中考数学复习题纲—10 函数(一次函数、正比例函数)
人教版一次函数和正比例函数知识点和经典例题

一次函数总复习知识点一:一次函数图像的特点两点确定一条直线,根据这个特点,我们在画一次函数的图像时,可以确定两个点,再过这两个点做直线就行了,而且,为了简单,我们常选过点(0,b )和)0,(kb -作直线。
由观察可知:(1) 正比例函数的图像时一条直线,并经过两个象限。
(2) 当k>0,其图像经过第一、三象限,当k<0时,其图像经过第二、四象限。
知识点二:一次函数及图像的性质(1) 增减性: 对于一次函数y=kx+b当k>0,y 的值随x 的增大而增大;当k<0,y 的值随x 的增大而减小;(2) 图像所在的象限:当k>0,b>0,图像位于第一、二、三象限;当k>0,b<0,图像位于第一、三、四象限; 当k<0,b>0,图像位于第一、二、四象限;当k<0,b<0,图像位于第二、三、四象限;(3) 两直线的位置关系:直线111b x k l +=和直线222b x k l +=⎩⎨⎧≠=相交与则则21212121,//,l l k k l l k k 知识点三:正比例函数图像与一次函数图像的关系一次函数b kx +=y 的图像是一条直线,它可以看作是由直线kx =y 沿y 轴平移b 个单位长度得到(当b >0时,向上平移;当b<0时,向下平移)练习题一、 填空题:1、函数y=x 21-的图象经过_________象限,y 随x 的增大而____________. 2、正比例函数的图像经过(1,-5)点,它的解析式是__ ______. 3、若点(3,a )在一次函数13+=x y 的图像上,则=a 。
4、一次函数y=kx+b 的图像过一、二、四象限,则k________0,b________0.5、若函数y=(a -3)x+a 2-9是正比例函数,则a=________,图像过______象限.6、直线y=-5x -3与x 轴的交点坐标是_____ __,与y 轴的交点坐标是____ ____, 直线与两坐标轴所围成的三角形面积为_________.7、若一次函数y=mx+(m 2-3m)的图与y 轴交点为(0,4),则m=_______.8、已知y 与4x -1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。
2024年中考数学一轮复习考点精析及真题精讲—正比例函数与一次函数

2024年中考数学一轮复习考点精析及真题精讲—正比例函数与一次函数→➊考点精析←一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符函数图象图象的位置性质号k >0图象经过第一、三象限y 随x 的增大而增大k <0图象经过第二、四象限y 随x 的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y =kx +b (k ≠0)的图象是经过点(0,b )和(-bk,0)的一条直线图象关系一次函数y=kx +b (k ≠0)的图象可由正比例函数y =kx (k ≠0)的图象平移得到;b >0,向上平移b 个单位长度;b <0,向下平移|b |个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y =kx +b(k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四y =kx +b(k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四3.k ,b 的符号与直线y =kx +b (k ≠0)的关系在直线y =kx +b (k ≠0)中,令y =0,则x =-b k ,即直线y =kx +b 与x 轴交于(–bk,0).①当–bk>0时,即k ,b 异号时,直线与x 轴交于正半轴.②当–bk=0,即b =0时,直线经过原点.③当–bk<0,即k ,b 同号时,直线与x 轴交于负半轴.4.两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2,b 1≠b 2,两直线平行;②当k 1=k 2,b 1=b 2,两直线重合;③当k 1≠k 2,b 1=b 2,两直线交于y 轴上一点;④当k 1·k 2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y =kx (k ≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程.(3)解方程,求出待定系数k .(4)将求得的待定系数k 的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k 、b 的函数解析式y =kx +b .(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k ,b 的二元一次方程组.(3)解二元一次方程组,求出k ,b .(4)将求得的k ,b 的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.→➋真题精讲←考向一一次函数和正比例函数的定义1.正比例函数是特殊的一次函数.2.正比例函数解析式y=kx(k≠0)的结构特征:①k≠0;②x的次数是1.1.