈⎣⎡⎦⎤-6,-23、 ∴ -3π2≤π4x ≤-π6、∴ 当π4x =-π6、即x =-2
3
时、
y =f(x)+f(x +2)取最大值为6;当π
4
x =-π、即x =-4时、
y =f(x)+f(x +2)取最小值为-2 2.。