空间直角坐标系-课件ppt
合集下载
空间直角坐标系PPT

解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6,
M2M3 M3M1 , 原结论成立.
例 3 设 P 在 x 轴上,它到 P1 (0, 2,3)的距离为 到点 P2 (0,1,1)的距离的两倍,求点 P 的坐标.
①
③
x
②
例1、如图,在长方体OABC DABC中,OA 3,
OC 4,OD 2,写出D,C,A,B四点的坐标。
z
D'
C'
A'
2
B'
y
4
3o
C
xA
B
例2、在空间直角坐标系中标出下列各点
►A(0,2,4)、B(1,0,5)、 ►C(0,2,0)、D(1,3,4)
特殊位置的点的坐标
►原点 ►x轴上的点 ►y轴上的点 ►z轴上的点 ►xoy平面上的点 ►yoz平面上的点 ►xoz平面上的点
解 因为P 在x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
x 1, 所求点为 (1,0,0), (1,0,0).
4. 3.1 空间直角坐标系
数轴上的点
B -2 -1 O 1
A 2 3x
数轴上的点可以用 一个实数表示
y y
O
平面坐标系中的点
P (x,y) xx
平面中的点可以用 有序实数对(x,y)
来表示
思考:
►空间中的点如何表示呢?
M2M3 M3M1 , 原结论成立.
例 3 设 P 在 x 轴上,它到 P1 (0, 2,3)的距离为 到点 P2 (0,1,1)的距离的两倍,求点 P 的坐标.
①
③
x
②
例1、如图,在长方体OABC DABC中,OA 3,
OC 4,OD 2,写出D,C,A,B四点的坐标。
z
D'
C'
A'
2
B'
y
4
3o
C
xA
B
例2、在空间直角坐标系中标出下列各点
►A(0,2,4)、B(1,0,5)、 ►C(0,2,0)、D(1,3,4)
特殊位置的点的坐标
►原点 ►x轴上的点 ►y轴上的点 ►z轴上的点 ►xoy平面上的点 ►yoz平面上的点 ►xoz平面上的点
解 因为P 在x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
x 1, 所求点为 (1,0,0), (1,0,0).
4. 3.1 空间直角坐标系
数轴上的点
B -2 -1 O 1
A 2 3x
数轴上的点可以用 一个实数表示
y y
O
平面坐标系中的点
P (x,y) xx
平面中的点可以用 有序实数对(x,y)
来表示
思考:
►空间中的点如何表示呢?
新教材人教A版选择性必修第一册 1.3.1 空间直角坐标系 课件(49张)

【习练·破】 已知两点P(1,0,1)与Q(4,3,-1),则P,Q之间的距离为_______.
【解析】因为P(1,0,1),Q(4,3,-1), 所以 OP=(1,0,1)=i+k, OQ=(4,3,-1)=4i+3j-k, 所以 PQ=(4i+3j-k)-(i+k)=3i+3j-2k,
PQ 3i2 3j2 (-2k)2 22,
2
【类题·通】 1.空间对称问题的特点 空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化 规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余 坐标相反”这个结论.
2.利用向量法求空间两点距离的方法 (1)建系,确定两点坐标. (2)求出以向量 OA,OB 的坐标. (3)求 AB 的坐标. (4)根据公式求出 AB 的模,即AB的距离.
2
M是A1C1的三分之一分点且靠近A1点, 所以M(1,1,2).
所以AM=(1,1,2)=i+j+2k,
AN (3i+,33,1)j+k,
2
所以 MN (3 i -3(ji+ kj+) 2k)
2
= 1 i+2j-k,
2
所以 | MN | (1 i)2 2j2 (-k)2 21,
2
2
即|MN|= 21 .
【思考】 什么是右手直角坐标系? 提示:右手直角坐标系是指的让右手的拇指指向x轴正方向,食指指向y轴正方向, 中指指向z轴正方向所建立的坐标系;高中阶段所用的空间直角坐标系都是右手 直角坐标系.
