怎样找等量关系列方程
小学生如何寻找等量关系列方程

小学生如何寻找等量关系列方程等量关系是表示数量间的相等关系。
列方程解应用题时,思路的重点是找出等量关系,这样就比较容易列出方程了。
1、根据题目中的关键句找等量关系。
这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。
在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。
◆例如:星期天,妈妈上街买了一些水果,妈妈买20个苹果,买苹果的个数是西瓜的3倍多1个,西瓜有多少个?这道题的关键句是:苹果的个数是西瓜的3倍多1个,从中可以找出等量关系:西瓜×3-1=苹果的个数。
设西瓜的个数为ⅹ,就可以列方程为:3X-1=20◆又如:小红在假日里折纸花71朵,是小军折叠的朵数的3倍还多2朵,小军折叠了多少朵?紧扣题中的关键句“是小军折的朵数的3倍还多2朵”,我们即可以来列出等量关系式:小军折叠的朵数×3+2=小红折叠的朵数。
设小军折叠的朵数为ⅹ,则有ⅹ×3+2=712、用公式、常见数量关系式作等量关系。
每份数×份数=总数结余=收入-支出已生产的量+还需生产量=生产总量单价×数量=总价工作效率×工作时间=工作总量或工作效率和×工作时间=工作总量速度×时间=路程或速度和×时间=路程等等◆例如:甲、乙两人加工520个零件,甲每小时加工5个,乙每小时加工8个,两人合做几小时完成?根据工程问题等量关系式:工作效率[和]×工作时间=工作总量设两人合做X小时完成,列方程:(5+8)X=520◆在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程:设梯形的高为X分米,(4+8)X÷2=303、根据生活的经验找出等量关系列方程◆例如:我有10块糖,吃了几块后,又买来4块,现在我有11块糖,我吃了几块?本题的等量关系:原来的糖数-吃的糖数+又买来的糖数=现在的糖数。
找等量关系式的四种方法

找等量关系式的四种方法在数学中,等量关系式是指具有相等关系的数学表达式,即两个或多个数学表达式之间的数值相等。
寻找等量关系式的四种方法如下:1.代换法:通过代换法可以求得等量关系式。
首先,我们将一个数或变量代入另一个数或变量的表达式中,然后求解出两者之间的数值关系。
这种方法常见于解方程问题,例如解一次方程、二次方程或其他高次方程。
例如,对于方程2x+3=11,我们可以通过代换法找到等量关系式。
首先,我们将x代入方程中,得到2*4+3=11,进而可以得到等量关系式2x+3=112.化简法:通过化简法可以找到等量关系式。
化简就是对一个数学表达式进行简化,将复杂的表达式转化为简单的形式。
通过将两个或多个数学表达式化简为同一形式,可以得到等量关系式。
例如,对于表达式2x+3x,我们可以进行化简得到5x。
因此,可以得到等量关系式2x+3x=5x。
3.分解法:通过分解法可以找到等量关系式。
分解就是将一个复杂的数学表达式分解为几个简单的数学表达式之和或乘积的形式。
通过将两个或多个数学表达式进行分解,可以得到等量关系式。
例如,对于表达式4x+5,我们可以将其分解为2x+2x+1+1+1,进而得到等量关系式4x+5=2x+2x+1+1+14.变换法:通过变换法可以找到等量关系式。
变换就是对一个数学表达式进行等式变形,得到等价但形式不同的数学表达式。
通过对数学表达式进行变换,可以得到等量关系式。
例如,对于表达式4x=2x+6,我们可以通过变换法得到等量关系式4x-2x=6总结起来,寻找等量关系式的方法有代换法、化简法、分解法和变换法。
每种方法都有其应用的场景,根据具体问题选择适应的方法可以更快有效地求得等量关系式。
找等量关系式的四种方法

