第8章非线性回归分析算例

合集下载

《非线性回归分析》课件

《非线性回归分析》课件
• 常用的过滤方法包括皮 尔逊相关系数、方差分 析和卡方检验等。
封装式
• 基于模型的错误率和复 杂性进行特征选择。
• 常用的封装方法包括递 归特征消除法和遗传算 法等。
嵌入式
• 特征选择和模型训练同 时进行。
• 与算法结合在一起的特 征选择方法,例如正则 化(Lasso、Ridge)。
数据处理方法:缺失值填充、异常值 处理等
1
网格搜索
通过预定义的参数空间中的方格进行搜
随机搜索
2
索。
在预定义的参数空间中进行随机搜索。
3
贝叶斯调参
使用贝叶斯优化方法对超参数进行优化。
集成学习在非线性回归中的应用
集成学习是一种将若干个基学习器集成在一起以获得更好分类效果的方法,也可以用于非线性回归建模中。
1 堆叠
使用多层模型来组成一个 超级学习器,每个模型继 承前一模型的输出做为自 己的输入。
不可避免地存在数据缺失、异常值等问题,需要使用相应的方法对其进行处理。这是非线性回归 分析中至关重要的一环。
1 缺失值填充
常见的方法包括插值法、代入法和主成分分析等。
2 异常值处理
常见的方法包括删除、截尾、平滑等。
3 特征缩放和标准化
为了提高模型的计算速度和准确性,需要对特征进行缩放和标准化。
偏差-方差平衡与模型复杂度
一种广泛用于图像识别和计算机 视觉领域的神经网络。
循环神经网络
一种用于处理序列数据的神经网 络,如自然语言处理。
sklearn库在非线性回归中的应用
scikit-learn是Python中最受欢迎的机器学习库之一,可以用于非线性回归的建模、评估和调参。
1 模型建立
scikit-learn提供各种非线 性回归算法的实现,如 KNN回归、决策树回归和 支持向量机回归等。