2.空间向量的坐标表示 (1)点的坐标 在空间直角坐标系Oxyz中,i,j,k为坐标向量,对空间任意一点A,存在唯一有序实 数组(x,y,z),使OA=xi+yj+zk,则 OA 对应的有序实数组(x,y,z)叫做点A在空间坐 标系中的坐标. (2)向量的坐标 给定向量a,若OA =a,则a=xi+yj+zk, 有序实数组(x,y,z)叫做a在空间直角坐标系Oxyz中的坐标,记作a=(x,y,z).
空间直角坐标系、空间两点间的距离公式 课件

4.空间中的中点坐标公式 在空间直角坐标系中,若A(x1,y1,z1),B(x2,y2,z2),则
线段AB的中点坐标是_x_1_+2__x_2,__y_1_+_2_y_2_,__z1_+2__z_2_.
类型一 求空间中点的坐标 【例1】 建立适当的坐标系,写出底边长为2,高为3的正三 棱柱的各顶点的坐标.
|MN|=
32-12+(3-1)2+(1-2)2=
21 2.
解 以BC的中点为原点,BC所在的直线为y轴,以射线 OA所在的直线为x轴,建立空间直角坐标系,如图. 由题意知,AO= 23×2= 3,从而可知各 顶点的坐标分别为 A( 3,0,0),B(0,1,0), C(0,-1,0),A1( 3,0,3),B1(0,1,3),C1(0,-1,3).
类型二 求空间中对称点的坐标 【例2】 在空间直角坐标系中,点P(-2,1,4).
空间直角坐标系 空间两点间的距离公式
1.空间直角坐标系 (1)空间直角坐标系及相关概念 ①空间直角坐标系:从空间某一定点引三条两两垂直,且有相 同 单 位 长 度 的 数 轴 : __x_轴__、__y轴__、__z_轴__ , 这 样 就 建 立 了 一 个 __空__间__直__角__坐__标__系__O_-__x_y_z_. ②相关概念:__点__O_叫做坐标原点,x_轴__、__y_轴__、__z_轴_叫做坐标轴.通 过____每__两__个__坐__标__轴___的平面叫做坐标平面,分别称为_x_O__y_平 面、_y_O__z _平面、__zO__x_平面.
(1)求点P关于x轴的对称点的坐标; (2)求点P关于xOy平面的对称点的坐标; (3)求点P关于点M(2,-1,-4)的对称点的坐标.
解 (1)由于点P关于x轴对称后,它在x轴的分量不变, 在y轴、z轴的分量变为原来的相反数,所以对称点为 P1(-2,-1,-4). (2)由于点P关于xOy平面对称后,它在x轴、y轴的分量 不变,在z轴的分量变为原来的相反数,所以对称点为 P2(-2,1,-4). (3)设对称点为P3(x,y,z),则点M为线段PP3的中点, 由中点坐标公式,可得x=2×2-(-2)=6, y=2×(-1)-1=-3,z=2×(-4)-4=-12, 所以P3(6,-3,-12).
线段AB的中点坐标是_x_1_+2__x_2,__y_1_+_2_y_2_,__z1_+2__z_2_.
类型一 求空间中点的坐标 【例1】 建立适当的坐标系,写出底边长为2,高为3的正三 棱柱的各顶点的坐标.
|MN|=
32-12+(3-1)2+(1-2)2=
21 2.
解 以BC的中点为原点,BC所在的直线为y轴,以射线 OA所在的直线为x轴,建立空间直角坐标系,如图. 由题意知,AO= 23×2= 3,从而可知各 顶点的坐标分别为 A( 3,0,0),B(0,1,0), C(0,-1,0),A1( 3,0,3),B1(0,1,3),C1(0,-1,3).
类型二 求空间中对称点的坐标 【例2】 在空间直角坐标系中,点P(-2,1,4).
空间直角坐标系 空间两点间的距离公式
1.空间直角坐标系 (1)空间直角坐标系及相关概念 ①空间直角坐标系:从空间某一定点引三条两两垂直,且有相 同 单 位 长 度 的 数 轴 : __x_轴__、__y轴__、__z_轴__ , 这 样 就 建 立 了 一 个 __空__间__直__角__坐__标__系__O_-__x_y_z_. ②相关概念:__点__O_叫做坐标原点,x_轴__、__y_轴__、__z_轴_叫做坐标轴.通 过____每__两__个__坐__标__轴___的平面叫做坐标平面,分别称为_x_O__y_平 面、_y_O__z _平面、__zO__x_平面.