(2020·四川中考真题)已知函数1(2)2(2)x xyxx-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x的值为()A.﹣2B.﹣23C.﹣2或﹣23D.﹣2或﹣32【答案】A【分析】根据分段函数的解析式分别计算,即可得出结论.【解析】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣2x=3,解得:x=﹣23,不合题意舍去;∴x=﹣2,故选:A.【点睛】本题考查了反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.2.(2020·四川成都市·九年级二模)下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2,其中一次函数的个数是()A.1B.2C.3D.4【答案】B【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:(1)y=﹣x是正比例函数,是特殊的一次函数,故正确;(2)y=x﹣1符合一次函数的定义,故正确;(3)y=1x属于反比例函数,故错误;(4)y=x2属于二次函数,故错误.综上所述,一次函数的个数是2个.故选:B.【点睛】本题主要考查了一次函数的定义.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.考向二一次函数的图象及性质1.通常画正比例函数y=kx(k≠0)的图象时只需取一点(1,k),然后过原点和这一点画直线.2.当k>0时,函数y=kx(k≠0)的图象从左向右,呈上升趋势;当k<0时,函数y=kx(k ≠0)的图象从左向右,呈下降趋势.3.正比例函数y=kx中,|k|越大,直线y=kx越靠近y轴;|k|越小,直线y=kx越靠近x 轴.4.一次函数图象的位置和函数值y 的增减性完全由b 和比例系数k 的符号决定.3.(2023·四川乐山·统考中考真题)下列各点在函数21y x =-图象上的是()A.()13-,B.()01,C.()11-,D.()23,【答案】D【分析】根据一次函数图象上点的坐标特征,将选项中的各点分别代入函数解析式21y x =-,进行计算即可得到答案.【详解】解: 一次函数图象上的点都在函数图象上,∴函数图象上的点都满足函数解析式21y x =-,A.当=1x -时,=3y -,故本选项错误,不符合题意;B.当0x =时,1y =-,故本选项错误,不符合题意;C.当1x =时,1y =,故本选项错误,不符合题意;D.当2x =时,3y =,故本选项正确,符合题意;故选:D.【点睛】本题主要考查了一次函数图象上点的坐标特征,熟练掌握一次函数图象上的点都在函数图象上,是解题的关键.4.(2023·甘肃武威·统考中考真题)若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为()A.2-B.1-C.12-D.2【答案】D【分析】通过经过的象限判断比例系数k 的取值范围,进而得出答案.【详解】∵直线y kx =(k 是常数,0k ≠)经过第一、第三象限,∴0k >,∴k 的值可为2,故选:D.【点睛】本题考查正比例函数的图象与性质,熟记比例系数与图象经过的象限之间的关系是解题的关键.5.(2020·山东济南·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是()A.B.C.D.【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【解析】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键.6.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为()A.23y x =-+B.26y x =-+C.23y x =--D.26y x =--【答案】B【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数2y x =-的图象向右平移3个单位长度得:2(3)26y x x =--=-+,故选:B.【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.7.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数23y x =-的图象是()A.B.C.D.【答案】D【分析】依据一次函数23y x =-的图象经过点()03-,和302⎛⎫⎪⎝⎭,,即可得到一次函数23y x =-的图象经过一、三、四象限.【详解】解:一次函数23y x =-中,令0x =,则=3y -;令0y =,则32x =,∴一次函数23y x =-的图象经过点()03-,和302⎛⎫ ⎪⎝⎭,,∴一次函数23y x =-的图象经过一、三、四象限,故选:D.【点睛】本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.8.(2023·新疆·统考中考真题)一次函数1y x =+的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据10,10k b =>=>即可求解.【详解】解:∵一次函数1y x =+中10,10k b =>=>,∴一次函数1y x =+的图象不经过第四象限,故选:D.