§4逻辑联结词且或非

合集下载

§4 逻辑联结词“且”、“或”、“非”(1)

§4 逻辑联结词“且”、“或”、“非”(1)

§4 逻辑联结词“且”、“或”、“非”(1)教学目标:了解逻辑联结词“或”、“且”、“非”的含义,理解复合命题的结构.教学重点:逻辑联结词“或”、“且”、“非”的含义及复合命题的构成。

教学难点:对“或”的含义的理解;课型:新授课教学过程:一、创设情境前面我们学习了命题的概念、命题的构成和命题的形式等简单命题的基本框架。

本节内容,我们将学习一些简单命题的组合,并学会判断这些命题的真假。

问题1:下列语句是命题吗?如果不是,请你将它改为命题的形式①11>5 ②3是15的约数吗?③0.7是整数④x>8二、活动尝试①是命题,且为真;②不是陈述句,不是命题,改为③是3是15的约数,则为真;③是假命题④是陈述句的形式,但不能判断正确与否。

改为x2≥0,则为真;例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题)。

我们不要在判断一个语句是不是命题上下功夫,因为这个工作过于复杂,只要能从正面的例子了解命题的概念就可以了。

三、师生探究问题2:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3上述三个命题前面的命题在结构上有什么区别?比前面的命题复杂了,且(1)和(2)明显是由两个简单的命题组合成的新的比较复杂的命题。

命题(1)中的“或”与集合中并集的定义:A∪B={x|x∈A或x∈B}的“或”意义相同.命题(2)中的“且”与集合中交集的定义:A∩B={x|x∈A且x∈B}的“且”意义相同.命题(3行否定而得出的新命题.四、数学理论1.逻辑连接词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2. 复合命题的构成简单命题:不含有逻辑联结词的命题叫做简单命题复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题3.复合命题构成形式的表示常用小写拉丁字母p、q、r、s……表示简单命题.复合命题的构成形式是:p或q;p且q;非p.即:p或q 记作p∨q p且q 记作p∧q 非p (命题的否定) 记作⌝p 释义:“p或q”是指p,q中的任何一个或两者.例如,“x∈A或x∈B”,是指x可能属于A 但不属于B (这里的“但”等价于“且”),x 也可能不属于A 但属于B ,x 还可能既属于A 又属于B (即x ∈A ∪B );又如在“p 真或q 真”中,可能只有p 真,也可能只有q 真,还可能p,q 都为真.“p 且q ”是指p,q 中的两者.例如,“x ∈A 且x ∈B ”,是指x 属于A ,同时x 也属于B (即x ∈A B ).“非p ”是指p 的否定,即不是p. 例如,p 是“x ∈A ”,则“非p ”表示x 不是集合A 的元素(即x ∈⌝A ).五、巩固运用例1:指出下列复合命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)李强是篮球运动员或跳高运动员;(3)平行线不相交解:(1)中的命题是p 且q 的形式,其中p :24是8的倍数;q :24是6的倍数.(2)的命题是p 或q 的形式,其中p :李强是篮球运动员;q :李强是跳高运动员.(3)命题是非p 的形式,其中p :平行线相交。