(1)求点P关于x轴的对称点的坐标; (2)求点P关于xOy平面的对称点的坐标; (3)求点P关于点M(2,-1,-4)的对称点的坐标.
解 (1)由于点P关于x轴对称后,它在x轴的分量不变, 在y轴、z轴的分量变为原来的相反数,所以对称点为 P1(-2,-1,-4). (2)由于点P关于xOy平面对称后,它在x轴、y轴的分量 不变,在z轴的分量变为原来的相反数,所以对称点为 P2(-2,1,-4). (3)设对称点为P3(x,y,z),则点M为线段PP3的中点, 由中点坐标公式,可得x=2×2-(-2)=6, y=2×(-1)-1=-3,z=2×(-4)-4=-12, 所以P3(6,-3,-12).
空间直角坐标系 课件

∴B(5,0,0),D(0,4,0),A1(0,0,4),
从而 C(5,4,0),B1(5,0,4).
图(1)
又 D1(0,4,4),P 为 B1D1 的中点,∴P(52,2,4).
[错因] 空间直角坐标系中,x轴、y轴和z轴的正方向排 列次序要符合右手法则,即用右手握住z轴,拇指所指 的方向为z轴的正方向,其余四指所指的方向为由x轴正 向到y轴正向的转动方向.错解中,坐标系的建立不符 合右手法则,因此解答是不正确的.
图(2)
∴P(2,52,4).
[正解] 如图(2),分别以 AD、AB 和 AA1 所在直线为 x 轴、y
轴和 z 轴,建立空间直角坐标系.
∵AB=5,AD=4,AA1=4,
∴B(0,5,0),D(4,0,0),A1(0,0,4),
从而 C(4,5,0),B1(0,5,4). 又 D1(4,0,4),P 为 B1D1 的中点,
探究点一 空间中点的坐标的确定
(1)过空间一点M分别作三个坐标平面的平行平面,与三个 坐标轴的交点的坐标分别为点M的横、纵、竖坐标.
(2)特殊位置点的坐标的特征. x轴上的点的坐标为(x,0,0),其中x为任意实数; y轴上的点的坐标为(0,y,0),其中y为任意实数; z轴上的点的坐标为(0,0,z),其中z为任意实数; xOy平面上的点的坐标为(x,y,0),其中x,y为任意实数; xOz平面上的点的坐标为(x,0,z),其中x,z为任意实数; yOz平面上的点的坐标为(0,y,z),其中y,z为任意实数.
已知正方体ABCD-A′B′C′D′的棱长为2,建立如 图不同的空间直角坐标系,试分别写出正方体各顶点 的坐标.
[提示]在不同的空间直角坐标系下,同一个点的坐标是 不同的,应分别写出.
空间直角坐标系PPT课件

通过透视变换将三维图形投影 到某一平面上,产生近大远小
的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。
的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。
空间直角坐标系ppt课件

坐标系 Oxyz 中 x 轴、y 轴、z 轴的正方向
上的单位向量,且O→B=-i+j-k,则点 B 的坐标是
√A.(-1,1,-1)
B.(-i,j,-k)
C.(1,-1,-1)
D.不确定
由空间直角坐标系中点的坐标的定义可知点B的坐标为(-1,1,-1).
D.5,23,2
由题图知,点 P 在 x 轴、y 轴、z 轴上的射影分别为 P1,P2,P3, 它们在坐标轴上的坐标分别是32,5,4,故点 P 的坐标是32,5,4.
3.已知点 B 的坐标是(-1,2,1),则|O→B|=
√A. 6
B.6
C. 5
D.5
由 B 点坐标是(-1,2,1),得O→B=-i+2j+k,故|O→B|2=1+4+1=6, 故|O→B|= 6.
特别提醒
空间点对称问题的解题策略 (1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对 称点的变化规律,才能准确求解. (2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反” 这个结论.
训练3.已知点P(2,3,-1)关于坐标平面Oxy的对称点为P1,点P1关于坐标平面 Oyz 的 对 称 点 为 P2 , 点 P2 关 于 z 轴 的 对 称 点 为 P3 , 则 (点2,P-3 的3,坐1)标 为 ______________.