找等量关系式的四种方法
等量关系式指的是具有相同数值的两个或多个数的关系。
以下是四种方法来找到等量关系式:
1.字母代换法:通过字母代换法,我们可以用一个字母或符号代替一个或多个未知数。
通过这种方式,我们可以将一个问题转化为一个或多个方程,从而找到等量关系式。
例如,假设一个数字与它本身加上12的和的两倍之差等于36,则可以设这个数字为x。
根据给定条件,我们可以列出等式2x-(x+12)=36、通过解这个方程,我们可以找到等量关系式x=24
2.图形法:图形法通过绘制图表或图形来找到等量关系式。
例如,如果给定一个线性方程y=2x+3,并要求找到使得y=7的x的值,我们可以绘制这个线性方程的图表。
通过在图表中找到y=7对应的x值,我们可以找到等量关系式x=2
3.实例法:实例法通过列举具体的实例来找到等量关系式。
例如,假设一辆汽车每小时以60公里的速度行驶,我们可以通过具体的实例来找到等量关系式。
如果汽车行驶了2小时,那么汽车行驶的总距离为60公里/小时×2小时=120公里。
通过这一实例,我们可以找到等量关系式总距离=60公里/小时×时间。
4.探究法:探究法通过不断的探究和推断来找到等量关系式。
例如,在解决几何问题时,我们可以根据已知条件和几何关系来推断出等量关系式。
通过不断地探究几何图形的特征和性质,我们可以找到等量关系式来解决问题。
需要注意的是,在寻找等量关系式时,我们还需要考虑问题的上下文和特定要求。
在确定等量关系式后,我们还需要进行验证和求解,以确保等量关系式的准确性和可行性。
列方程式解应用题时如何寻找等量关系

列方程式解应用题时如何寻找等量关系列方程解应用题是初中数学教学中的重点和难点,而列方程解应用题的关键是寻找等量关系。
如何寻找等量关系,下面列举几种方法:一.利用常见的基本数量关系式确定等量关系一些应用题,本身有很好的相等关系,如:行程问题:路程=速度某时间工程问题:工作量=工作效率某工作时间浓度配比问题:溶质重量=溶液重量某百分比浓度利息问题:利息=本金某利率销售问题:商品利润=商品售价-商品进价商品利润率=例1:(七年级教材上册84页第八题)一辆汽车已行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?分析:利用:路程=速度某时间,设某月后这辆汽车将行驶20800千米,则:12000+800某=20800评析:本题是行程问题,要求掌握基本关系式。
二.利用“三分法”确定等量关系“三分法”通常是指题目中有三个量,已知其中一个量,设定一个未知量(通常为题中所求未知数),然后用第三个量来寻找等量关系:例2:(七年级教材上册106页第四题)某中学学生自己动手整修操场,如果让七年级学生单独工作,需要7.5小时完成;如果让八年级学生单独工作,需要5小时完成。
如果让七、八年级学生一起工作一小时,再由八年级学生单独完成剩余部分,共需多少时间完成?分析:此题是工程问题。
题中共有三个量:工作时间、工作效率、工作总量。
若设共需要某小时完成(也可设八年级学生单独完成剩余部分需某小时),七年某100%等。
级、八年级学生的工作效率是已知的,则应以工作总量为等量关系,那么,列出的方程为:评析:此题解题方法适用于题中有三个量的问题:行程问题、工程问题、浓度配比问题、销售问题等。
对于不同问题中的三个量,一定要弄清已知量、未知量,然后根据题中数量关系列出方程。
三.利用题中的关键性语句确定等量关系有些问题,根据题中的关键性语句反应的数量关系就可以找出等量关系。
例3:(七年级教材下册98页第六题)顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数比到云水洞的人数的2倍少1,到两地旅游的人数各是多少?分析:题中关键性语句是“200人”、“到花果岭的人数比到云水洞的人数的2倍少1”。
列方程解决问题找等量关系常用的几种方法