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.9.(2023·甘肃兰州·统考中考真题)一次函数1y kx =-的函数值y 随x 的增大而减小,当2x =时,y 的值可以是()A.2B.1C.-1D.-2【答案】D【分析】根据一次函数的增减性可得k 的取值范围,再把2x =代入函数1y kx =-,从而判断函数值y 的取值.【详解】∵一次函数1y kx =-的函数值y 随x 的增大而减小∴0k <∴当2x =时,211y k =-<-故选:D.【点睛】本题考查一次函数的性质,不等式的性质,熟悉一次函数的性质是解题的关键.10.(2023·浙江温州·统考中考真题)如图,在直角坐标系中,点()2,A m 在直线522y x =-上,过点A 的直线交y 轴于点()0,3B .(1)求m 的值和直线AB 的函数表达式.(2)若点()1,P t y 在线段AB 上,点()21,Q t y -在直线522y x =-上,求12y y -的最大值.【答案】(1)32m =,334y x =-+;(2)152【分析】(1)把点A 的坐标代入直线解析式可求解m ,然后设直线AB 的函数解析式为y kx b =+,进而根据待定系数法可进行求解函数解析式;(2)由(1)及题意易得()133024y t t =-+≤≤,()25921222y t t =--=-,则有12391115324242y y t t ⎛⎫-=-+--=-+ ⎪⎝⎭,然后根据一次函数的性质可进行求解.【详解】(1)解:把点()2,A m 代入522y x =-,得32m =.设直线AB 的函数表达式为y kx b =+,把点32,2A ⎛⎫⎪⎝⎭,()0,3B 代入得3223.k b b ⎧+=⎪⎨⎪=⎩,解得343.k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的函数表达式为334y x =-+.(2)解:∵点()1,P t y 在线段AB 上,点()21,Q t y -在直线522y x =-上,∴()133024y t t =-+≤≤,()25921222y t t =--=-,∴12391115324242y y t t ⎛⎫-=-+--=-+ ⎪⎝⎭.∵1104k =-<,∴12y y -的值随x 的增大而减小,∴当0=t 时,12y y -的最大值为152.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.考向三用待定系数法确定一次函数的解析式运用待定系数法求一次函数解析式的步骤可简单记为:一设,二代,三解,四回代.11.(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,已知点()0,1P ,点()4,1A ,以点P 为中心,把点A 按逆时针方向旋转60︒得到点B ,在(11,M --,2M ⎛⎫ ⎪⎝⎭,()31M -,(4M 四个点中,直线PB 经过的点是()A.1M B.2M C.3M D.4M 【答案】B【分析】根据含30︒角的直角三角形的性质可得(21B +,,利用待定系数法可得直线PB的解析式,依次将1234M M M M ,,,四个点的一个坐标代入1y +中可解答.【详解】解:∵点()4,1A ,点()0,1P ,∴PA y ⊥轴,4PA =,由旋转得:604APB AP PB ∠=︒==,,如图,过点B 作BC y ⊥轴于C ,∴30BPC ∠=︒,∴2BC PC ==,,∴(21B +,),设直线PB 的解析式为:y kx b =+,则211k b b ⎧+=+⎪⎨=⎪⎩∴1k b ⎧=⎪⎨=⎪⎩,∴直线PB 的解析式为:1y +,当=1x -时,1y =,∴点(11,M -不在直线PB 上,当3x =-时,10y ⎛=+= ⎝⎭,∴2M ⎛⎫ ⎪⎝⎭在直线PB 上,当1x =时1y =,∴()31M -不在直线PB 上,当2x =时,1y =,∴(4M 不在直线PB 上.故选:B.【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B 的坐标是解本题的关键.12.(2023·江苏苏州·统考中考真题)已知一次函数y kx b =+的图象经过点()1,3和()1,2-,则22k b -=________________.【答案】6-【分析】把点()1,3和()1,2-代入y kx b =+,可得32k b k b +=⎧⎨-=-⎩,再整体代入求值即可.【详解】解:∵一次函数y kx b =+的图象经过点()1,3和()1,2-,∴32k b k b +=⎧⎨-+=⎩,即32k b k b +=⎧⎨-=-⎩,∴()()()22326k b k b k b -=+-=⨯-=-;故答案为:6-【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.14.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m 的值;(2)若函数图象在y 轴的截距为﹣2,求m 的值;(3)若函数的图象平行直线y=3x﹣3,求m 的值;(4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.