《逻辑联结词“且”“或”“非》

《逻辑联结词“且”“或”“非》
思考:如何判定 命题的真假?
p
由于
p 是命题p的否定
因此,若 p是真命题,则 p 必是假命题 若p是假命题,则 p 必是真命题.
例5 写出下列命题p的否定 : (1)p:a是大于5的实数; (2)p:矩形的对角线互相垂直; (3)p:16不是5的倍数; (4)p :我们班上每个5的实数; (2) p : 矩形的的对角线不互相垂直; (3) p : 16是5的倍数; (4) p : 我们班上并非每个同学都能言善辩。
例4 写出下列命题p的否定 : (1)p:7是大于5的实数; (2)p:矩形的对角线互相垂直; (3)p:16不是5的倍数; (4)p :我们班上每个同学都能言善辩。
3.联结词"非"(not ) 设p是一个命题,联结词"非"是对命 题p的否定,得到命题"非p"或"不是p", 记作 p
例如:p:0.5是整数。
p : 0.5是非整数。 0.5不是整数
“若两个三角形全等,则它们相似”
思考:命题的否定与 否命题的区别?
任何一个命题都有否定, 对于命题“若p,则 q”的否定可表示为 “若p,则非q”, 命题“若p,则 q”的否命题可表示为“若非p,则非q”
作业布置
• 必做题:习题1-4 第1,2题
逻辑联结词
“且”、“或”、“非”
教学目标 (一)
认知目标: 了解命题的概念,理解逻辑联结词 “且”、“或”、“非”的含义,掌 握含有“且”、“或”、“非”的复 合命题的构成。 (二) 能力目标: 1 经历抽象的逻辑联结词的过程, 培养学生观察,抽象,推理的思维能 力 。 2 通过发现式的引导,培养学生发 现问题,解决问题的能力 。 (三) 情感目标: 培养学生积极参与,合作交流的主 体意识,并在这过程中,培养学生对

6.逻辑联结词“且”“或”“非”

6.逻辑联结词“且”“或”“非”
解析 因为p或q为假命题,所以p,q均为假命题,p假 ⇔a≤0,q假⇔a≥b,则b≤a≤0. 答案 b≤a≤0
课前预习
课堂互动
课堂反馈
5.分别指出由下列命题构成的“p或q”“p且q”“綈p”形式的命 题的真假. (1)p:3是9的约数,q:3是18的约数. (2)p:菱形的对角线相等,q:菱形的对角线互相垂直. (3)p:方程x2+x-1=0的两实根符号相同, q:方程x2+x-1=0的两实根绝对值相等. (4)p:π是有理数,q:π是无理数.
课前预习
课堂互动
课堂反馈
题型二 綈p命题 【例2】 写出下列命题的否定形式.
(1)面积相等的三角形都是全等三角形; (2)若m2+n2=0,则实数m、n全为零; (3)若xy=0,则x=0或y=0. 解 (1)面积相等的三角形不都是全等三角形. (2)若m2+n2=0,则实数m、n不全为零. (3)若xy=0,则x≠0且y≠0.
课前预习
课堂互动
课堂反馈
知识点三 “非”
(1)定义:一般地,对命题p加以否定,就得到一个新的命题,记 作__綈__p___,读作___非__p__. (2)命题綈p的真假判定
p
綈p




课前预习
课堂互动
课堂反馈
(3)逻辑联结词“非”与集合中的“补集”含义相同,可以
用 “ 非 ” 来 定 义 集 合 A 在 全 集 U 中 的 补 集 : ∁UA = __{_x|_x_∈__U_,__且__x_∉_A_}__.
课前预习
课堂互动
课堂反馈
题型一 p且q命题及p或q命题 【例1】 分别写出下列命题构成的“p且q”“p或q”的形式,并
判断它们的真假. (1)p:函数y=3x2是偶函数,q:函数y=3x2是增函数; (2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角 形的外角大于与它不相邻的任何一个内角;

知识讲解_逻辑联接词“且”“或”“非”

知识讲解_逻辑联接词“且”“或”“非”