则p=a+2b+3c=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,
x+y=1,
x=23,
所以xz=-3y,=2,解得yz==3-,12,
故 p 在基底{a+b,a-b,c}下的坐标为32,-21,3.
二、空间点及向量的坐标表示
探究 2 在平面直角坐标系中,{i,j}为一个单位正交基底,O→A=xi+yj,那么向 量O→A的坐标为(x,y),点 A 的坐标为(x,y);如果设{i,j,k}为空间的单位正交 基底,O→A=xi+yj+zk,猜想空间向量O→A的坐标是什么?点 A 的坐标是什么? 提示 (x,y,z);(x,y,z).
上的单位向量,且O→B=-i+j-k,则点 B 的坐标是
√A.(-1,1,-1)
B.(-i,j,-k)
C.(1,-1,-1)
D.不确定
由空间直角坐标系中点的坐标的定义可知点B的坐标为(-1,1,-1).
D.5,23,2
由题图知,点 P 在 x 轴、y 轴、z 轴上的射影分别为 P1,P2,P3, 它们在坐标轴上的坐标分别是32,5,4,故点 P 的坐标是32,5,4.
3.已知点 B 的坐标是(-1,2,1),则|O→B|=
√A. 6
B.6
C. 5
D.5
由 B 点坐标是(-1,2,1),得O→B=-i+2j+k,故|O→B|2=1+4+1=6, 故|O→B|= 6.
特别提醒
空间点对称问题的解题策略 (1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对 称点的变化规律,才能准确求解. (2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反” 这个结论.
训练3.已知点P(2,3,-1)关于坐标平面Oxy的对称点为P1,点P1关于坐标平面 Oyz 的 对 称 点 为 P2 , 点 P2 关 于 z 轴 的 对 称 点 为 P3 , 则 (点2,P-3 的3,坐1)标 为 ______________.
则p=a+2b+3c=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,
x+y=1,
x=23,
所以xz=-3y,=2,解得yz==3-,12,
故 p 在基底{a+b,a-b,c}下的坐标为32,-21,3.
二、空间点及向量的坐标表示
探究 2 在平面直角坐标系中,{i,j}为一个单位正交基底,O→A=xi+yj,那么向 量O→A的坐标为(x,y),点 A 的坐标为(x,y);如果设{i,j,k}为空间的单位正交 基底,O→A=xi+yj+zk,猜想空间向量O→A的坐标是什么?点 A 的坐标是什么? 提示 (x,y,z);(x,y,z).
数学人教A版选择性必修第一册1.3.1空间直角坐标系课件

= 2 × (−5) − (−2) = −8, = 2 × 4 − 1 = 7, = 2 × 3 − 4 = 2,
所以3 (−8,7,2).
课堂小结
1.空间向量基本定理:
定理如果三个向量,,不共面,那么对任意一个空间向量,存在唯一的
有序实数组(, , ),使得 = + + .
在空间直角坐标系中的坐标,记作(,,),其中叫做点的横坐标,
叫做点的纵坐标,叫做点的竖坐标.
新知探索
在空间直角坐标系中,给定向量,作 = .由空间向量基本定理,存在
唯一的有序实数组(,,),使 = + + .
有序实数组(,,)叫做在空间直角坐标系中的坐标,上式可简记作 =
例析
例1.如图,在长方体 − ’ ’ ’ ’ 中, = 3, = 4,
’
1
1
1
2,以{ , , ’ }为单位正交基底,建立的空间直角坐标系.
(1)写出’ ,,’ ,’ 四点的坐标;
(2)写出向量’ ’ ,’ ,’ ’ , ’ 的坐标.
理解平面直角坐标系:如图,在平面内选定一点和一个
单位正交基底{,},以为原点,分别以,的方向为正
方向、以它们的长为单位长度建立两条数轴:轴、轴,
那么我们就建立了一个平面直角坐标系.
新知探索
类似地,在空间选定一点 和一个单位正交基底 {,,} ,
以点为原点,分别以,,的方向为正方向、以它们的
来的相反数,所以对称点为1 (−2, − 1, − 4).
(2)由于点关于平面对称后,它在轴、轴的分量不变,在轴的分量变为
原来的相反数,所以对称点为2 (−2,1, − 4).
