uc3875相移谐振控制器
基于UC3875全桥移相DCDC变换器

电气控制课程设计题目:基于UC3875全桥移相DC/DC变换电路设计作者班级08-1BF院系信息学院专业自动化学号 *********** 序号35指导老师荣军完成时间2011年12月目录摘要 (3)关键字 (3)1 概论 (3)2 电路原理和各工作模态分析 (3)2.1电路原理 (3)2.1.1 全桥移相(ZVS-PWM)变换器工作原理 (3)2.1.2 全桥移相(ZVZCS-PWM)变换器工作原理 (4)2.2模态分析 (6)3 开关变压器与功率器件选择 (6)3.1功率器件选择 (6)3.2变压器选择 (7)4 控制电路设计 (7)4.1UC3875芯片简介 (7)4.2外围电路设计 (8)4.3控制电路设计 (10)5 系统仿真 (11)6 心得与体会 (14)参考文献 (14)基于UC3875全桥移相DC/DC变换电路设计摘要:全桥移相PWM开关电源具有拓扑结构简单、输出功率大、功率变压器利用率高、易于实现软开关、功率开关器件电压电流应力小等一系列优点,在中大功率应用场合受到普遍重视。
而传统的全桥PWM开关电源,功率器件处于硬开关状态,在较大的电压、电流应力下实现开关,因此产生很大的开关损耗,降低了电源运行的可靠性。
在DC/DC变换器中,则多采用以全桥移相控制软开关PWM变换器,它是直流电源实现高频化的理想拓扑之一,尤其是在中、大功率变换器应用场合。
用软开关技术实现的DC/DC变换器其效率可达90%以上,本文就由UC3875芯片组成3kWDC/DC变换器作了分析和研究。
关键字:UC3875,全桥移相,DC/DC变换,ZVS-PWM1 概论上世纪60年代开始起步的DC/DC-PWM功率变换技术出现了很大的发展。
但于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。
因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。
学士学位毕业设计基于uc3875控制的移相全桥软开关电源的设计

学士学位毕业设计基于uc3875控制的移相全桥软开关电源的设计移相全桥软开关电源是一种常见的电源设计,通过使用uc3875控制器来实现对电源的控制和调节。
设计步骤如下:
1. 确定电源的输出需求:包括输出电压和电流要求。
根据实际应用需求确定。
2. 选择开关元件:根据输出电压和电流要求,选择合适的开关元件。
常用的开关元件包括IGBT和MOSFET等。
3. 选择变压器:根据输入电压和输出电压要求,选择合适的变压器。
变压器应具有足够的功率容量和高效率。
4. 设计控制电路:使用uc3875控制器来实现对开关元件的控制和调节。
uc3875是一种常用的PWM控制器,具有多种保护功能和调节特性。
5. 设计反馈电路:为了实现稳定的输出电压,需要设计合适的反馈电路。
反馈电路通常包括误差放大器和比较器等。
6. 进行仿真和优化:使用电路仿真软件进行电路仿真,并根据仿真结果对电路进行优化。
7. 制作电路原型:根据设计结果,制作电路原型进行测试和验证。
8. 进行性能测试:通过对电路原型进行性能测试,验证电源的输出性能和稳定性。
9. 进行安全测试:进行安全测试,确保电源符合相关的安全标
准和规定。
10. 进行系统集成:将电源集成到目标系统中,并进行系统测试和调试。
以上是基于uc3875控制的移相全桥软开关电源的设计步骤。
具体的设计过程中,还需要根据实际情况进行一些细节调整和优化。
uc2875