简单的逻辑联结词【要点梳理】要点一:逻辑联结词“且”一般地,用逻辑联结词“且”把命题p 和q 联结起来得到一个新命题,记作:p q ∧,读作:“p 且q ”. 规定:当p ,q 两命题有一个命题是假命题时,p q ∧是假命题; 当p ,q 两命题都是真命题时,p q ∧是真命题. 要点诠释:p q ∧的真假判定的理解:1.与物理中的电路类比我们可以从串联电路理解联结词“且”的含义.若开关p ,q 的闭合与断开分别对应命题p ,q 的真与假,则整个电路的接通与断开分别对应命题p q ∧的真与假.2.与集合中的交集类比交集{|}A B x x A x B =∈∈I 且中的“且”与逻辑联结词的“且”含义一样,理解时可参考交集的概念. 要点二:逻辑联结词“或”一般地,用逻辑联结词“或”把命题p 和q 联结起来得到一个新命题,记作:p q ∨,读作:“p 或q ”. 规定:当p ,q 两命题有一个命题是真命题时,p q ∨是真命题; 当p ,q 两命题都是假命题时,p q ∨是假命题. 要点诠释:p q ∨的真假判定的理解:1.与物理中的电路类比我们可以从并联电路理解联结词“或”的含义.若开关p ,q 的闭合与断开对应命题的真与假,则整个电路的接通与断开分别对应命题的p q ∨的真与假.2.与集合中的并集类比并集{|}A B x x A x B =∈∈U 或中的“或”与逻辑联结词的“或”含义一样,理解时可参考并集的概念. 3.“或”有三层含义,以“p 或q ”为例:qp(1)p 成立且q 不成立; (2)p 不成立但q 成立; (3)p 成立且q 也成立.要点三:逻辑联结词“非”一般地,对一个命题p 全盘否定得到一个新命题,记作:p ⌝,读作:“非p ”或“p 的否定”. 规定:当p 是真命题时,p ⌝必定是假命题; 当p 是假命题时,p ⌝必定是真命题. 要点诠释:1.逻辑联结词中的“非”相当于集合中补集的概念,谈到补集必然要说全集,谈论 “非”时也应该弄清这件事是在一个什么样的范围中研究.2.下面是一些常用词的否定:注意:“一定”的否定不是“一定不”. 3.否命题与命题的否定之间的区别:否命题是对原命题的条件和结论分别做否定后得到的命题(否定二次);命题的否定是只对原命题的结论做否定(否定一次),即p ⌝.如:命题p : 若1x =,则(1)(1)0x x -+=. 命题p 的否命题:若1x =/,则(1)(1)0x x -+=/. 命题p 的否定p ⌝:若1x =,则(1)(1)0x x -+=/. 4.“或”、“且”联结的命题的否定形式: “p 或q ”的否定⇔p ⌝且q ⌝; “p 且q ”的否定⇔p ⌝或q ⌝. 要点四:简单命题与复合命题 1. 定义:简单命题:不含逻辑联结词的命题叫简单命题.复合命题:由简单命题与逻辑联结词“或” “且” “非”构成的命题叫做复合命题. 2. 复合命题的构成形式: (1)p 或q ;记作:p q ∨; (2)p 且q ;记作:p q ∧;(3)非p (即命题p 的否定);记作:p ⌝. 3.复合命题的真假判断要点诠释:1. 当p 、q 同时为假时,“p 或q ”为假,其它情况时为真,可简称为“一真必真”;2. 当p 、q 同时为真时,“p 且q ”为真,其它情况时为假,可简称为“一假必假”;3. “非p ”与p 的真假相反.【典型例题】类型一:复合命题的构成例1.分别指出下列复合命题的形式及构成的简单命题. (1)李明是老师,赵山也是老师; (2)1是合数或质数; (3)他是运动员兼教练员.【思路分析】观察命题结构,判断其中是否还有“或” “且” “非”等联结词或相似含义的联结词,利用“或” “且” “非”的概念对复合命题进行结构分解. 【解析】(1)这个命题是“p 且q ”形式,其中p :李明是老师,q :赵山是老师. (2)这个命题是“p 或q ”形式,其中p :1是合数, q :1是质数. (3)这个命题是“p 且q ”形式,其中p :他是运动员,q :他是教练员.【总结升华】正确理解逻辑联结词“或”、 “且”、 “非”的含义是解题的关键.根据上述各复合命题中出现的逻辑联结词或语句的意义确定复合命题的形式.举一反三:【高清课堂:简单的逻辑联结词395484例1】 【变式1】将下列各组命题用“且”联结组成新命题: (1)p : 平行四边形的对角线互相平分, q :平行四边形的对角线相等; (2)p : 集合A 是A B I 的子集, q :集合A 是A B U 的子集; (3)p : 211x +≥, q :34>. 