【答案】(1)m=3;(2)m=1;(3)m=1;(4)m<﹣12.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k 值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【详解】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y 轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y 随着x 的增大而减小,∴2m+1<0,解得:m<﹣12.【点睛】此题主要考查了一次函数的性质,关键是掌握与y 轴的交点就是y=kx+b 中,b 的值,k>0,y 随x 的增大而增大,函数从左到右上升;k<0,y 随x 的增大而减小,函数从左到右下降.14.若1y -与2x +成正比例,且当2x =时,5y =.(1)求y 与x 的函数关系式(2)如果点(,5)m 在该函数图象上,求m 的值.【答案】(1)y=x+3;(2)m=2.【分析】(1)设y-1=k(x+2),把x=2,y=-5代入求出k 的值,进而可得出y 与x 的函数关系式;(2)直接把点(m,5)代入(1)中一次函数的解析式即可.【详解】解:(1)设()12y k x -=+(0k ≠)当x=2时,y=55-1=(2+2)k∴k=1当K=10时y-1=x+2y=x+3(2)当点(m,5)在该函数图象上∴5=m+3∴m=2【点睛】本题考查的是待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式的一般步骤是解答此题的关键.15.若函数y=(m+1)x+m 2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y 轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.【答案】(1)y=2x;(2)沿y 轴向下平移4个单位.【分析】(1)根据正比例函数的定义可得一个关于m 的等式,求得m 值代入函数解析式即可得;(2)根据函数解析式可设平移后的函数解析式为2y x b =+,将(1,2)-代入求得b 值,再根据平移后的函数解析式即可得.【详解】(1)根据题意得210m -=且10m +≠,解得1m =,所以该函数的表达式为2y x =;(2)设平移后的函数解析式为2y x b =+,将(1,2)-代入得22b -=+,解得4b =-,则平移后的函数解析式为24y x =-,所以函数的图象是沿y 轴向下平移4个单位,使其经过(1,2)-.【点睛】本题考查了正比例函数的定义、待定系数法求函数解析式、以及函数图象的平移,掌握正比例函数的定义是解题关键.。
《正比例函数和一次函数》的专题复习(优质课件)

√ √
y 2x
相同点: 两图象都是经过原点的一条直线 不同点: 1.函数y=2x的图象经过第一、三象限,从左向右上升 ;
2.函数y=-2x的图象经过第二、四象限,从左向右下降
正比例函数的性质:
正比例函数的待定 系数法
k k
y kx
k
y3x 2
C B
B
D
A
C
D
解:(1)由题意得,2a+4>0,解得a>-2. 则当a>-2,b为任意值时,函数值 y 随x的增大而增大 (2)由题意得,2a+4≠0,-3+b<0,解得a≠-2,b<3. 则当a≠-2,b<3时,函数图象与y 轴的负半轴相交
(3)由题意得,2a+4<0,-3+b>0,解得a<-2,b>3. 则当a<-2,b>3时,函数的图象过第一、二、四象限
解: 设这个一次函数的解析式为y=kx+b.
∵一次函数的图象直线y=-x+3平行
∴k=-1
由题意得
k 1 2k b
0
解得:bk
1 2
∴一次函数的解析式为y=-x+2.
解:设一次函数的解析式为y=kx+b(k≠0)
∵一次函数y=kx+b的图象过点(0,2)
∴b=2
∵一次函数的图象与两坐标轴围成的
2kkbb26
解得:bk
4 2
∴这条直线解析式为y=-4x+2.
一次函数
一、二、三象限 一、三、四象限 一、二、四象限 二、三、四象限
y随x的增大而增大
y随x的增大而减小
2020届中考数学总复习课件:第10课时 一次函数(正比例函数)的图象与性质

第10课时 一次函数(正比例函数)的图象与性质
一、选择题(每题 5 分,共 30 分)
1.[2019·广安]一次函数 y=2x-3 的图象经过的象限是( C )
A.一、二、三
B.二、三、四
C.一、三、四
D.一、二、四
2.已知点(-1,y1),(4,y2)在一次函数 y=3x-2 的图象上,则 y1,y2,0 的大小关系 是( B )
解:(1)令 y=0,则-12x+4=0,∴x=8, ∴B 点坐标为(8,0). ∵C(0,4),在 Rt△BOC 中,BC= 82+42=4 5. 又∵E 为 BC 中点,∴OE=12BC=2 5;
(2)如答图①,作 EM⊥OC 于点 M,则 EM∥CD,设 DE 交 CO 于点 N, 第 15 题答图①
6.[2019·自贡]均匀的向一个容器内注水,在注满水的过程中,水面的高度 h 与时间 t 的函数关系如图 10-2 所示,则该容器是下列四个中的( D )
图 10-2
A
B
C
D
【解析】 ∵由图象可知,高度 h 随时间 t 的变换规律是先快后慢,D 选项的底面积是 由小变大,∴D 选项的水面高度随时间变换符合先快后慢.故选 D.
