三年级奥数第26讲 - 应用题2
三年级奥数和倍问题应用题练习100题附答案

小学奥数应用题专题之和倍问题练习100题附答案(1)明明家有课外书20本,亮亮家的课外书是明明家的3倍,两人共有课外书多少本?(2)明明和亮亮共有课外书33本,亮亮的课外书是明明的2倍,两人各有课外书多少本?(3)甲班和乙班共有图书160本。
甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?(4)小红和小明共有零花钱9元,小红的钱数是小明的2倍,小红和小明分别有零花钱多少元?(5)小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红和妈妈各几岁?(6)已知甲、乙、丙三个数的和是135,乙是甲的2倍,丙是乙的3倍,求甲、乙、丙三个数分别是多少?(7)甲乙两数之和是341,甲数的最后一位数字是0,如果把0去掉,就与乙数相同,问甲乙两数各是多少?(8)甲班和乙班共有图书150本。
甲班的图书本数是乙班的3倍少10本,甲班和乙班各有图书多少本?(9)同学们种柳树和杨树共216棵,杨树的棵数比柳树的3倍多20棵,两种树各种了多少棵?(10)王亮期中考试语文和数学的平均分时94分,数学没考好,语文比数学多8分。
问王亮的语文数学各得了多少分?(11)李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。
鸡、鸭、鹅各养了多少只?(12)小红和妈妈的年龄加在一起是49岁,妈妈年龄是小红年龄的4倍多4岁,小红和妈妈各几岁?(13)小红和妈妈的年龄加在一起是49岁,妈妈年龄是小红年龄的4倍少1岁,小红和妈妈各几岁?(14)师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个,师、徒各生产几个?(15)甲、乙、丙三数和为400,甲是乙的6倍,丙是乙的3倍,甲、乙、丙各是多少?(16)甲班和乙班共有图书150本。
甲班的图书给乙班20本后,两班就一样多,甲班和乙班原来各有图书多少本?(17)甲班和乙班共有图书210本。
甲班的图书本数是乙班的3倍多10本,甲班和乙班各有图书多少本?(18)甲乙两数的和是192,又已知甲数除以乙数的商是7。
三年级奥数讲义应用题还原问题(含解析)

还原问题一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号方框箭头法【例 1】小淘气进入一座高楼的电梯,他乘电梯上升3层,下降5层又上升7层,下降9层,这时他位于第23层,他是在第几层进入电梯的?+-+-=层【分析】23975327【例 2】学学做了这样一道题:一个数加上3,减去5,乘4,除以6得16,求这个数.小朋友,你知道答案吗?【分析】根据题意,一个数,经过加法、减法、乘法、除法的变化,得到结果16,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.Array 16×6=96,96÷4=24,24+5=29,29-3=26综合算式为:16×6÷4+5-3=96÷4+5-3=24+5-3=29-3=26所以这个数为26.【例 3】一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗? 【分析】36×7-24+16=244.【例 4】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【分析】 综合算式,原数是5.【例 5】有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是 。
苏教版小学三年级上册数学奥数题

苏教版小学三年级上册数学奥数题1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。
铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。
解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。
1.甲、乙、丙三个班共有学生161人,甲班比乙班多2人,乙班比丙班多6人,乙班有多少人?2. 张洁比妈妈小24岁,4年以后妈妈的年龄是张洁的3倍,今年张洁多少岁?3. 靖宇大街上原有路灯121盏,相邻两盏路灯相距40米;为美化街道,将老路灯全部改换成新式路灯51盏,求相邻两盏新路灯之间的距离是多少米?4. 小山是安乐街的交通警,经过长时间的观察信号灯,他发现信号灯的变化情况是红、黄、绿、黄、红、黄,……,如果从红灯亮开始,当信号灯变化了39次时,是什么颜色的灯在亮?5. 一个长方形,长是宽的3倍,周长是48厘米,求宽是多少?6. 一根铁丝,第一次用去10米,第二次用去余下的一半多8米,第三次用去余下的一半还多6米,这时还剩下20米,问原来这根铁丝有多长?7. 三年级数学竞赛获奖的同学中,男同学获奖的人数比女同学多2人,女同学比男同学获奖人数的一半多2人。
男、女同学各有几人获奖?8. 两个数相除商是3,余数是10,被除数、除数、商与余数之和是143。
求被除数、除数分别是多少?9. 有红、白、黑三种颜色的球,白的和红的合在一起有16个,红的比黑的多7个,黑的比白的多5个。
三种颜色的球各有多少个?10. 妈妈到哈安市场给小海买本,5角和8角的练习本共买了20本,共用去13元钱,妈妈买回来5角、8角的练习本各有多少本?11. 小红和小亮住在同一个大楼,小红家住5楼,回家要上96个台阶,小亮回家要上144个台阶,问小亮家住几楼?2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
三年级奥数题及答案

