椭圆及其标准方程
椭圆的一般方程和标准公式

椭圆的一般方程和标准公式
椭圆是一个常见的二维几何图形,其一般方程和标准公式如下:
1.椭圆的一般方程:
椭圆的一般方程表示为:
A(x - h)^2 + B(y - k)^2 = 1
其中,(h, k)表示椭圆的中心坐标,A和B是正实数,且A > B。
2.椭圆的标准公式:
椭圆的标准公式表示为:
(x - h)^2/a^2 + (y - k)^2/b^2 = 1
其中,(h, k)表示椭圆的中心坐标,a和b分别表示椭圆在x轴和y轴上的半长轴长度。
具体详细解释如下:
●中心坐标(h, k):椭圆的中心点在坐标平面上的位置,坐标为(h, k)。
●半长轴长度a:椭圆在x轴上的半长轴长度,表示椭圆沿着x轴正方向延伸
的距离。
●半短轴长度b:椭圆在y轴上的半短轴长度,表示椭圆沿着y轴正方向延伸
的距离。
椭圆的标准公式以中心点(h, k) 为中心,沿x轴和y轴方向分别以a和b为轴长度绘制。
当a和b相等时,椭圆退化为一个圆。
若a大于b,则椭圆在x轴方向上更为扁平,称为长轴椭圆;若b大于a,则椭圆在y轴方向上更为扁平,称为短轴椭圆。
注意事项:
●椭圆的方程中,A和B的值与a和b的关系为A = 1/a^2,B = 1/b^2。
●当椭圆的中心不在原点时,方程中的坐标需要进行平移,即(x - h) 和(y - k)。
●椭圆的方程也可以表示为离心率和焦点的形式,但这超出了一般方程和标准
公式的范围。
通过了解椭圆的一般方程和标准公式,您可以利用这些公式来描述和绘制椭圆的几何形状,并对椭圆的中心、半长轴和半短轴进行准确的计算和描绘。
《椭圆及其标准方程》课件

感谢观看
THANKS
《椭圆及其标准方 程》ppt课件
目 录
• 椭圆的定义 • 椭圆的方程 • 椭圆的性质 • 椭圆的图像 • 椭圆的实际应用
01
椭圆的定义
椭圆的几何定义
01
椭圆是由平面内两个定点F1、F2 的距离之和等于常数(常数大于 F1、F2之间的距离)的点的轨迹 形成的图形。
02
两个定点F1、F2称为椭圆的焦点 ,焦点的距离c满足关系式: c²=a²-b²,其中a为椭圆长轴半径 ,b为短轴半径。
椭圆的范围
总结词
椭圆的范围是指椭圆被坐标轴所限制的范围。
详细描述
这意味着椭圆永远不会出现在坐标轴之外。在x轴上,椭圆的范围是从-a到a;在y轴上,椭圆的范围是从-b到b。 其中a和b是椭圆的长轴和短轴的半径。
椭圆的顶点
总结词
椭圆的顶点是指椭圆与坐标轴的交点 。
详细描述
椭圆的顶点是椭圆与x轴和y轴的交点 。这些点是椭圆的边界点,并且它们 位于椭圆的长轴和短轴上。具体来说 ,椭圆的顶点是(-a,0),(a,0),(0,-b) 和(0,b)。
小和形状。
平移变换
将椭圆在坐标系中移动,可以实现 椭圆的平移变换。平移变换不会改 变椭圆的大小和形状,只会改变椭 圆的位置。
旋转变换
通过旋转椭圆,可以实现椭圆的旋 转变换。旋转变换会改变椭圆的方 向,但不会改变椭圆的大小和形状 。
椭圆的图像应用
天文学
在天文观测中,行星和卫星的轨道通常可以用椭圆来近似 描述。通过研究椭圆的性质,可以更好地理解天体的运动 规律。
焦点位置
离心率
定义为c/a,其中c是焦点到椭圆中心 的距离,a是椭圆长轴的半径。离心率 越接近0,椭圆越接近圆;离心率越 大,椭圆越扁。
椭圆及标准方程

