连续型随机变量及其概率密度
合集下载
概率论-2-3连续型随机变量及其概率密度

x)
1 100
e
x
100
,
x0
0,
其它
(1)求元件寿命至少为200小时的概率;
(2)将3只这种元件连接成为一个系统. 设系统 工作的方式是至少2只元件失效时系统失效,又设3 只元件工作相互独立. 求系统的寿命至少为200小时 的概率.
解(1)元件寿命至少为200小时的概率为PX 200 f Nhomakorabea(x)dx
Y ~ B(3,1 e2)
2只及2只以上元件的寿命小于200小时的概率为
PY 2 3(1 e2)2(e2) (1 e2)3
2
PY 2 3(1 e2)2(e2) (1 e2)3
2 (1 e2)2(2e2 1) 0.950. 故系统的寿命至少为200小时的概率为
p 1 PY 2 1 0.950 0.050
1 ba
ab
即是说 X落在区间(a,b)内任意等长小区间 上的概率相等,在(a,b)内两个等长小区间上, f(x)之下的小长方形的面积相等,就是称为均匀分 布的原因.
均匀分布常见于下列情形
如在数值计算中,由于四舍五 入,小数点后某 一位小数引入的误差.
公交线路上两辆公共汽车前后通过某汽车停车 站的时间,即乘客的候车时间等.
本节练习
习题二:8,9,10
§2.3 连续型随机变量及其概率密度
连续型随机变量及其概率密度的定义 概率密度的性质 三种重要的连续型随机变量 小结
连续型随机变量X所有可能取值充满一个区间,
对这种类型的随机变量,不能象离散型随机变量那 样, 以指定它取每个值概率的方式, 去给出其概率 分布,而是通过给出所谓“概率密度函数”的方式.
f
(
x)
连续型随机变量及其概率密度函数

是一个连续型随机变量的概率密度函数.
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)
连续型随机变量及其概率密度

问:怎样求一般正态分布的概率?
对一般的正态分布 :X ~ N ( , 2)
其分布函数 F( x)
1
e d t x
(t )2 2 2
2
作变量代换s
t
F(x)
1 2
x
s2
e 2ds
x
即 X ~ N ( , 2) 则 X ~ N ( 0 ,1)
P{a
X
b}
F (b)
222 0.3830
3) 0.6826 4) 0.4981
0.02
-10
-5
a
5
b
x
例1 有一批晶体管,已知每只的使用寿命 X 为 连续型随机变量,其概率密度函数为
f
(
x)
c x2
,
0,
x 1000 其它
( c 为常数)
(1) 求常数 c
(2) 已知一只收音机上装有3只这样的晶体管,
每只晶体管能否正常工作相互独立,求在
使用的最初1500小时只有一个损坏的概率.
(3) P(X>1.76)= 1 – P(X≤1.76)= 1 – Φ(1.76)
=1 – 0.9608 =0.0392 (4) P(X< – 0.78)= Φ(- 0.78) =1-Φ(0.78)
=1 – 0.7823 =0.2177 (5) P(|X|<1.55)= 2Φ(1.55) – 1 (6) P(|X|>1.55)= 1 – P(|X|<1.55)
即: P( X a) 0, a为任一指定值
事实上 { X a} {a x X a}
x 0
0 P{ X a} P{a x X a} aax f ( x)d x
连续型随机变量及其概率密度

1. 均匀分布
设连续型随机变量
X
具有概率密度f
(
x)
b
1
a
,
a x b,
0,
其它,
则称 X 在区间 (a, b) 区间上服从均匀分布,记为 X ~ U (a, b).
说明:
对c, l R, 如果(c, c l ) (a, b), 则
cl
l
P(c X c l ) c
f ( x)dx ba
1
( x )2
e , 2 2
2
x
, ( 0)为常数, 则称X服从正态分布,记作:X : N(, 2).
0, 1时, X : N (0,1)
概率密度: ( x)
1
x2
e2
2
说明:
f(x)满足概率条件: f(x) 0,
+ f(x)dx 1 -
证明(2): 令 x- t, 则x t, dx dt
解 : (1) 由概率密度的定义 :
f ( x)dx 1
-
f ( x)dx
3 C(9 x2 )dx 1
-
-3
C 1 36
(2)
P{ X 0}
0 -3
1 36
(9
x2 )dx
1 36
(9x
x3 3
)
|03
1 2
P{1 X 1} 1 1 (9 x2 )dx 13
-1 36
k 0
n大,p小,np=3,用=np=3的泊松近似
上式 1 N 3k e3 0.01
k0 k !
N 3k e3 0.99
k0 k !
查泊松分布表,最小N=8。至少配8名维修工。
第三节连续型随机变量及其概率密度

则称X服从0 1分布.
这时X的分布函数为:
F(x)
1
0, x p,0
0, x
1,
1, x 1.
2. 二项分布:若随机变量 X所有可能取值为 0,1,,n,且分布律为:
P(X
k)
C
k n
pk qnk,k
0,1,,n,0
p
1,q
1
p,
则称X服从二项分布, 记为:X~B(n,p). 3. 泊松分布:若随机变量 X所有可能取值为 0,1,2,,且分布律为:
2
Acos
xdx
2 A sin
x
2
0
2 A,
2A 1,
(2) (3)
P(0 X
当x
2
时4,) F
( x042)故12coAsxxdf12x(.t)d12t
sin
x
4
0
x
0dt
2 4
.
0.
当
2
x
2
时,
F
(
x)
2 0dt
x
2
1 2
cos
tdt
1 2
(sin
x
1).
当x
2
时,F
6
三、几种常见的连续型分布
1. 均匀分布:设X的概率密度为
f
(
x)
b
1
a
,
a x b,
0, 其它.
则称X在区间[a,b]上服从均匀分布,记为 X~U[a,b].
0, x a,
易求X的分布函数为
F
(
x
)
x b
a a
,a
1, x
连续型随机变量及其概率密度