【答案】(1)p q ∧:平行四边形的对角线互相平分且相等; (2)p q ∧:集合A 是A I B 的子集,且是A U B 的子集; (3)p q ∧:211x +≥,且34>.【变式2】判断下列复合命题的形式,并写出构成其的简单命题 (1)1是奇数或偶数; (2)梯形不是平行四边形; (3)2是偶数也是质数. 【答案】(1)p 或q 的形式,其中p :1是奇数, q :1是偶数; (2)非p 的形式, 其中p :梯形是平行四边形;(3)p 且q 的形式,其中p :2是偶数, q :2是质数.例2.判断下列命题中是否含有逻辑联结词“或” “且” “非”,若含有,请指出其中p q 、的基本命题. (1)正方形的对角线垂直相等; (2)2是4和6的约数;(3)不等式2560x x -+>的解为32x x ><或; (4)平行四边形的对角线不一定相等. 【解析】(1)是“p 且q ”形式的命题,其中p :正方形的对角线互相垂直;q :正方形的对角线相等. (2)是“p 且q ”形式的命题,其中p :2是4的约数; q :2是6的约数. (3)是简单命题,而不是用“或” “且” “非”联结的复合命题; (3)是“非p ”形式的命题,其中p :平行四边形的对角线一定相等.【总结升华】对于用逻辑联结词“或” “且” “非”联结的新命题的结构特点不能仅从字面上看它是否含有“或”、“且”、“非”等逻辑联结词,而应从命题的结构来看是否用逻辑联结词联结两个命题.举一反三:【变式】指出下列复合命题的结构,写出构成其的简单命题. (1) 菱形的对角线互相垂直平分;(3)6是12或18的约数. 【答案】(1)p 且q 的形式,其中p :菱形的对角线互相垂直,q :菱形对角线互相平分;(2)非p 的形式,其中p(3)p 或q 的形式,其中p :6是12的约数,q :6是18的约数. 类型二:复合命题真假的判定例3.分别指出下列复合命题的形式及构成它的简单命题,并指出复合命题的真假. (1)8或6都是30的约数; (2)矩形的对角线互相垂直平分; (3)方程210x x ++=无实根.【思路点拨】将复合命题写成“p 或q ”、“p 且q ”、“非p ”的形式,并一一判断p ,q 的真假,再由真值表判断复合命题的真假.【解析】(1)“p 或q ”形式.其中p :8是30的约数, q :6是30的约数, ∵p 假q 真,∴该复合命题为真.(2)“p 且q ”形式.其中p :矩形的对角线互相垂直,q :矩形的对角线互相平分, ∵p 假q 真,∴该复合命题为假.(3)“非p ”形式.其中p : 方程210x x ++=有实根,∵p 假,∴该复合命题为真.【总结升华】 先判断各简单命题的真假,再依据复合命题的构成形式写出复合命题,最后判断复合命题的真假.举一反三:【变式1】已知命题p 、q ,试写出p 或q 、p 且q 、非p 的形式的命题并判断真假. (1)p :平行四边形的一组对边平行, q :平行四边形的一组对边相等; (2)p :2{1,3,5,7}∈, q :2{2,4,6,8}∈; (3)p :1{12}∈,, q :{1}⊆{12},; (4)p :2{|1}x x ∅=<, q :∅◊2{|1}x x <; (5)p :34<, q :34=. 【答案】(1) p 或q :平行四边形的一组对边平行或相等(真命题);p 且q :平行四边形的一组对边平行且相等(真命题); 非p : 平行四边形的一组对边不平行(假命题).(2) p 或q :2{1,3,5,7}∈或2{2,4,6,8}∈,即2{1,2,3,4,5,6,7,8}∈(真命题);p 且q :2{1,3,5,7}∈且2{2,4,6,8}∈(假命题); 非p : 2{1,3,5,7}∈/(真命题). (3) p 或q :1{12}∈,或{1}⊆{12},(真命题); p 且q :1{12}∈,且{1}⊆{12},(真命题); 非p : 1{12}∈/,(假命题). (4) p 或q :2{|1}x x ∅=<或∅◊2{|1}x x <,即2{|1}x x ∅⊆< (真命题);p 且q :2{|1}x x ∅=<且∅◊2{|1}x x <(假命题); 非p : 2{|1}x x ∅=</(真命题).(5) p 或q :34<或34=,即34≤(真命题);p 且q :34<且34=(假命题); 非p : 34</,即34≥(假命题). 【变式2】已知命题p :33ß; q :3>4,则下列判断正确的是( ) A .p q ∨为真,p q ∧为真,p ⌝为假 B .p q ∨为真,p q ∧为假,p ⌝为真 C .p q ∨为假,p q ∧为假,p ⌝为假 D .p q ∨为真,p q ∧为假,p ⌝为假 【答案】D【解析】 p :33ß,是真命题, q :3>4是假命题,根据真值表:p q ∨为真,p q ∧为假,p ⌝为假,所以选D .