三年级奥数题及答案三年级奥数题精选及答案1一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?【答案解析】分析:要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。
解:①进水速度:480÷8=60(吨/小时)②排水速度:480÷6=80(吨/小时)③排空全池水所需的时间:480÷(80-60)=24(小时)列综合算式:480÷(480÷6-480÷8)=24(小时)答:两管齐开需24小时把满池水排空。
三年级奥数题精选及答案21、难度:某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?2、难度:晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?【答案解析】1、【答案】分析:要求还需要多少秒才能到达,必须先求出上一层楼梯需要几秒,还要知道从4楼走到8楼共走几层楼梯.上一层楼梯需要:48÷(4-1)=16(秒),从4楼走到8楼共走8-4=4(层)楼梯。
到这里问题就可以解决了。
解:上一层楼梯需要:48÷(4-1)=16(秒)从4楼走到8楼共走:8-4=4(层)楼梯还需要的时间:16×4=64(秒)答:还需要64秒才能到达8层。
2、【答案】分析:要求晶晶从第1层走到第6层需要走多少级台阶,必须先求出每一层楼梯有多少台阶,还要知道从一层走到6层需要走几层楼梯。
从1楼到3楼有3-1=2层楼梯,那么每一层楼梯有36÷2=18(级)台阶,而从1层走到6层需要走6-1=5(层)楼梯,这样问题就可以迎刃而解了。
三年级奥数专题:加减、乘除应用题

加减法应用题这一讲主要介绍利用加、减法解答的简单应用题。
例1小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。
小玲家养了多少只鹅?解:将已知条件表示为下图:表示为算式是:24+?=46+5。
由此可求得养鹅(46+5)-24=27(只)。
答:养鹅27只。
若例1中鸡和鹅的总数比鸭少5只(其它不变),则已知条件可表示为下图,表示为算式是:24+?+5=46。
由此可求得养鹅46-5-24=17(只)。
例2一个筐里装着52个苹果,另一个筐里装着一些梨。
如果从梨筐里取走18个梨,那么梨就比苹果少12个。
原来梨筐里有多少个梨?分析:根据已知条件,将各种数量关系表示为下图。
有几种思考方法:(1)根据取走18个梨后,梨比苹果少12个,先求出梨筐里现有梨52-12=40(个),再求出原有梨(52-12)+18=58(个)。
(2)根据取走18个梨后梨比苹果少12个,我们设想“少取12个”梨,则现有的梨和苹果一样多,都是52个。
这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨52+(18-12)=58(个)。
(3)根据取走18个梨后梨比苹果少12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果52+18=70(个)。
这样一来,现有苹果就比原来的梨多了12个(见下图)。
由此可求出原有梨(52+18)-12=58(个)。
由上面三种不同角度的分析,得到如下三种解法。
解法 1:(52-12)+18=58(个)。
解法 2:52+(18-12)=58(个)。
解法 3:(52+18)-12=58(个)。
答:原来梨筐中有58个梨。
例3某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。
已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。
又知巧克力糖的块数恰好是小白兔软糖块数的2倍。
三年级一班共买了多少块糖果?分析与解:只要求出某一种糖的块数,就可以根据已知条件得到其它两种糖的块数,总共买多少就可求出。
三年级奥数第26讲假设法解题(教师版)

三年级奥数第26讲假设法解题(教师版)掌握对已知条件适当转化,使复杂问题简单化,再根据数量上出现的矛盾作适当调整、推算,找到适当的解题方法。
假设法是一种常用的思维方法和解题方法,就是根据题目中的已知条件或结论作出某种假设。
例如假设未知的两个量是同一种量;假设要求的两个未知量相等;假设题中某一未知条件为一合理数,但不影响解题结果;还可以把题目中缺少的条件假设出来等。
从而对已知条件适当转化,使复杂问题简单化,再根据数量上出现的矛盾作适当调整、推算,找到适当的解题方法。
考点一:全部假设法教学目标典例分析知识梳理例1、2元一张和5元一张人民币共63张,合计171元,问2元、5元的人民币各有多少张?【解析】解法一:假设这63张人民币都是2元的。
假设情况下总钱数为:63×2=126(元)比实际总钱数少:171-126=45(元)假设情况比实际少算的钱,就是所有5元的人民币,每张都少算了3元,所以共有5元的人民币:45÷(5-2)=15(张)。
2元人民币有:63-15=48(张)。
解法二:假设这63张人民币都是5元的。
假设情况下总钱数为:63×5=315(元)比实际总钱数多:315-171=144(元)假设情况比实际多算的钱,就是所有2元的人民币,每张都多算了3元,所以共有2元的人民币:144÷(5-2)=48(张)。
5元人民币有:63-48=15(张)。
例2、光华玻璃厂委托运输公司包运2000块玻璃,每块运输费0.4元,如损坏一块,要赔偿损失费7元,结果运输公司得到运费711.2元,问运输公司损失玻璃多少块?【解析】每损坏一块玻璃,不仅会少得0.4元运输费,还有赔偿7元,所以每损坏一块玻璃,实际运费就会减少:0.4+7=7.4(元)。
假设运输公司在运输过程中一块玻璃都没有损失,则可获得运费:2000×0.4=800(元)实际运费比假设情况少了:800-711.2=88.8(元)。
三年级小学数学奥数基础教程(全)