(3)设对称点3 (,,)为,则点为线段3 的中点,由中点坐标公式,可得
2.14空间直角坐标系ppt课件

求距离的步骤:①建立适当的坐标系,并写出 相关点的坐标;②代入空间两点间的距离公式 求值.
4.已知A(1,2,-1),B(2,0,2). (1)在x轴上求一点P,使|PA|=|PB|; (2)若xOz平面上的点M到A点的距离与到B点的 距离相等,求点M的坐标满足的条件.
解析: (1)由于点 P 在 x 轴上,故可设 P(a,0,0), 由|PA|=|PB|得 a-12+4+1= a-22+4, 即 a2-2a+6=a2-4a+8,解得 a=1, 所以点 P 的坐标为(1,0,0).
点P关于xOy平面对称后,它在x轴,y轴的分量 均不变,在z轴的分量变为原来的相反数, 所以点P关于xOy平面的对称点P2的坐标为(-2,1 ,-4). 设点P关于点A的对称点坐标为P3(x,y,z), 由中点坐标公式可得
-22+x=1 1+ 2 y=0 4+ 2 z=2
x=4
,解得y=-1 . z=0
一、空间直角坐标系
1.空间直角坐标系及相关概念
(1)空间直角坐标系:从空间某一定点
O 引三条两两垂直,且有相同单位长
度的数轴:_x_轴__、__y_轴__、__z_轴_____,这样
就建立了一个_空__间__直__角__坐__标__系__O__-__x_y_z___.
(2)相关概念:__点__O___叫做坐标原点,_x_轴__、__y_轴__、__z_轴____
互相垂直且有相同单位长 定点o• 度的数轴,这样就建立了空
y纵轴
间直角坐标系O-xyz.点O 横 x
叫坐标原点;
轴
2.两条确定一个坐标平
面,分别称为xoy面,yoz面,zox面
yoz面
xoy面
x
z
zox 面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 2 设 P 在 x轴上,它到 P1(0, 2,3)的距离 为到点 P2 (0,1,1)的距离的两倍,求点 P 的坐标.
解 因为 P 在 x轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6,
M2M3 M3M1 , 原结论成立.
对称点
一般的P(x , y , z) 关于: (x, y, z) (1)x轴对称的点P1为___(__x_,_y_,__z;) (2)y轴对称的点P2为___(__x_,__y_,_z;)
(3)z轴对称的点P3为__________;
关于谁对称谁不变
空间点到原点的距离
z
o xA
| BP || z |
P(x•, y, z)
| OB | x2 y2
y
C
| OP | x2 y2 z2
B
两点间距离公式
平面:| P1P2 | (x1 x2 )2 ( y1 y2 )2
类比 猜想
空间:| P1P2 | (x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
例 1 求证以M1 (4,3,1)、M 2 (7,1,2)、M 3 (5,2,3)
解析几何
空间直角坐标系
数轴上的点
B -2 -1 O 1
A 2 3x
数轴上的点可以用 唯一的一个实数表示
y y
O
平面坐标系中的点
P (x,y) xx
平面中的点可以用 有序实数对(x,y)
来表示点
在教室里同学们的位置坐标
O
讲台
y
x
教室里某位同学的头所在的位置
z
y O
x
空间直角坐标系 —Oxyz
x 1, 所求点为 (1,0,0), (1,0,0).
对称点
横坐标相反,
y
纵坐标不变。
P2 (-x0 ,y0) y0
P (x0,y0)
-x0
O
P3 (-x0 , -y0) -y0
横坐标相反, 纵坐标相反。
x0 x P1 (x0 , -y0)
横坐标不变, 纵坐标相反。
空间对称点
z
P3 (1, 1,1)
P(1,1,1)
o
y
x
P1(1, 1, 1)
P2 (1,1, 1)
z
竖轴
1
纵轴
o
1
1
y
x
右手直角坐标系
横轴
空间中点的坐标
空间的点 11 有序数组( x, y, z)
z
R
o xP
M (x, y, z)
Qy
空间中点的坐标(方法二)
z
R (0, 0, z)
M (•x, y
Q (0, y, 0)
x P (x, 0, 0)
A (x, y, 0)