【变式3】已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∨⌝D .()()p q ⌝∧⌝ 【答案】C【变式2】以下判断中正确的是( )A .命题p 是真命题时,命题“p q ∧”一定是真命题B .命题“p q ∧”为真命题时,命题p 一定是真命题C .命题“p q ∧”为假命题时,命题p 一定是假命题D .命题p 是假命题时,命题“p q ∧”不一定是假命题 【答案】B例4. 如果命题“p 且q ”是假命题,“非p ”是真命题,那么 ( ) A .命题p 一定是真命题 B .命题q 一定是真命题 C .命题q 一定是假命题D .命题q 可以是真命题也可以是假命题【思路点拨】由“非p 是真命题”入手,可判断p 的真假性,再由“p 且q 是假命题”可知q 的真假. 【答案】D【解析】∵“非p ”是真命题, ∴p 是假命题,∵“p 且q ”是假命题,∴q 可以是真命题也可以是假命题, ∴选项为D.【总结升华】含逻辑联结词命题的真假情况,利用真值表逆向思考,从而推断出组成命题的真值情况,再进行判断.【变式】如果命题“()p q ⌝∨”为假命题,则( ) A. p q ,均为假命题 B. p q ,均为真命题C. p q ,中至少有一个为真命题D. p q ,中至多有一个为真命题 【答案】C类型三:命题的否定与否命题例5.写出下列命题的否定和否命题,并判定其真假. (1)p :在整数范围内,a 、b 都是偶数,则a b +是偶数; (2)p :若0x ß且0y ß,则0x y +ß. 【解析】(1) p ⌝:在整数范围内,a 、b 都是偶数,则a b +不是偶数(假命题);p 的否命题是:在整数范围内,若a 、b 不都是偶数,则a b +不是偶数(假命题); (2) p ⌝:若0x ≥且0y ≥,则0x y +<(假命题); p 的否命题是:若0x <或0y <,则0x y +<(假命题). 【总结升华】1. “0x ß且0y ß”的否定是“0x <或0y < ”;“a 、b 都是偶数”的否定为“a 、b 不都是偶数”.2. 命题的否定和否命题是不一样的.举一反三:【变式1】命题 “ABC ∆是直角三角形或等腰三角形”的否定是 ; 【答案】ABC ∆既不是直角三角形,也不是等腰三角形. 【变式2】写出下列命题的否定和否命题,并判定其真假. (1)p :若220x y +=,则x ,y 全为零; (2)p :若3x =且5y =,则8x y +=. 【答案】(1) p 的否定:若220x y +=,则x ,y 不全为零 (假命题);p 的否命题:若220x y +=/,则x ,y 不全为零 (真命题); (2) p 的否定:若3x =且5y =,则8x y +=/ (假命题); p 的否命题:若3x =/或5y =/,则8x y +=/ (假命题). 【变式3】 “220x y +=/”是指 (填出符合条件的所有选项) A .0x ≠且0y ≠ B .0x ≠或0y ≠C .x ,y 至少有一个不是0D .x ,y 都不是0E .x ,y 不都是0 【答案】B 、C 、E【解析】220x y +=/是指x ,y 不同时为零,即x ,y 至少有一个不是0,亦即x ,y 不都是0,0x ≠或0y ≠. 类型四:复合命题的应用例6.已知命题2560p x x +:-ß;命题04q x <<:.若p 是真命题,q 是假命题,求实数x 的取值范围.【解析】 由2560x x +-ß得x ≥3或x ≤2. ∵命题q 为假,∴x ≤0或x ≥4.则{x |x ≥3或x ≤2}∩{x |x ≤0或x ≥4}={x |x ≤0或x ≥4}. ∴满足条件的实数x 的范围为(-∞,0]∪[4,+∞).【总结升华】解答这类问题,应先由每个简单命题为真,确定参数的取值范围,再由复合命题的真值,得参数所满足的条件,进而确定参数的取值范围.举一反三:【变式】已知命题p :方程210x +mx+=有两个不等的负实数根;命题q :方程244(2)10x +m x+-=无实数根.若“p 或q ”为真命题,“p ⌝”为真命题,求m 的取值范围.【解析】∵方程210x +mx+=有两个不等的负实数根, ∴2m >, ∵方程244(2)10x +m x+-=无实数根,∴13m << 由条件可知,p 假q 真,。