脉宽调制控制芯片UC3875。
主要包括以下几个方面的功能:工作电源、基准电源、锯齿波、误差放大器、软起动、移相控制信号发生电路、死区时间设置、输出级,其内部结构框图如图3所示。
①工作电源UC3875工作电源分为两个:Vin(11脚)和‰c(1O脚)。
其中‰供给内部逻辑电路用,它对应于信号地GND(20脚),Vcc供输出级使用,它对应于电源地PWR GND(12脚)。
Vcc一般在3V以上就能正常工作,在12V以上工作性能会更好。
通常为使芯片更好地工作,减少噪音干扰和直流压降,将Vin和Vcc接至同一个直流电源。
图3 UC3875内部功能方框图与引脚图②基准电源UC3875提供一个5V精密基准电压源VREF(1脚),可为外部电路提供大约60mA的电流,该电压在Vin压锁定时消失。
其内部设有短路保护电路。
同时,VREF也有UVLO功能,只有当rRFF达到4.75V时,芯片才能正常工作。
FREE最好外接一个0.1μf、ESR和ESL都很小的滤波电容。
③锯齿波斜率设置脚SLOPE(18脚)与VL(5V基淮电压VREF或VIN工作电压)之间接一电阻RSLOPE,为锯齿波脚RAMP(19脚)提供一个电流为VX/RSLOPE。
在RAMP与信号地之间接一个电容CRAMP,决定了锯齿波的斜率dV/dt=VX/Rslope×Cramp,Rslope和CRAMP就决定了锯齿波的幅值。
④误差放大器和软启动。
在电压型调节方式中,其同相端E/A+(Pin 4)一般接基准电压,反向端E/A—(Pin3)一般接输出反馈电压,软启动功能脚SOFT-START (Pin 6)与信号地GND之间接一个电容CSS,当SOFT-START正常工作时,芯片内部有一个9 μA恒流源给C55充电,SOFT-START的电压线性升高,最后达到4.8V。
制信号发生电路是UC3875的核心部分。
振荡器产生的时钟信号经过D触发器2分频后,得到两个180°互补的方波信号。
uc3875应用

移 动
电 源
与 车 辆
当采用外同步时, 可简单地将 同步信号接人 C O KS N L C /Y C端子, 若采用多个 U 37 时, C85 可将 每个 U 37 C 85的 C O K S N L C /Y C端连接在一起, 如 图2 所示。所有集成电路将被最高频率同步, 但为
卿
、 I
也可将多个器件的 C O K S N L C /Y C端连接在一起, 按最高频率同步使用。
" A E A BC D为输出延迟控制 ST 一 , 一 D L Y E 端。对两个半桥提供各自的延迟来适应谐振电容充
电电流的差别。
.LP SO E为斜面斜度设定及补偿端。从 SO E到 V 连接电阻 R E可调整用于产生斜 LP } S P, L O 面的电流, 产生适当的斜面, 提供电压前馈。
" MP为斜面产生端子。接斜面电容 C 适 R A ,
・ R 为5 V电压基准。有 6 m VE F 0 A容量供外 围电路, 并具内部短路电流限制。 22 振荡器频率的 . 设定及同步
振荡器可工作在自 激振荡或外同步状态。对于 自 激工作,R Q端到地外接电阻、 FE 电容, 振荡器输 出频率 f 的调整公式为:
・ R Q T振荡器频率设定端子。选择 1 E FE S 6 脚到地电阻和电容, 可调整振荡器输出频率 f .
一个半桥支路, 输出CD用时钟同步驱动与A B , ,具
有相移的另一个半桥支路。
" C /Y C S N 时钟/ CO K L 同步端子。作为输出, 该端可提供时钟信号, 作为输人可被外部信号同步;
无损耗转换时间约为8 n, 2%负载下, 0 在 5 s 无损耗 转换时间约为20 左支路保持无损耗, 2 n, s 右支路转
UC3875及在全桥软开关DCDC变换器中的应用