回归分析非线性回归

回归分析非线性回归

回归分析非线性回归回归分析是用于探究自变量和因变量之间关系的一种统计方法,在实际应用中,所研究的问题往往并不是简单地呈线性关系。

为了更准确地描述变量之间的复杂关系,我们需要使用非线性回归模型。

非线性回归指的是自变量与因变量之间的关系不是简单的线性关系,而是可以用其他非线性函数更好地拟合的情况。

这样的非线性函数可以是多项式函数、指数函数、对数函数等等。

非线性回归可以更好地反映实际问题的实际情况,并且通常能够提供更准确的预测结果。

在非线性回归分析中,我们需要确定非线性函数的形式以及确定函数中的参数。

对于确定非线性函数的形式,一般来说,可以通过观察数据的散点图、经验和理论分析来选择。

根据选择的非线性函数形式,我们可以使用最小二乘法等方法来确定函数中的参数。

以一个简单的例子来说明非线性回归的具体步骤。

假设我们想要研究一个人的年龄和体重之间的关系,我们可以选择一个二次多项式模型来描述这个关系。

我们的非线性回归模型可以写作:体重=β₀+β₁×年龄+β₂×年龄²+ε其中,体重是因变量,年龄是自变量,ε是误差项。

我们的目标是确定模型中的参数β₀、β₁和β₂的值,使得模型最好地拟合观察到的数据。

为了实现这个目标,我们可以使用最小二乘法来估计参数的值。

最小二乘法是一种常用的参数估计方法,它通过最小化观测值与模型预测值之间的离差平方和来确定参数的值。

通过最小二乘法估计出的参数值,可以用于建立非线性回归模型,从而对未来的数据进行预测。

除了使用最小二乘法估计参数值之外,我们还可以使用其他的优化算法如牛顿法或梯度下降法来估计参数的值。

这些方法的选择通常取决于模型形式的复杂程度、参数数量以及数据量等因素。

需要注意的是,非线性回归模型的参数估计和预测结果都受到初始值的选择和模型形式的选择的影响。

因此,在进行非线性回归分析时,我们需要注意选择合适的初始值和合适的模型形式,以获得更准确的结果。

在实际应用中,非线性回归可以用于多个领域,比如医学、经济学、工程学等。

非线性回归分析常见模型

非线性回归分析常见模型

非线性回归常见模型一.基本内容模型一xc e c y 21=,其中21,c c 为常数.将xc ec y 21=两边取对数,得x c c e c y xc 211ln )ln(ln 2+==,令21,ln ,ln c b c a y z ===,从而得到z 与x 的线性经验回归方程a bx z +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型二221c x c y +=,其中21,c c 为常数.令a c b c x t ===212,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型三21c x c y +=,其中21,c c 为常数.a cbc x t ===21,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型四反比例函数模型:1y a b x=+令xt 1=,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型五三角函数模型:sin y a b x=+令x t sin =,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.二.例题分析例1.用模型e kx y a =拟合一组数据组()(),1,2,,7i i x y i =⋅⋅⋅,其中1277x x x ++⋅⋅⋅+=;设ln z y =,得变换后的线性回归方程为ˆ4zx =+,则127y y y ⋅⋅⋅=()A.70e B.70C.35e D.35【解析】因为1277x x x ++⋅⋅⋅+=,所以1x =,45z x =+=,即()127127ln ...ln ln ...ln 577y y y y y y +++==,所以35127e y y y ⋅⋅⋅=.故选:C例2.一只红铃虫产卵数y 和温度x 有关,现测得一组数据()(),1,2,,10i i x y i =⋅⋅⋅,可用模型21e c x y c =拟合,设ln z y =,其变换后的线性回归方程为4zbx =- ,若1210300x x x ++⋅⋅⋅+=,501210e y y y ⋅⋅⋅=,e 为自然常数,则12c c =________.【解析】21e c x y c =经过ln z y =变换后,得到21ln ln z y c x c ==+,根据题意1ln 4c =-,故41e c -=,又1210300x x x ++⋅⋅⋅+=,故30x =,5012101210e ln ln ln 50y y y y y y ⋅⋅⋅=⇒++⋅⋅⋅+=,故5z =,于是回归方程为4zbx =- 一定经过(30,5),故ˆ3045b -=,解得ˆ0.3b =,即20.3c =,于是12c c =40.3e -.故答案为:40.3e -.该景点为了预测2023年的旅游人数,建立了模型①:由最小二乘法公式求得的数据如下表所示,并根据数据绘制了如图所示的散点图.。

第八讲非线性回归分析

第八讲非线性回归分析

线性对数回归函数
因为该模型中Y是对数形式而X不是, 所以有时称它为对数线性模型。
如何理解β1的含义
在线性对数模型中, β1 表示X变化1个 单位引起Y的变化为(100*β1)%。
推导:我们考察自变量X变化∆X的过程。
此时: f ( X X ) f ( X ) ln(Y Y ) ln(Y ) ( Y ) Y
对数形式
对数形式经常用于表示变量的百分率变 化。例如:
在消费者需求的经济分析中,通常假定 价格上涨1%导致需求量下降一定的 百 分率。称价格上涨1%引起的需求下降 百分率为价格弹性(elasticity)。
对数形式是经济学中最常用的形式,广泛地应用在 各个领域中:
例如:在宏观经济学中,我们如果想研究投资的增
但当回归函数为非线性时,由于Y的预期 变化依赖于自变量的取值,因此其计算 较复杂。
我们假定非线性总体回归的一般公式为
书中的两个例子
1。地区收入从10----11(单位是千美 元)
2。地区收入从40----41
Yˆ (607.3 3.8511 0.0423112 ) (607.3 3.8510 0.0423102 ) 2.96 Yˆ (607.3 3.85 41 0.0423 412 ) (607.3 3.85 40 0.0423 402 ) 0.42
可以看出,income对testscore的弹性 逐渐变小。
效应估计的标准误差
在上例中
利用多元回归建立非线性模型的 一般方法
(1)确定一种可能的非线性关系。最佳做法 是利用经济理论和你对实际应用的了解提出 一种可能的非线性关系。在看数据之前,问 自己联系Y和X的回归函数斜率是否依赖于X 或其他自变量的取值。
当d1=0(男性) 对Y的效应为β2 当d1=1(女性) 对Y的效应为β2+β3