椭圆及标准方程椭圆是平面上到定点F1、F2的距离之和等于常数2a的点P的轨迹。
设F1(-c,0),F2(c,0),点P(x,y),则PF1+PF2=2a。
椭圆的标准方程为,x^2/a^2+y^2/b^2=1(a>b>0)。
椭圆的性质:1.椭圆的离心率0<e<1,焦点到中心的距离为ae。
2.椭圆的长轴2a,短轴2b,焦距2ae。
3.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
4.椭圆的面积为πab。
5.椭圆的焦点到直径的距离等于直径的一半。
6.椭圆的焦点到切线的距离等于焦点到法线的距离。
7.椭圆的切线与法线的交点坐标分别为(x1,y1)和(x1,-y1)。
8.椭圆的渐近线方程为y=±b/ax。
9.椭圆的参数方程为x=acosθ,y=bsinθ。
10.椭圆的极坐标方程为r=a(1-e^2)/(1+ecosθ)。
椭圆的标准方程推导:设椭圆的长轴为2a,短轴为2b,焦点为F1(-c,0),F2(c,0),中心为O(0,0),点P(x,y)。
则有PF1+PF2=2a,根据两点之间的距离公式可得。
√((x+c)^2+y^2)+√((x-c)^2+y^2)=2a。
整理得到。
(√((x+c)^2+y^2))^2+(√((x-c)^2+y^2))^2=4a^2。
化简得到。
x^2/a^2+y^2/b^2=1。
从而得到椭圆的标准方程。
椭圆的标准方程性质:1.椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
2.椭圆的中心在原点O(0,0)。
3.椭圆的长轴在x轴上,短轴在y轴上。
4.椭圆的焦点为F1(-c,0),F2(c,0),离心率e=c/a。
5.椭圆的长轴长为2a,短轴长为2b,焦距2ae。
6.椭圆的面积为πab。
7.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
8.椭圆的参数方程为x=acosθ,y=bsinθ。
椭圆及其标准方程

A.5
B.8
C.3或5
D.3
x2 y 2 3.已知 F1、F2 是椭圆 25 49 1 的两个焦点,过 F 的直 1 线与椭圆交于A、B两点,则 ABF2 的周长是 ( )
A. 8 6 B.20 C.24 D.28 4.方程 Ax 2 By 2 1 什么时候表示椭圆?什么时候表示 焦点在x轴上的椭圆?什么时候表示焦点在y轴上的椭圆?
椭圆实物图
椭 圆 相 框
椭圆双层茶几
椭圆形钻戒
动画演示
椭圆的画法
通过试验形成概念
椭圆定义:
平面内与两定点 F 1、F2 的距离的和等于 常数(大于 F1F2 )的点的轨迹是椭圆。
王新敞
奎屯 新疆
这两个定点叫做椭圆的焦点,两焦点
间的距离叫做椭圆的焦距.
2、椭圆的标准方程
椭圆的焦距为2c(c>0),M与F1、F2的距离的和为2a 怎样建立平面直角坐标系呢?
【关系】
c2 a2 b2
b 2x 2 a2 y 2 a2b 2
a c
2
2
0
x y2 2 1(a b 0) 2 a b
y
x y 2 1 (a b 0) 2 a b
它表示: (1)椭圆的焦点在x轴上 (2)焦点是F1(-C,0),F2(C,0) (3)C2= a2 - b2
F1
2
2
这里c 2 a 2 b2
y
F2 M O F1
焦点F1 (0,c ), F2 (0, c )
x
y x 2 1(a b 0) 2 a b
2
2
这里c a b
2 2
2
y
椭圆及标准方程

椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴。
椭圆的标准方程为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
其中a为长轴的一半,b为短轴的一半。
在椭圆的标准方程中,a和b的大小决定了椭圆的形状,当a>b时,椭圆的长轴水平;当a<b时,椭圆的长轴垂直。
椭圆的离心率e定义为焦距与长轴的比值,即e=\(\frac{c}{a}\),其中c为焦距之一。
离心率决定了椭圆的形状,当e=0时,椭圆退化为圆;当0<e<1时,椭圆是一个扁平的椭圆;当e=1时,椭圆是一个狭长的椭圆;当e>1时,椭圆不存在,退化为双曲线。
根据椭圆的标准方程,我们可以得到椭圆的一些重要性质。
首先,椭圆的中心在原点O(0,0),长轴与x轴平行,短轴与y轴平行。
其次,椭圆的焦点坐标为F1(-c,0)和F2(c,0),其中c=\(\sqrt{a^2-b^2}\)。
最后,椭圆的顶点坐标为A(a,0)和B(-a,0),其中a为长轴的一半。
除了标准方程外,椭圆还可以有其他形式的方程。
例如,椭圆的参数方程为:\(\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}\)。
其中t为参数,a和b同样为长轴和短轴的一半。
利用参数方程,我们可以更加灵活地描述椭圆上的点的运动规律。
另外,椭圆还可以通过矩形方程来表示,即:\( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)。
其中(h,k)为椭圆的中心坐标。
通过矩形方程,我们可以方便地得到椭圆的中心和长短轴的信息。
总之,椭圆是一种重要的几何图形,具有许多独特的性质和形式。
通过标准方程、参数方程和矩形方程,我们可以更加深入地理解和描述椭圆的形状和特点。
对于数学和物理学的学习和应用都有着重要的意义。
椭圆定义及标准方程