列方程解决问题找等量关系常用的几种方法1、抓住题目中的关键句。
比如男生有63人,比女生人数的3倍还多3人。
女生有多少人?题目中的关键句是男生人数比女生人数的3倍多3人,抓住此关键句可以列出这样的等量关系式:女生人数×3+3=男生人数。
(当然还可以列出等量关系式:男生人数-女生人数×3=3等)。
2、运用常用的数量关系和计算公式。
如速度×时间=路程,底×高÷2=三角形的面积等等。
3、抓住不变量。
如正反比例解决问题中的比值或乘积一定。
又如四(1)男生人数是女生人数的5/6。
这学期转来1名女生,现在男生人数是女生的4/5。
四(1班)原来有多少名同学?这里男生人数是一个不变量,原来女生人数是男生的6/5,现在女生人数是男生的5/4。
现在女生人数-原来女生人数=1,也就是男生人数的5/4-男生人数的6/5=1,根据此等量关系就能列出方程,求出男生的人数,进而求出原来女生人数和原来全班人数。
4、根据题目叙述情节找等量关系。
如仓库上午运进货物123吨,下午又运进一批货物,现在仓库里一共有货物345吨。
下午运进货物多少吨?根据题目的叙述列出这样的等量关系式样:上午运进货物吨数+下午运进货物吨数=现又货物吨数。
5、画线段图找等量关系。
例如美术兴趣小组一共有男女生24人,其中女生人数是男生人数的2倍。
美术兴趣小组中男女生各有几人?先引导学生找出其中的1倍量(男生人数),再画出线段图(男生人数是1份,女生人数就是这样的2份,从图上可以看出:女生人数+女生人数×2=24。
据此可以列出方程。
再如,用分数解决实际问题,历来是学习的难点,学生不容易理解。
教师可以引导学生画出线段图,帮助学生理解,找准对应关系,进而列出等量关系式。
画线段图的关键仍是找准哪个量是单位“1”,其它量都是与单位“1”相比较而言的。
而理解单位“1”,重点要看清是哪个量的几分之几。
寻找等量关系的方法

在用方程解决实际问题时,找准等量关系是关键。
怎样找准等量关系呢?下面给同学们介绍如下方法:一、抓住题目中的关键词例1:食堂原有一批大米,吃了360千克,还剩130千克,食堂原有多少千克大米?分析:设食堂原有x 千克大米。
根据题目中的关键词“原有”“吃了”“还剩”可得等量关系:原有的大米千克数-吃了的大米千克数=还剩的大米千克数,由此可列出方程:x -360=130,x =490。
例2:小华有360元钱,比小红多60元,小红有多少元钱?分析:设小红有x 元钱。
根据题目中的关键句“小华有360元钱,比小红多60元”可得等量关系:小红的钱+60=小华的钱,由此可列出方程:x +60=360,x =300。
寻找等量系的方法◎刘小燕二、抓住相关的计算公式例3:已知一个三角形的底长12米,面积是54平方米,它的高是多少米?分析:设它的高是x米。
根据三角形的面积计算公式:三角形的面积=底×高÷2,列方程:12x÷2=54,x=9。
三、抓住四则运算的意义应用题中数量关系大多用和、差、倍等术语来表达。
在解题时可凭借这些术语,按事情发展的关系去找等量关系。
例4:一批粮食,先运走230吨,又运走63吨后,还剩127吨,这批粮食原来有多少吨?分析:设这批粮食原来有x吨。
题中的“还剩”就表示了运走两次后剩下的数量,根据事情发展的顺序可找到等量关系:原有的-先运走的-又运走的=剩下的,列方程为:x-230-63=127,x=420。
四、抓住常见的数量关系常见的数量关系有:单价×数量=总价;亩产量×亩数=总产量;工作效率×工作时间=工作总量等。
在掌握数量关系的基础上,根据题意找等量关系。
例5:每千克苹果12.5元,225元钱可以买多少千克苹果?分析:根据“单价×数量=总价”能很快找出等量关系。
设可以买x千克苹果,可列出方程:12.5x=225,x=18。
如何找等量关系列方程【优质】

如何找等量关系列方程★方程指的是“含有未知数的等式”。
☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。
等量关系式定义: 数量之间的相等的关系式叫做等量关系式。
找等量关系式的原则: 一般来说,等量关系式能列成加法的,就不列成减法的,能列成乘法的就不列成除法的。
列方程:对应着等量关系式,把数量一个一个代进去列出方程,把未知数用“X”替代(一般情况可将问题设为未知数)。
则列方程解应用题的关键是——找出相等关系......,找出了相等的关系,方程也就可以列出来了.找等量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
第一,找出题目中的键句;第二,按照关键句中,文字表述的顺序列出等量关系式。
例题:钢琴的黑键有36个,比白键少16个,白键有多少个?第一,找出关键句“比白键少16个”。
第二,按照关键句中文字描述的顺序“比白键少”,“少”就是“减”.等量关系式:白键的个数一16个=黑键的个数解:设白键有X个。
方程: X -16=36注意:少就用减,多就用加。
二、根据常见的数量关系找等量关系最常见的数量关系:1.速度×时间=路程(路程÷速度=时间路程÷时间=速度)2.单价×数量=总价(总价÷单价=数量总价÷数量=单价)★关于打折的问题:打几折=原价×百分之几十3.工作效率×工作时间=工作总量(工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率)4.增长后的量=原量(1+增长率) 降低后的量=原量(1-降低率)5.单价×数量=总价;6.速度×时间=路程;7.单产量×数量=总产量例题:王老师买笔记本一共付了78元,每本笔记本6.5元,王老师买了多少本笔记本?等量关系式:单价×数量=总价解:设老师买了X本笔记本。
初中方程找等量关系的口诀