传统的 PWM 型开关电源具有控制简单的优 点 ,缺点是开关损失随开关频率的提高而增加 。 造成 PWM 变换器开关损失较大的原因是 :a . 开关 器件的通 、断都是强制的 ; b. 开关器件是非理想 的 ,即开和关不能瞬间完成 ,都需要一定时间 ;c . 开关器件及与之相连的器件都有寄生参数 ,使通 过开关器件的电压和电流不是纯方波 ,功率管在 开 、关过程中会产生开关器件的电压 、电流波形交 叠现象 ,从而产生开关损失 。随着频率的增加 ,开 关损失在全部损失中所占比例也随着增加 。
应用·交流 ———UC3875 及在全桥软开关 DC/ DC 变换器中的应用
机床电器 200416
且还要使两个对角桥臂的导通有一定的时间延 时 ,有效占空比由图 3 所示的延迟时间控制 。由 于两个桥臂的开关元件不是同时被驱动的 ,所以 需要精确设置“移相”导通波形之间的延迟时间间 隔 ,延迟时间间隔由谐振腔控制电路的电压回路 进行调节 , 最终充当两个驱动信号的移相信号 。 此时串联在变压器的上半桥或下半桥中的两个开 关管均处于导通状态 ,而变压器在开关管导通时 刻的电压为零 ,即变压器的初级处于短接状态 ,并 箝位初级电流保持原值 。当半桥中的一个开关器 件经适当的延迟时间后关断时 ,变压器初级电流 又流过该开关管的输出寄生电容 ,从而与开关管 的漏极电压谐振且与电压反相 ,使对角臂开关上 的电压为零 ,从而保证了零电压开关工作状态 。
参考文献 : [1 ] 李宏编著 1 电力电子设备用器件与集成电路应用指南
[M ]1 北京 :机械工业出版社 ,20011 [ 2 ] 叶慧贞 ,等编著 1 新颖开关稳压电源[M ]1 北京 :国防工
业出版社 ,19991 [3 ] 邹旭东 1 半桥软开关 DC/ DC 变换器研究 [ C ]1 华中理
基于UC3875全桥移相开关电源的设计

(. 1 江南大学通信 与控制工程学院 , 江苏 无锡 2 4 l l2 2 2 .江 阴职 业技术 学 院 电子 信 息工程 系 , 苏 江 阴 2 4 3 江 l 3) 4
【 摘 要 】 文章阐述了 压开关技术 相全 换器中 应用, 零电 在移 桥变 的 提出了 一种改进型的 压零电流全 零电 桥移相开关电
【 文章编 号 】 10—63 08 1 06 — 3 0327( 0 ) — 01 0 2 0
全 桥移相 Z S P V — WM变换器 的主 电路如 图 1 所示 。其主 要工作波形如 图 2所示。 仅需在全桥电路上增加一个谐振 电感 L 或利用变压器漏感 ,便可通过 L 与功率开关管输 出电容 c (_ , ,, ) i1 2 3 4 的谐 振 , 电感储能 释放过程 中 , C 上 的 电压 在 使 U 逐 步 下降 到零 ,而 使功 率开关 管 体 内的寄 生 二极 管 V D (_ , , , ) i1 23 4 开通 , 而使 电路 中 4个开关器 件实现零 电压 开 从 通或零 电流关断。 通过改变对 角线上开关管驱动信号之间的相
器——零 电压零电流( Vz s P z c )wM由此产生 。Z Z S P V C — WM
改善 了器件的运行状 态 , 实现 了变换器 的零 电压零电流开关特
图 1 移 相 全桥 ZVS PW M 变换 器 主 电路 -
性, 在通信等开关电源上已推广使用 。
— —]
J
: I
位差来改变 占空 比, 以达到控制输 出电压 的 目的。变压器副边
所接整流二极管 V 、 D, VD 实现全波整流 。 功率开关 器件 S 驱动信号 U 。 S 驱动信号 u 。 与 一相 同 ,: S 驱动信号 Ue与 S 驱动信号 Uc相 同, | 2 3 E 3 而且 Ue.e与 Ue Ue g ̄ 5 l 4 g" 5 U 2 3  ̄
基于UC3875控制的高频谐振逆变电路

Dd
负载谐振都可以实现软开关 , 但是为了调节输 }电压 , } { 般都采用调频控制方式 ( F , P M)不利于输出滤波器 的优 化设 计r 。 谐振电容分压输 出的可控硅逆变电路是采用移相 调压谐振电容分压输 出实现 的。这种逆变器电路既保 留了 串联逆 变器 的优 点 , 做 到 了 象 改 进 型 的并 联 逆 又
UC3 7 su e n t ep a es i o tolde tr a i u tTh i lto n h x ei n a e uto h 0 k n 8 5 i s d i h h s ̄h f c n r l x e n lcr i t e c . esmua in a dt ee p rme tlrs l ft e6 Hz i
Hi h Fr q e c s n n n e t rBa e n UC3 7 n r l r g e u n y Re o a tI v re s d o 8 5 Co to l e
F Ru— u , U i n YANG n f , H ANG — h n y Yi- u Z Yu e e g
围 电路 。文 中还 给 出了一个 61 Hz 变电路 的仿真和 实验 波形 , 1k 逆 . 实验证 明采 用 UC 8 5移 相调 压控制谐 振 电容 分压输 37
出的 逆 变 电路 是 可 行 的 。
关键词 :高频 ; 移相 ; 3 7 UC 8 5
中图分类号 : 72 TN 1 文 献 标 识 码 :A
振 电容 , L 、 、 I 2L I 为谐振 电感 , R为 负载等效 电 阻, D 、 、 4 D、2 D 是功率 MO F T 自带的二极管 。 SE
D3
UC3875芯片控制2KW高频开关电源电路设计