椭圆定义及标准方程椭圆是一个非常重要的几何形状,它在数学、物理、工程等领域都有着广泛的应用。
在本文中,我们将介绍椭圆的定义及其标准方程,希望能够帮助读者更好地理解和掌握这一概念。
首先,让我们来看一下椭圆的定义。
椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个定点F1和F2称为椭圆的焦点,而常数2a则是椭圆的长轴的长度。
椭圆上任意一点P到两个焦点的距离之和等于常数2a,这就是椭圆的基本定义。
接下来,我们来看一下椭圆的标准方程。
椭圆的标准方程可以写成(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是椭圆的长轴和短轴的长度。
如果椭圆的长轴是x 轴,短轴是y轴,那么标准方程可以简化为(x-h)²/a² + (y-k)²/b² = 1;如果椭圆的长轴是y轴,短轴是x轴,那么标准方程可以简化为(y-k)²/a² + (x-h)²/b² = 1。
通过标准方程,我们可以方便地确定椭圆的中心、长短轴长度以及椭圆的形状。
椭圆是一种非常特殊的几何形状,它具有许多独特的性质和应用。
在日常生活中,椭圆的形状可以看到在椭圆形的湖泊、操场、椭圆形的建筑物等地方。
在数学上,椭圆也是椭圆积分、椭圆曲线等重要概念的基础。
在物理学中,行星的轨道、原子的轨道等也可以用椭圆来描述。
在工程领域,椭圆的形状也被广泛应用于天线设计、光学器件设计等方面。
总之,椭圆是一个非常重要的几何形状,它具有许多独特的性质和应用。
通过学习椭圆的定义及其标准方程,我们可以更好地理解和掌握这一概念,为日后的学习和工作打下坚实的基础。
希望本文能够对读者有所帮助,谢谢阅读!。
椭圆及其标准方程ppt课件

( 3)2
(-2)2
+ 2
2
(-2 3)2
1
+ 2
2
2
轴上时,设椭圆的标准方程为 2
= 1,
2 = 15,
解得 2
=
5,
= 1,
2
故所求椭圆的标准方程为
15
+
2
=1.
5
+
2
=1(a>b>0).
2
②当焦点在 y
(-2)2
( 3)2
+
2
2
1
(-2 3)2
+ 2
2
接设所求椭圆方程为mx2+ny2=1(m>0,n>0,m≠n).
解 (1)因为椭圆的焦点在 x 轴上,
2
所以设它的标准方程为 2
+
2
=1(a>b>0).
2
因为 2a= (5 + 4)2 + (5-4)2 =10,所以 a=5.
又 c=4,所以 b2=a2-c2=25-16=9.
2
故所求椭圆的标准方程为25
O
为什么?
D
解1:(相关点代入法) 设点M的坐标为(x, y),点P的坐标
为(x0, y0),则点D的坐标为(x0, 0).
y0
寻求点M的坐标(x,y)中x, y
.
由点M是线段PD的中点,得 x x0 ,y
2
与x0, y0之间的关系,然后消
∵点P ( x0 ,y0 )在圆x 2 y 2 4上, ∴x02 y02 4,
2
a
a c
椭圆及其标准方程

椭 圆知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程: ( 222ca b =-)①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0)②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c )注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围 (1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b(2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性: 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.顶点 (1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ) (2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b.(3)a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率:我们把椭圆的焦距与长轴长的比22c a ,即ac称为椭圆的离心率, 记作e (10<<e ),22221()b e a a==-c e 0=是圆; e 越接近于0 (e 越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;例题讲解:一.椭圆定义:1.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是2.已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为二.利用标准方程确定参数1.若方程25x k -+23y k -=1(1)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (2)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (3)表示椭圆,则实数k 的取值范围是 .2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=的焦距为2,则m = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆及其标方程
【教案分析】
本章教学的内容是椭圆的几何性质的认识及其标准方程的求解,承上它是运用坐标研究曲线的几何性质的一次实际演练,启下为后面的研究双曲线,抛物线提供了基本模版和理论基础。
【目标分析】
通过图形的形成去探究椭圆的几何性质,即椭圆上的任意一点到椭圆的两焦点的距离之和为一个常数,第二能通过椭圆的几何性质结合曲线方程的求解方法去求解椭圆的方程并且最终转化为椭圆的标准方程,第三通过对椭圆标准方程的求解,熟悉求解曲线方程的一般方法。
【教学目标】
1.知识与技能:理解并掌握椭圆的定义;明确焦点,及焦点的概念;掌握椭圆标准方程的两种形式及其推导过程;掌握a,b,c三个量的几何意义及它们之间的关系能根据条件确定椭圆的标准方程。
2.过程和方法:通过对椭圆概念的引入教学培养学生观察能力,通过对椭圆方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。
3.通过对画椭圆中大胆的探索出椭圆所满足的几何
条件并且此得到椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,并培养学生观察图形得出几何知识,数形的有效结合。
【教学重点与难点】
重点:椭圆的定义及椭圆的标准方程
难点:椭圆标准方程的建立和推导。
【教学流程】
路线图:
【教学过程】
一.定义
二.椭圆的方程椭
推导过程。