高中数学北师大版选修2-1 逻辑联结词“且”“或”“非” 课件(31张)

高中数学北师大版选修2-1  逻辑联结词“且”“或”“非” 课件(31张)
则x3≤1”. [想一想]
1.命题“p且q”、“p或q”的否定是什么?
[练一练]
2.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有
( ) A . p 真q 真 B.p假q假
C.p真q假
D.p假q真
读教材 理要点 一、1.p且q 2.p或q 3.綈p 非p 研重点 究疑点 “綈p且綈q”. 2.B 1 . 提示: “p 且 q” 的否定是 “ 綈 p 或 綈 q” , “ p 或 q” 的否定是 “p或q”的否定“綈p且綈q”为真,则綈p和綈q均为真,
二、含有逻辑联结词的命题的真假
p

q

綈p 假
p或q

p 且q


假 假

真 假

真 真

真 假

假 假
[疑难提示]
命题的否定和否命题的区别
命题的否定是直接对命题的结论进行否定,而否命题是对“若p, 则 q”形式命题的条件和结论分别否定后得到的新命题,如命题“若
x>1,则x3>1”的否定为“若x>1,则x3≤1”,而它的否命题为“若x≤1,
中”应为“p1或p2”.
复合命题的否定
[例2] 写出下列命题的否定: (1)a2+b2<0或a2+b2≥0; (2)集合中的元素是确定的且是无序的; (3)8是12的约数或9是质数; (4)∅={0}且∅⊆∅.
[思路导引]
[解析]
判断命题形式 → 写出命题的否定
(1)a2+b2≥0 且 a2+b2<0;(2)集合中的元素是不确定的或 ∅.
是有序的;(3)8 不是 12 的约数且 9 不是质数;(4)∅≠{0}或∅

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”5121数学

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”5121数学

真假:

(1) p: 12是3的倍数, 真 p∧qq:: 1122是是34的的倍倍数数(b;èishù)且12是4的倍数. 真

(2) p: π > 3 , 假 p∧qq:: ππ大< 于2 ;3且小于2. 假

(3) p:
p∧qq::
666是是是奇奇素数数数,且. 是假素数.