UC3875芯片控制2KW高频开关电源电路设计我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。
针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20 世纪70 年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以方案中2KW 的电源为例进行设计。
1 设计内容和方法1.1 主电路型式的选择变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。
在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。
半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。
传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。
开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。
在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。
由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。
所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS- PWM)变换电路。
移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。
原理如图1 所示,主要由四个相同的功率管和一个高频变压器压器组成。
E 为输入直流电压,T1~T4 为开关管,D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。
以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容C1 释放过程中,使电容上的电压逐步下降到零,体内二极管D1 开通,创造了T1 的ZVS 条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PACKAGING INFORMATIONAddendum-Page 1(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.Addendum-Page 2In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.OTHER QUALIFIED VERSIONS OF UC1875, UC2875, UC3875 :•Catalog: UC3875•Enhanced Product: UC2875-EP•Military: UC1875•Space: UC1875-SPNOTE: Qualified Version Definitions:•Catalog - TI's standard catalog product•Enhanced Product - Supports Defense, Aerospace and Medical Applications•Military - QML certified for Military and Defense Applications•Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based applicationAddendum-Page 3TAPE AND REEL INFORMATION*All dimensions are nominal Device Package Type Package DrawingPinsSPQ Reel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant UC2875DWPTR SOICDW 281000330.032.411.3518.67 3.116.032.0Q1UC3875DWPTR SOIC DW 281000330.032.411.3518.67 3.116.032.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) UC2875DWPTR SOIC DW281000367.0367.055.0UC3875DWPTR SOIC DW281000367.0367.055.0IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCESTexas Instruments Incorporated(‘TI”)technical,application or other design advice,services or information,including,but not limited to, reference designs and materials relating to evaluation modules,(collectively,“TI Resources”)are intended to assist designers who are developing applications that incorporate TI products;by downloading,accessing or using any particular TI Resource in any way,you (individually or,if you are acting on behalf of a company,your company)agree to use it solely for this purpose and subject to the terms of this Notice.TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products,and no additional obligations or liabilities arise from TI providing such TI Resources.TI reserves the right to make corrections, enhancements,improvements and other changes to its TI Resources.You understand and agree that you remain responsible for using your independent analysis,evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications)with all applicable regulations,laws and other applicable requirements.You represent that,with respect to your applications,you have all the necessary expertise to create and implement safeguards that(1) anticipate dangerous consequences of failures,(2)monitor failures and their consequences,and(3)lessen the likelihood of failures that might cause harm and take appropriate actions.You agree that prior to using or distributing any applications that include TI products,you will thoroughly test such applications and the functionality of such TI products as used in such applications.TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.You are authorized to use,copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s)identified in such TI Resource.NO OTHER LICENSE,EXPRESS OR IMPLIED,BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT,AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN,including but not limited to any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI products or services are rmation regarding or referencing third-party products or services does not constitute a license to use such products or services,or a warranty or endorsement e of TI Resources may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.TI RESOURCES ARE PROVIDED“AS IS”AND WITH ALL FAULTS.TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS,EXPRESS OR IMPLIED,REGARDING TI RESOURCES OR USE THEREOF,INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS,TITLE,ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE,AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM,INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE.IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,DIRECT,SPECIAL, COLLATERAL,INDIRECT,PUNITIVE,INCIDENTAL,CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF,AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.You agree to fully indemnify TI and its representatives against any damages,costs,losses,and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.This Notice applies to TI Resources.Additional terms apply to the use and purchase of certain types of materials,TI products and services. These include;without limitation,TI’s standard terms for semiconductor products /sc/docs/stdterms.htm),evaluation modules,and samples(/sc/docs/sampterms.htm).Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2017,Texas Instruments Incorporated。