解得 x<53; (2)y=x-3 的图象如答图,当 x=1 时,y=x-3=-2,把(1,-2)代入 y1=kx+2 得 k +2=-2,解得 k=-4,
当-4≤k<0 时,y1>y2; 当 0<k≤1 时,y1>y2.
第 12 题答图
13.(6 分)已知 a+b=2,b≤2a,那么对于一次函数 y=ax+b,给出下列结论:①函数
作 QH⊥x 轴于点 H,则 PH=BH=12PB, ∵BQ=6 5-s=6 5-32 5t+ 5=7 5-32 5t, 又∵cos∠QBH=25 5, ∴BH=14-3t, ∴PB=28-6t, ∴t+28-6t=12, ∴t=156;
初三数学总复习──一次函数、正比例及反比例函数

初三数学总复习──一次函数、正比例及反比例函数一、填空题:1. 已知函数32)2(3--+=mx m y 是一次函数,则m= ;此图象经过第 象限。
2. 一束光线从y 轴上点A (0,1)出发, 经过x 轴上点C 反射后经过点 B (3,3),则光线从A 点到B 点经过的路线长是 ; 直线BC 的解析式为 。
3. 如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A (平方米)与拉开长度b (米)的关系式是: ;4. 已知一次函数2+=kx y ,请你补充一个条件: ,使y 随x5. 如果直线y =ax +b 经过一、二、三象限,那么ab0 (填上“<”或“>”或“=”). 6. 如图:表示长沙市2003年6月份某一天的气温随时间变化的情况,请观察此图,回答下列问题:(1)这天的最高气温是 度?(2)这天共有 小时的气温在31度以上; (3)这天有 (时间)范围内温度在上升?(4)请你预测一下,次日凌晨1点的气温是多少度? 答:。
7. 用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个 三角形需7支火柴棒,照这样的规律搭下去,搭n 个 三角形需要S 支火柴棒,那么S 关于n 的函数关系式 是 (n 为正整数)∙∙ ∙ ∙ ∙∙ ∙∙ ∙30DC BA8. 如图是反比例函数xky =上的图象,那么k 与0的大小关系是k 0. 9. 一个函数的图象过点(1,2),且y 随x 的增大而增大,则这个函数的解析式是(任写一个).10. 已知反比例函数的图象过(-2,-3),则它的解析式为 .11. 在平面直角坐标系内,从反比例函数xk y =(k >0)的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是 。
12. 若正比例函数x m y )21(-=的图像经过点A (1x ,1y )和点B (2x ,2y ),当1x <2x 时1y >2y ,则m 的取值范围是 .13. 已知函数m x y +-=与4-=mx y 的图像的交点在x 轴的负半轴上,那么m 的值为 .14. 函数y = kx + 1与函数x y =在同一坐标系中的大致图象是( )30OO时间/小时3333333332222222224211812963二、解答题:15. 已知y -1与x 成正比例,且x =2时,y =5,写出y 与x 之间的函数关系式;当x =-1时,求y 的值;当y =0时,求x 的值。
人教版初三数学下册 中考复习之正比例函数、一次函数

中考复习之正比例函数、一次函数知识回顾:两个变量x 、y ,如果对于任意一个x 都有唯一一个确定的y 与它对应,那么就说y 是x 的函数例1、以下这几个是函数吗?如果是,则指出它是什么函数(1)x y 2= (2)12-=x y (3)132+-=x x y (4)x y 3-= (5)221x y +=例2、下列曲线中不能表示y 是x 的函数的是( )A .B .C .D .回顾了函数的概念,接下来我们来复习一下正比例函数和一次函数正比例函数:两个变量x 、y 满足__________________,则y 是关于x 的正比例函数一次函数:两个变量x 、y 满足___________________,则y 是关于x 的一次函数正比例函数是一次函数,但一次函数不一定是正比例函数性质1:一次函数的图像由k 、b 决定①k>0,y随x的增大而________,也就是从左往右看是上升的②k<0,y随x的增大而________,也就是从左往右看是下降的③b>0,一次函数的图像与____轴交于____半轴④b<0,一次函数的图像与____轴交于____半轴例3、一次函数的图像如下所示,填“>”或“<”(1)k__0,b__0 (2)k__0,b__0 (3)k__0,b__0 (4)k__0,b__0例4、如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n>0)的图象是()A.B.C.D.例5、(数形结合法)如图,直线y=kx+3则关于x的不等式kx+3≤0的解集是________例6、(数形结合法)如图,直线y1=﹣x+a与y2=bx﹣4相交于点P,已知点P的坐标为(1,﹣3),则关于x 的不等式﹣x+a<bx﹣4的解集是1.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b>0 D.k<0,b<02.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<03.一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()A.m<2 B.0<m<2 C.m<0 D.m>24.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<05.