第四页,共二十页。
小组讨论1:“p∧q”的真假与p、q的真假有何关系(guān xì)?
【思考】命题的否定的否定是原命题吗?
提示:是
第十页,共二十页。
探究4:命题的否定(fǒudìng)与否命题的区别? 原命题:正方形的四条边相等.
若一个四边形是正方形,则它的四条边相等.
命题的否定: 正方形的四条边不相等.
若一个四边形是正方形,则它的四条边不相等.
否命题: 若一个四边形不是正方形,则它的四条边不相等.
就得到一个新命题, 记作:“p∧q”,读作:“p且q”
从集合角度看:P∩Q={x|x∈P且x∈Q}
P
P∩Q
Q
第三页,共二十页。
P∩Q
小探究组(讨tànj论iū)11::逻“p辑∧联q”结的词真“假且与”p、q的真假有何关系?
例1 用“且”构造新命题(mìng tí),并判断命题(mìng tí)的
简记(jiǎn jì)“p且q,同真则真,有假则假”
【思考】
1.若“p∧q”是假命题,则命题p、q都是假命题吗?为何? 提示:不一定,因为命题p、q中只要有一个(yī ɡè)是假命题, “p∧q”就是假命题. 2.判断“p∧q”命题真假的关键是什么? 提示:关键是判断命题p、q的真假.
第五页,共二十页。

或且非ppt课件

或且非ppt课件
(3)|a|≥0, 真 |a|<0; 假
(4)方程x2-4=0无实根, 假 方程x2-4=0有实根. 真
2.一般地,对一个命题p全盘否定,就得到一个新命题,
记作﹁p,读作“非p”或“p的否定”,那么﹁p的否定
是什么?
﹁p的否定是p 3.命题p与﹁p的真假有什么关系?
p与﹁p必有一个是真命题,另一个是假命题.
即 pq 。
因为p真、q假, 所以命题pq 是真命题。
(2) 集合A是A∩B的子集或是A∪B的子集; 解:命题“集合A是A∩B的子集或是A∪B的子集” 是或命题: p:集合A是A∩B的子集; q:集合A是A∪B的子集;
用“或”联结后构成新命题,即 pq 因为p假q真,所以命题pq是真命题。
口诀:全真为真,有假即假.
2.“或”:当p,q两个命题中有一个命题是真命题时, p q是真命题; 当p,q都是假命题时,p q是假命题;
口诀:全假为假,有真即真.
逻辑联结词“非”
1.下列各组语句是命题吗?它们之间有什么关系?并判明真假. (1)35能被5整除, 真 35不能被5整除; 假
(2)函数y=lgx是偶函数, 假 函数y=lgx不是偶函数; 真
(3) 周长相等的两个三角形全等或面积相等的两 个三角形全等。
解:命题“周长相等的两个三角形全等或面积相 等的两个三角形全等”是或命题:
p:周长相等的两个三角形全等 q:面积相等的两个三角形全等
用“或”联结后构成的新命题,即pq, 因为p假q假,所以命题pq假。
如果pq为真命题, 那么pq一定是真命题吗?
金太阳好教育云平台
1.3 简单的逻辑联结词
1.3.1 且(and) 1.3.2 或(or)
1 理解逻辑联结词“且”的含义

§4逻辑联结词“且”“或”“非”

§4逻辑联结词“且”“或”“非”