数据建模—非线性回归

数据建模—非线性回归

数据建模—非线性回归
什么是非线性回归
一般线性回归假设因变量与自变量呈线性关系,但现实中有很
多问题并非是线性相关的。

而非线性回归可以用来拟合非线性关系。

非线性模型示例
下面以一些示例来介绍非线性回归:
1. 多项式回归
多项式回归就是一种非线性回归,它将线性模型中的自变量的
各次幂作为回归系数,即将 $y=a_0+a_1x+a_2x^2+...+a_nx^n$ 作为
模型进行回归。

这种方法适用于自变量$x$与因变量$y$之间的关系
大致呈多项式分布。

2. 对数函数回归
对数函数回归是一类将对数函数作为函数形式的非线性回归方法,它们适用于特定类型的数据。

如指数增长、充分增长、衰减等类型的数据。

3. Sigmoid函数回归
Sigmoid函数(S型函数)经常用于二分类问题,由于其形状为S型,经过合适的处理可以用来拟合非线性关系。

Sigmoid函数的形式为: $y=\frac{1}{1+e^{-ax+b}}$
非线性回归方法
与线性回归不同,非线性模型中的回归系数无法直接求解,需要使用非线性优化算法对其进行拟合。

非线性优化算法有很多种,常见的有:梯度下降法、拟牛顿法、Levenberg-Marquardt算法等。

总结
非线性回归适用于许多实际问题,可以通过多项式回归、对数函数回归、Sigmoid函数回归等方法进行建模。

然后,我们可以使用非线性优化算法对模型进行优化拟合以得到最优参数。

非线性回归分析

非线性回归分析

非线性回归分析随着数据科学和机器学习的发展,回归分析成为了数据分析领域中一种常用的统计分析方法。

线性回归和非线性回归是回归分析的两种主要方法,本文将重点探讨非线性回归分析的原理、应用以及实现方法。

一、非线性回归分析原理非线性回归是指因变量和自变量之间的关系不能用线性方程来描述的情况。

在非线性回归分析中,自变量可以是任意类型的变量,包括数值型变量和分类变量。

而因变量的关系通常通过非线性函数来建模,例如指数函数、对数函数、幂函数等。

非线性回归模型的一般形式如下:Y = f(X, β) + ε其中,Y表示因变量,X表示自变量,β表示回归系数,f表示非线性函数,ε表示误差。

二、非线性回归分析的应用非线性回归分析在实际应用中非常广泛,以下是几个常见的应用领域:1. 生物科学领域:非线性回归可用于研究生物学中的生长过程、药物剂量与效应之间的关系等。