已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.已知将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小7.如图,直线y =kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.一次函数y =kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)9、甲、乙两人分别从A ,B 两地相向而行,他们距B 地的距离s (km )与时间t (h )的关系如图所示,那么乙的速度是 km/h .10、如图所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax +b =0的解是 ,ax+b<0的解集是_________性质2:如果一次函数与坐标系的x 轴的夹角记为θ,则|k|=tan θ例7、直接写出下列一次函数与x 轴的夹角θ是多少度(1)1-=x y (2) x y 33-= (3)213-=x y性质3:一次函数的k叫做“比例系数”,也叫做“斜率”,控制直线的倾斜程度。
中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=04.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或35.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)7.正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.8.下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)9.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=010.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大11.下列式子中,表示y是x的正比例函数的是()A.y=x﹣1B.y=2xC.y=2x2D.y2=2x12.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A. 正方形的面积S随着边长x的变化而变化B. 正方形的周长C随着边长x的变化而变化C. 水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D. 面积为20的三角形的一边a随着这边上的高h的变化而变化13.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是A. y1>y2B. y1<y2C. 当x1<x2时,y1<y2D. 当x1<x2时,y1>y214.下列四个点中,在正比例函数的图象上的点是()A. (2,5)B. (5,2)C. (2,—5)D. (5,—2)15.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A. (﹣3,﹣2)B. (2,3)C. (3,﹣2)D. (﹣2,3)16.下列关系中,是正比例关系的是()A. 当路程s一定时,速度v与时间tB. 圆的面积S与圆的半径RC. 正方体的体积V与棱长aD. 正方形的周长C与它的一边长a17.下列问题中,两个变量成正比例关系的是()A. 等腰三角形的面积一定,它的底边和底边上的高B. 等边三角形的面积与它的边长C. 长方形的长确定,它的周长与宽D. 长方形的长确定,它的面积与宽18.下列各点中,在正比例函数y=-2x图象上的是()A. (-2,-1)B. (1,2)C. (2,-1)D. (1,-2)19.一次函数y=4x,y=﹣7x,y=的共同特点是()A. 图象位于同样的象限B. y随x增大而减小C. y随x增大而增大D. 图象都过原点二、填空题20.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为________.21.写出一个正比例函数,使其图象经过第二、四象限:________.22.若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.23.写一个图象经过第二、四象限的正比例函数:________24.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.答案解析部分一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定【答案】B【考点】正比例函数的图象和性质【解析】【解答】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±1【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【分析】根据正比例函数的定义,可得答案.3.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=0 【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.4.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或3 【答案】C【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【分析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.【答案】D【考点】正比例函数的图象和性质【解析】【分析】由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【解答】由题目分析可知:在正比例函数y=(1-2m)x中,y随x的增大而减小由一次函数性质可知应有:1-2m<0,即-2m<-1,解得:m>.【点评】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)【答案】A【考点】正比例函数的图象和性质【解析】【分析】根据正比例函数关系式y=kx,可得k=,再依次分析各选项即可判断。