初中方程找等量关系的口诀
1.抓住关键句,寻找等量关系:
●找到题目中的“等于”、“比…多”、“比…少”、“是…的几倍”、“一共”、
“相差”等关键词汇,这些往往暗示着等量关系的存在。
●例如:“小明和小红共收集了100个瓶子”,其中的“共”字就提示了等
量关系。
2.运用数量关系式建立等量关系:
●根据常见数学模型建立等式,如:工作总量=工作效率×工作时间、
路程=速度×时间、总价=单价×数量、总产量=单产量×面积等。
●如题目描述的是某个具体问题的情景时,可以利用这些公式来构建
等量关系。
3.根据图形或线段图找等量关系:
●对于几何问题,通过画出线段图、面积图等可视化工具,直观地展
示出各个部分之间的数量关系。
●比如在解梯形面积问题时,可以通过梯形面积公式(上底+下底)×
高÷2建立等量关系。
4.应用代数思想抽象化处理:
●把未知量用字母表示,并根据题意列出方程,通过运算求解。
●例如:“已知甲车速度为每小时38千米,两车相遇时,它们走过的
路程之和等于总路程237千米。
”可以设乙车速度为X,得到等量关
系式(38+X)×3=237。
总结起来就是:
•关键句里抓等式,
•数量关系建模快,
•几何图形显关系,
•未知字母列方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:1、一个长方形的面积是100平方厘米,它的 长是20厘米,宽是多少厘米?
数量关系:长×宽=长方形面积
2、一个长方形的长是0.7m,周长是2.4m。它 的宽是多少m?
数量关系:(长+宽) ×2=长方形周长
3.根据关键词语找等量关系。
在实际问题的叙述中经常会出现“一共” “比……多” “比……少” “几倍” 以及 “和、差、积、商” 等词语 我们可以抓住这些关键的词语来找等量关系。
练一练: (说出根据什么数量关系来列方程)
1.小英有中国邮票46套,比外国邮票的3倍多1套。 小英有外国邮票多少套?
2. 水果店运进菠萝250千克,比苹果重量的2倍 少10千克,运进苹果多少千克?
本内容仅供参考,如需使用,请根据自己实际情况更改后使用!
放映结束 感谢各位批评指导!
让我们共同进步
1.根据常见的数量关系找等量关系。 常见的数量关系有: 部分+部分=总和 速度×时间=路程 单价×数量=总价
工作效率×工作时间=工作总量 例:一辆汽车每小时行驶56千米,几小时
可行驶336千米?
数量关系:速度×时间=路程2.根据图形的计算公式源自等量关系。 常见的图形计算公式有:
(长+宽) ×2=长方形周长 边长×4=正方形周长
例: 学校开展植树活动,五年级植树80棵, 比四年级多植树26棵,四年级植树多少棵?
数量关系:四年级植树的棵数+26=五年级植树的棵数
4.根据事情发展的经过找等量关系。
实际问题都有个发展顺序,我们可以 根据事情发展的经过来找等量关系。
例1: 学校食堂原来有一堆煤,用去3.6吨后, 还剩4.8吨。这堆煤原来有多少吨? 数量关系:食堂原来的煤-用去的煤=还剩的煤 例1:水果店原来有苹果45千克,又运进一些 后,水果店现在有苹果103千克。水果店运 进苹果多少千克? 数量关系:原有的苹果+运进的苹果=现在的苹果