(2)p∧q:-3与-1是方程x2+4x+3=0的解,是真命 题. p∨q :- 3 或- 1 是方程 x2 + 4x + 3 = 0 的解,是真命 题. ∵p是真命题,∴綈p是假命题. 真命题; “p∧q”:集合中的元素是确定的且是无序的,是真 命题; “綈p”:集合中的元素是不确定的,是假命题. 綈p:-1不是方程x2+4x+3=0的解,
R 上的增函数,若 p 或 q 为真命题,p 且 q 为
解:不等式|x-1|>m-1的解集为R,须m-1<0, 即p是真命题时,m<1;函数f(x)=(5-2m)x是R上 的增函数,须5-2m>1,即q是真命题时,m<2.∵p 或q为真命题,p且q为假命题, ∴p、q中一个为真命题,另一个为假命题. (1)当p真,q假时,m<1且m≥2,此时无解;
解:(1)否定形式:存在面积相等的两三角形不全等. 否命题:面积不相等的三角形不是全等三角形. (2)否定形式:存在实数m、n、a、b满足m2+n2+a2+ b2=0,但实数m,n,a,b不全为零. 否命题:若m2+n2+a2+b2≠0,则实数m,n,a,b不 全为零. (3)否定形式:存在x、y满足xy=0,但x≠0且y≠0. 否命题:若xy≠0,则x≠0且y≠0.
变式训练5、写出命题的否定形式和否命 题:自然数的平方是正数.
否定形式:存在平方不是正数的自然数. 否命题:如果一个数不是自然数,则它的
平方不是正数.
题型六、求解含逻辑联结词命题中的参数
例 6、已知命题 p:关于 x 的不等式|x-1|>m-
x
1 的解集为 R,命题 q:函数 f(x)=(5-2m) 是 假命题,求实数 m 的取值范围.
(3)“p∨q”:集合中的元素是确定的或是无序的,是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p p
若p是真命题,则 非p 必是假命题; 若p是假命题,则非p 必是真命题.
例1:指出下列命题的形式及构成它的简 单命题:
(1)24既是8的倍数,也是6的倍数; (2)李强是篮球运动员或跳高运动员; (3)平行线不相交;
• 例2: 分别指出下列命题的形式
(1)8≥7; (2)2是偶数,且2是质数; (3)π不是整数;
一般地,用逻辑联结词”且” 把命题p和命题q联结起来.就得
到一个新命题p且q”.
规定:当p,q都是真命题时, p q 是真 命题;当p,q两个命题中有一个命题
是假命题时, p q是假命题.
p
q
全真为真,有假即假.
一般地,用逻辑联结词”或”把 命题p和命题q联结起来.就得到一个 新命题p或q.
规定:当p,q两个命题中有一个是真命题 时, p或q 是真命题;当p,q两个命题中都是 假命题时, p或q 是假命题.
开关p,qp的闭q 合
对应命题的真假, 则整个电路的接 通与断开分别对 应命题 的真与假.
pq
pq
p q
一般地,对一个命题p全盘否定,就得 到一个新命题,记作
p
读作”非p”或”p的否定”
例3:写出下列命题的非命题:
(1)p:对任意实数x,均有x2-2x+1≥0; (2)q:存在一个实数x,使得x2-9=0; (3)“AB∥CD”且“AB=CD”; (4)“△ABC是直角三角形或等腰三角形”.
例4 分别写出由命题 “p:平行四边形的对角线相等”, “q:平行四边形的对角线互相平分” 构成的“P或q”,“P且q”,“非p”形式的命题。
本节须注意的几个方面: (1)“≥”的意义是“>或=”.
(2)“非”命题对常见的几个正面词语的否 定或. = > 是 都是 至多 至少 任 所有
有一 有一 意 的 个 个的
且 ≠ ≤ 不 不都是 至少 没有 某 某些

有两 一个 个

注意
逻辑联结词中的”或”相当于集合中的”并 集”,它与日常用语中的”或”的含义不同.日 常用语中的”或”是两个中任选一个,不能都选, 而逻辑联结词中的”或”,可以是两个都选,但 又不是两个都选,而是两个中至少选一个,因此, 有三种可能的情况.
逻辑联结词中的”且”相当于集合中的”交 集”,即两个必须都选.
逻辑பைடு நூலகம்结词且或非
我们来看几个命题:
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数. “或”,“且”, “非”称为逻辑联结词.
含有逻辑联结词的命题有以下三 种形式:
(1)P且q. (2)P或q. (3)非p.
思考?
下列三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除.
相关文档
最新文档