一次函数正比例函数基础复习

一次函数、正比例函数基础复习知识点回顾一次函数和正比例函数的概念 一次函数和正比例函数的图象一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 正比例函数y=kx (k ≠0)的性质确定正比例函数及一次函数表达式的条件 用待定系数法确定一次函数表达式的一般步骤典例讲解基本题例1下列函数中,哪些是正比例函数?哪些是一次函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x32 m +3x+(m-4)是一次函数?简单应用题例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.【练习】已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21 D .m >21 【练习】 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式; (2)画出函数的图象; (3)求5年后的产值.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式.【练习】 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题例8 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例10 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例11 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例12 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.探索与创新题例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.【练习】某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例15 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为中考试题预测例1 某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?例2 已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y 的值为-3.(1)求这个函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习题纲—10 函数(一次函数、正比例函数)函 数x 数量(标量):一些量在取定度量单位后,可用一个实数来表示。
如距离、时间、面积、质量等。
向量(矢量):一些量不但有大小,而且有方向。
如位移、速度、力等。
量常量:在某一变化过程中,始终保持不变的量叫做常量。
在某一变化过程中,如果对每一个实数 ,可以按变量:y y x xy 照某一确定的对应法则,得到唯一一个实数 ,那么就称 是关于 的一个函数,其中 叫做自变量, 叫做因变量。
自变量的广义解释:任何一个系统(或模型)都是由各种变量构成的,当我们分析这些系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么我们选择的这些变量就称为自变量,而被影响的量就被称为因变量。
例如:我们可以分析人体这个系统中,呼吸对于维持生命的影响,那么呼吸就是自变量,而生命维持的状态被认为是因变量。
系统和模型可以是一个二元函数这么简单,也可是整个社会这样复杂。
:::⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩满足解析式的坐标所表示的点都在图象上函数与点的坐标在图象上的点的坐标都满足解析式函数列表法不必通过计算就可以知道自变量与因变量的对应关系。
表示方法解析法便于用解析式去研究函数的性质。
图象法可以从整体上直观形象地表示出函数的变化情况。
函数与二次函数的一些基本性质:⇔点图象坐标解析式(即图象所对应的方程)1. 坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。
2. 求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。
3. 在解决有关函数的问题时,要注意利用平面直角坐标系中X 轴与Y 轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。
4. 对于函数,能画出图象的要尽量画出函数的图象(草图),包括与坐标轴的交点坐标、对称轴、顶点坐标、开口方向,有时,图象可能在开始时,并不能完全画出来,所以在解题过程中,可一边解题,一边把图象补充完整。