小学奥数基础教程(三年级)- 1 - 小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目.解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数.根据“加数=和—另一个加数"知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A —1=3知,A=3+1=4.解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。
例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28—○=15+7;(3)3×△=54; (4)☆÷3=87;(5)56÷*=7。
小学三年级奥数题练习及答案解析

小学三年级奥数题练习及答案解析1、南京长江大桥共分两层;上层是公路桥;下层是铁路桥。
铁路桥和公路桥共长11270米;铁路桥比公路桥长2270米;问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题;和11270米;差2270米;大数=(和+差)/2;小数=(和-差)/2。
解:铁路桥长=(11270+2270)/2=6770米;公路桥长=(11270-2270)/2=4500米。
2、三个小组共有180人;一、二两个小组人数之和比第三小组多20人;第一小组比第二小组少2人;求第一小组的人数。
分析:先将一、二两个小组作为一个整体;这样就可以利用基本和差问题公式得出第一、二两个小组的人数和;然后对第一、二两个组再作一次和差基本问题计算;就可以得出第一小组的人数。
解:一、二两个小组人数之和=(180+20)/2=100人;第一小组的人数=(100-2)/2=49人。
3、甲、乙两筐苹果;甲筐比乙筐多19千克;从甲筐取出多少千克放入乙筐;就可以使乙筐中的苹果比甲筐的多3千克?分析:从甲筐取出放入乙筐;总数不变。
甲筐原来比乙筐多19千克;后来比乙筐少3千克;也即对19千克进行重分配;甲筐得到的比乙筐少3千克。
于是;问题就变成最基本的和差问题:和19千克;差3千克。
解:(19+3)/2=11千克;从甲筐取出11千克放入乙筐;就可以使乙筐中的苹果比甲筐的多3千克。
三年级奥数题:和差倍数问题(二)1、在一个减法算式里;被减数、减数与差的和等于120;而减数是差的3倍;那么差等于多少?分析:被减数=减数+差;所以;被减数和减数与差的和就各自等于被减数、减数与差的和的一半;即:被减数=减数+差=(被减数+减数+差)/2。
因此;减数与差的和=。
这样就是基本的和倍问题了。
小数=和/(倍数+1)解:减数与差的和差=60/(3+1)=15。
2、已知两个数的商是4;而这两个数的差是39;那么这两个数中较小的一个是多少?分析:两个数的商是4;即大数是小数的4倍;因此;这是一个基本的差倍问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点二:(还原法)
【知识梳理】
“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。
解答还原问题,一般采用倒推法,简单说,就是倒过来想。
解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。
同时,可利用线段图表格帮助理解题意。
【例题精讲】
【例1】一个减24加上15,再乘8得432,求这个数。
解:我们可以从最后的结果432出发倒着推想。
最后是乘8得432,如果不乘8,那应该是432÷8=54;如果不加上15,应该是54-15=39;如果不减去24,那应该是39+24=63。
因此,这个数是63。
【变式1-1】一个数加上3,乘3,再减去3,最后除以3,结果还是3。
这个数是几?
【变式1-2】一个数的4倍加上6减去10,再乘2得88,求这个数。
【例2】一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。
这段布原来长多少米?
解:根据题意,画出线段图:
从线段图可以看出:剩下的8米和余下的一半同样多,那么原长的一半是:8×2=16米,原长:16×2=32米。
【变式2-1】某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩10只西瓜。
原有西瓜多少只?
【变式2-2】某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒时发现船又行了睡前剩下的一半,这时离乙地还有40千米。
甲、乙两地相距多少千米?
【例3】甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。
乙原来比丙多几本?解:因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10本,而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7本。
【变式3-1】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多。
小明原来比小航多多少个?
【变式3-2】甲、乙、丙三个组各有一些图书,如果甲组借给乙组13本后,乙组又送给丙组6本,这时三个组的图书本数同样多。
原来乙组和丙组哪组的图书多,多几本?
【例4】李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋?
解:根据题意,画出线段图:
从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75个,所以上午卖出后余下75×2=150个;150个加上10个就是总数的一半,所以总数的一半是150+10=160个,总数为:160×2=320个。
1、粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一
袋面粉各重多少千克?
2、2件上衣和3条裤子共480元,4件上衣和2条裤子共640地。
一件上衣和一条裤子各多少元?
3、公园开菊花展,白菊花和黄菊花共152盆,黄菊花和红菊花共128盆,红菊花和白菊花共168盆。
三种菊花。