2. 经济学领域:非线性回归可用于经济学中的生产函数、消费函数等的建模与分析。

3. 医学领域:非线性回归可用于医学中的病理学研究、药物研发等方面。

4. 金融领域:非线性回归可用于金融学中的股票价格预测、风险控制等问题。

三、非线性回归分析的实现方法非线性回归分析的实现通常涉及到模型选择、参数估计和模型诊断等步骤。

1. 模型选择:在进行非线性回归分析前,首先需选择适合的非线性模型来拟合数据。

可以根据领域知识或者采用试错法进行模型选择。

2. 参数估计:参数估计是非线性回归分析的核心步骤。

常用的参数估计方法有最小二乘法、最大似然估计法等。

3. 模型诊断:模型诊断主要用于评估拟合模型的质量。

通过分析残差、偏差、方差等指标来评估模型的拟合程度,进而判断模型是否适合。

四、总结非线性回归分析是一种常用的统计分析方法,可应用于各个领域的数据分析任务中。

通过选择适合的非线性模型,进行参数估计和模型诊断,可以有效地拟合和分析非线性关系。

在实际应用中,需要根据具体领域和问题的特点来选择合适的非线性回归方法,以提高分析结果的准确性和可解释性。

第8章非线性回归

第8章非线性回归

§8.2 多项式回归
一、几种常见的多项式回归模型
一元二次多项式模型yi=β 0+β 1xi+β 11+ε i 的回归函数yi=β 0+β 1xi+β 11是一条抛物线方程,通常称 为二项式回归函数。 回归系数β 1为线性效应系数,β 11为二次效应系数。
相应地,回归模型 yi=β 0+β 1xi+β 11+β 111+ε i 称为一元三次多项式模型。
形式有关,而且与误差项的形式有关。
§8.1 可化为线性回归的曲线回归
在对非线性回归模型线性化时,总是假定误差项的形 式就是能够使回归模型线性化的形式,为了方便,常常省 去误差项,仅写出回归函数的形式。
例如把回归模型(8.3)式
y=aeb xeε
简写为
y=aeb x
§8.1 可化为线性回归的曲线回归
Sig. .000
§8.1 可化为线性回归的曲线回归
Model 1
(C onstant ) T
Coeffi ci ents
Unst andardized Coef f icients
B
Std. Error
8. 190
.043
.176
.004
Standardi zed
Coef f icie nt s Bet a
Beta .925284
T Sig T 9.758 .0000 -2.730 .0148
§8.1 可化为线性回归的曲线回归
表 8.3
Multiple R R Square Adjusted R Square Standard Error
.99593 .99188 .99138 .08760

非线性回归分析(教案)

非线性回归分析(教案)

非线性回归分析(教案)第一章:非线性回归分析简介1.1 非线性回归的定义与意义1.2 非线性回归与线性回归的比较1.3 非线性回归分析的应用领域1.4 本章小结第二章:非线性回归模型建立2.1 非线性回归模型的形式2.2 非线性回归模型的建立方法2.3 非线性回归模型的参数估计2.4 模型检验与优化2.5 本章小结第三章:非线性回归分析软件介绍3.1 非线性回归分析软件的选择3.2 非线性回归分析软件的操作步骤3.3 非线性回归分析软件的应用案例3.4 本章小结第四章:非线性回归在实际问题中的应用4.1 非线性回归在生物医学领域的应用4.2 非线性回归在经济学领域的应用4.3 非线性回归在环境科学领域的应用4.4 本章小结第五章:非线性回归分析的扩展与改进5.1 非线性回归模型的扩展5.2 非线性回归分析方法的改进5.3 非线性回归分析的发展趋势5.4 本章小结第六章:非线性回归模型的选择与评估6.1 模型选择的原则与方法6.2 模型评估指标6.3 模型选择的实际案例6.4 本章小结第七章:非线性回归分析的编程实现7.1 非线性回归分析的编程基础7.2 常见非线性回归模型的编程实现7.3 非线性回归分析的编程实践7.4 本章小结第八章:非线性回归分析在数据挖掘中的应用8.1 数据挖掘与非线性回归分析8.2 非线性回归分析在数据挖掘中的案例分析8.3 非线性回归分析在数据挖掘中的挑战与应对8.4 本章小结第九章:非线性回归分析在多变量分析中的应用9.1 多变量分析与非线性回归分析9.2 非线性回归分析在多变量数据分析中的方法与应用9.3 非线性回归分析在多变量分析中的案例研究9.4 本章小结第十章:非线性回归分析的未来展望10.1 非线性回归分析的发展趋势10.2 非线性回归分析在科学研究中的潜在应用10.3 非线性回归分析的教育与培训10.4 本章小结重点和难点解析一、非线性回归的定义与意义:理解非线性回归的基本概念,掌握非线性回归与线性回归的本质区别,以及非线性回归在实际问题中的应用场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( t ) 11 . 3411 e 1 . 0579 / t
平方误差
2
0 . 1109
显然,比第一种模型要好得多!
下图显示出原始数据、
拟合模型 (1) 和( 2)的分布。
正规方程 Ac b 为 10 2 . 6923 2 . 6923 a 21 . 4362 1 . 4930 b 4 . 9586
解出 a 2 . 4284 , b 1 . 0579 , 从而 e a 11 . 3411 , 1 . 0579 . 所求拟合函数为
解出 c ( 4 . 1490 ,1 . 1436 , 0 . 048320 ), 从而拟合函数为
( t ) 4 . 1490 1 . 1436 t 0 . 048320 t 2 .
平方误差:

2
3 . 9486
( 2 ) 采用 ( t ) e / t 解:转化为 z a bx , 其中

j j ( x1 ), j ( x 2 ), , j ( x n ) ,
T
y y1 , y 2 , , y n ,
T
a kj ( k , j ) k
T
j

n

i i 1 i
n
j
( x i ) k ( x i ) ,
bk y , k y T k k, j 1: m a 11 a 21 a m1 a 12 a 22 am2
研究y与t的关系的最小二乘法,通常步骤如下:
1)先描t,y的草图
问题的提出 例一:在某化学反应里,侧的生成物的质量浓度y与时间 t(min)的关系入表。为了研究该化学反应的性质,如反映速 率等,欲求y与t之间的关系y=f(t)。
1 2 3 4 6 8 10 12 14 16
4.00 6.41 8.01 8.79 9.53 9.86 10.33 10.42 0.53 10.61
c x , 则有
i i i 1 j
n
(y
j 1
m
( x j 1 , x j 2 , , x jn )) 2 min
数据拟合的最小二乘法
根据观测数据
x i , y i , i 1 : n , 确定试验模型:
n
(x)
c
j j 1
m
j
( x ),
按最小二乘优化准则
x
1 , z ln , a ln , b . t
x , z 的数据对应:
根据已知数据得到
x 1 . 000 , 0 . 500 , 0 . 3333 , 0 . 2500 , 0 . 1667 , 0 . 1250 , 0 . 100 , 0 . 0833 , 0 . 0714 , 0 . 0625 ; z (1 . 3863 ,1 . 8579 , 2 . 0807 , 2 . 1736 , 2 . 2544 , 2 . 2885 , 2 . 3351 , 2 . 3437 , 2 . 3542 , 2 . 3618 );
3)计算总误差
就试验模型 ( a ) 来说是
n
I ( c 0 , c1 , c 2 )

( y i ( t i )) 2
i 1
4)希望总误差最小
I ( c 0 , c1 , c 2 ) min
I ( c 0 , c 1 , c 2 ) min I 0 , j 0 ,1, 2 . c j
数据拟合的最小二乘法 问题的引入 先讨论两个变量x,y的情况。通过观测变量x,y积累了一组 资料(x(i),y(i)),i=1:n,一般来说n比较大。我们的任务是从这 批实验数据出发,寻求一近似函数φ(x)曲逼近y。 由于观测数据都带有观测误差,数目又较大,对于这类 问题运用插值函数取描述y往往是不适当的。现在,用开始 引入的例1来说明建立近似函数的一种方法,即最小二乘法。

i 1
y i k ( x i ) ,

ቤተ መጻሕፍቲ ባይዱ
a 1 m c1 a2m c2 a mm c m
b1 b2 b m
对 称 矩 阵 方 程
例1的数据拟合结果
(1) 采用 ( t ) c 0 c 1 t c 2 t 2 正规方程 Ac b 为: 10 76 826 76 826 10396 c0 10396 c1 140434 c 2 826 88 . 49 757 . 59 8530 . 01
i y i ( x i ) min
2 i 1 m
n
I 0, k 1 : m c k
n i j ( x i ) k ( x i ) c j j 1 i 1

i 1
n
i
y i k ( x i ) , k 1 : m .
如果 y 与多个变量 x1 , x 2 , , x n 有关系,并通过 ( x j 1 , x j 2 , , x jn , y j ), j 1 : m 若选择模型 : ( x1 , x 2 , , x n ) I ( c1 , c 2 , , c n ) m 次观测得到观测值:
2)凭视觉猜想一数学模型
本例可用两种试验模型 ( a ) : ( t ) c 0 c1t c 2 t 2 (b ) : (t ) e / t ,即
ˆ ( t ) ln( ( t )) ln
1 ˆ ( t ) t
1 t
I
i y i ( x i ) min, 确定参数 c1 , c 2 , , c m .
2 i 1
当参数确定后,称 越小,模型越好。

i yi ( xi )
i 1
n
2
为均方误差。均方误差
确定参数 c1 , c 2 , , c m 采用: I
相关文档
最新文档