5. 根据函数的概念、性质以及它们的图象,进行形与数、形与方程、形与不等式之间的相互转换,是解决函数问题的重要方法。
6. 根据二次函数()()()220y ax bx c a o y a x m n a ⎧=++≠⎪⎨=++≠⎪⎩求对称轴、最大(小)值、顶点坐标、与坐标轴的交点坐标、画出草图。
7. 利用二次函数求最值问题,其关键在于找出自变量与因变量之间的数量关系,解此类问题应注意,函数达到最大(小)值时的相应自变量的值是否在自变量的取值范围内。
一般情况下,当自变量的取值包括顶点对应的自变量的值,最值一般在端点和顶点处取到,若不包括顶点对应的值,则只能在端点处取到最值。
常用函数——一次函数()0y kx b k =+≠的图象与性质图像 识别上坡阶段,点的位置逐渐在升高(y 随着x 的增大而增大,用数学符号可表示为:x ↗⇒y ↗)下坡阶段,点的位置逐渐在降低(y 随着x 的增大而减小,用数学符号可表示为:x ↗⇒y ↘)增减性y 随着x 的增大而增大,用数学符号可表示为: x ↗⇒y ↗ y 随着x 的增大而减小,用数学符号可表示为: x ↗⇒y ↘概念一般地,形如y =kx +b (k ≠0)的函数,称y 是x 的一次函数;特殊地,若b=0,即y=kx (k ≠0)的函数,称y 是x 的正比例函数。
k 的 作用k 的 符号图像必过象限 增减性 倾斜方向 与x 正半轴的夹角 k >0 一、三xy ↗90 k <0 二、四xy ↘90180|k ||k|⇔直线的倾斜程度(倾斜程度与倾斜方向是两个不同的概念。
)|k|越大,直线越逼近y 轴。
b 的b 的 图像必过象限 直线与y 轴的交点y xx A <x B ⇒y A <y B 不等号开口方向相x A x By A y BO AByxx A <x B ⇒y A >y B 不等号开口方向相反y A y Bx Ax BOBAαxlαx l所以l1和l2不相交,所以l1和l2平行。
k=k,b≠b2l∥l l点坐标即可一次函数与一次方程(组)、一元一次不等式的关系与方程(组)的关系方程kx+b=0的解⇔函数y=kx+b(k≠0)中,y= 时,x的值⇔直线y=kx+b(k≠0)与轴的交点的横坐标如图,方程组1122y k x by k x b=+⎧⎨=+⎩的解为x my n=⎧⎨=⎩⇔直线11y k x b=+和直线22y k x b=+的交点B的坐标为(m,n)与不等式的关系(1)如图,不等式kx+b>0的解集为x⇔函数y=kx+b(k≠0)中,y0时x的取值范围⇔直线y=kx+b(k≠0)在x轴上方的部分对应的x的取值范围;(2)如图,不等式k1x+b1>kx+b的解集是x>m;不等式k1x+b1≤kx+b的解集为倾斜角与斜率1.直线的倾斜角①倾斜角:与x轴正方向的夹角②直线与x轴平行或重合时,规定它的倾斜角为0③倾斜角的范围01802.直线的斜率(直线的倾斜程度)①直线的斜率就是直线倾斜角的正切值.记作tan90k②当直线l与x轴平行或重合时, 0tan00k③当直线l与x轴垂直时, 90k不存在.④经过两点11122212,,P x y P x y x x、的直线的斜率公式是:211221y yk x xx x⑤每条直线都有倾斜角,但并不是每条直线都有斜率.⑥角越坡度越大大坡面越陡3.求斜率的一般方法:①已知直线上两点,根据斜率公式211221y yk x xx x求斜率;②已知直线的倾斜角或的某种三角函数根据tan90k来求斜率;4.利用斜率证明三点共线的方法:已知112233,,,A x yB x yC x y、、,若AB BCk k,则有A、B、C三点共线。
5.任意两点的中点坐标公式两点yxAB(m,n)O mn1211122212122,,,2x x xP x y P x y PP M x y y y y、,且线段 的中点的坐标为6.任意两点间的距离公式:22111222122121,,P x y P x y PP x x y y 已知、,则名称 方程的形式 已知条件 局限性①点斜式 11yy k x x 11,x y 为直线上一定点,k 为斜率不包括垂直于x 轴的直线② 斜截式 y =kx +b (k ≠0)k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线③ 两点式 112121y y x x y y x x11221212,,x y x yx x y y 经过两点、且, 不包括垂直于x 轴和y 轴的直线④ 截距式 1x y a b a 是直线在x 轴上的非零截距 b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线 ⑤ 一般式22Ax By C A BA 、B 、C 为系数无限制,可表示任何位置的直线例两直线交点坐标L 1:3420x y L 2:220x y解:解方程组3420220x y x y得22x y所以L 1与L 2的交点坐标为M (-2,2)点到 直线 的 距离公式 1.点到直线距离公式: 点00,P x y 到直线:0l AxByC的距离为:0022Ax By CdA B2.两平行线间的距离公式: 已知两条平行线直线12l l 和的一般式方程为11:0l Ax By C ,22:0l Ax By C ,则12l l 和的距离为1222C C d A B两条 直线设两条直线的方程是11112222:0,:0l A x B y C l A x B y C ,的交点两条直线的交点坐标就是方程组11112222:0:0l A x B y Cl A x B y C的解。
①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;②若方程组无解,则两条直线无公共点,此时两条直线平行.。