密度函数的验证
⑴.对任意的 x,有 f x 0;
a
b
⑵. f xdx f xdx f xdx f xdx
a
b
b
1
dx
a ba
由此可知,
f
x
b
1
a
0
a xb 其它
确是密度函数.
均匀分布的分布函数
则 X的分布函数为
若随机变量 X 服从区间a, b上的均匀分布,
0
F
x
x b
1
所以 A是不可能事件 P( A) 0 反之则不成立
如何求分布函数
F(x) Pk
xk x
离散 阶梯函数
x
F(x) f(t)dt -
连续 连续函数
若概率密度f(x)为分段函数,则积分也要分段考虑.
例1 P71 18(2)
设随机变量X的密度函数为
x 0 x 1
f x 2 x 1 x 2
§4 连续型随机变量及其概率密度
概率密度及其性质 均匀分布 指数分布 正态分布
一、定义:对于随机变 量 X的分布函数 F (x),若存在非负可积函数
f(x) 使 x R , 有
F(x)
x
-
f(t)dt
则称 X为连续型随机变量 , f ( x)为X的概率密度函数或概率 密度.
二、性质 : 00 连续型随机变量的分布 函数F ( x)必为连续函数 (离散
0.1}
0.1 f(x)dx
0.1 3e 3xdx
e 3x
0.1
e 0.3
F
(
x)
0 x
0
3e3t dt
1
e3x
x0 x0
五、常见的连续型分布 (一)、均匀分布
连续型随机变量及其概率密度
是一个随机变量, 且X ~ N (d , 0.52 ).
(1) 若d 90, 求 X 小于 89 的概率.
(2) 若要求保持液体的温度至少为 80oC 的概率不
低于 0.99,问d 至少为多少? 解 (1) 所求概率为
P{ X
89}
89 90 0.5
(2)
1
(2)
三、小结
1. 连续型随机变量
x
F(x) f (t)dt
分布函数 概率密度
2. 常见连续型随机变量的分布
均匀分布
正态分布(或高斯分布)
指数分布
3. 正态分布是概率论中最重要的分布 正态分布有极其广泛的实际背景, 例如测量
误差, 人的生理特征尺寸如身高、体重等 ,正常 情况下生产的产品尺寸:直径、长度、重量高度, 炮弹的弹落点的分布等, 都服从或近似服从正态 分布.可以说,正态分布是自然界和社会现象中最 为常见的一种分布, 一个变量如果受到大量微小 的、独立的随机因素的影响, 那么这个变量一般 是一个正态随机变量.
F(x)
1
1x
e 2000
,
0,
x 0, x 0.
(1) P{X 1000} 1 P{X 1000} 1 F (1000)
1
e 2 0.607.
(2) P{ X 2000 X 1000} P{ X 2000, X 1000} P{ X 1000} P{ X 2000} P{ X 1000}
1
e
(
x μ 2σ2
)2
d
x
2-4_连续型随机变量及其概率密度
第2.4节 连续型随机变量及密度函数
1
连续型随机变量及其概率密度
1.定义 定义
设 X 为随机变量 , F ( x )为 X 的分布函数, 若存在 非负函数f ( x ), 使对于任意实数 x 有 F ( x) = ∫
x −∞
f (t ) d t ,
则称 X 为连续型随机变量, 其中 f ( x ) 称为 X 的概 率密度函数, 简称概率密度.
为离散型随机变量, 若 X 为离散型随机变量
{ X = a } 是不可能事件 ⇔ P{ X = a} = 0.
离 散 型
4
例1
设随机变量 X 具有概率密度
0 ≤ x < 3, kx, x f ( x) = 2 − , 3 ≤ x ≤ 4, 2 0, 其它. (1) 确定常数 k ; (2) 求 X 的分布函数; 7 (3) 求 P{1 < X ≤ }. 2
的正态分布或高斯分布, 记为
X ~ N ( µ , σ 2 ).
22
正态概率密度函数的几何特征
1 ( 2) 当x = µ时, p( x )取得最大值 ; 2 πσ
(1) 曲线关于 x = µ 对称;
(4) 曲线在 x = µ ± σ 处有拐点;
23
(3) 当 x → ±∞ 时, f ( x) → 0;
x 1 −θ k e , f ( x) = θ 0,
x ≥ 0, x < 0.
1 且已知 P{ X > 1} = , 试求常数 θ 2
10
例
设随机变量 X : 0, 2 F ( x) = Ax + B, 1, x ≤ 0, 0 p x ≤ 1, x > 1.
试求常数A,B以及密度函数f(x)。
1
连续型随机变量及其概率密度
1.定义 定义
设 X 为随机变量 , F ( x )为 X 的分布函数, 若存在 非负函数f ( x ), 使对于任意实数 x 有 F ( x) = ∫
x −∞
f (t ) d t ,
则称 X 为连续型随机变量, 其中 f ( x ) 称为 X 的概 率密度函数, 简称概率密度.
为离散型随机变量, 若 X 为离散型随机变量
{ X = a } 是不可能事件 ⇔ P{ X = a} = 0.
离 散 型
4
例1
设随机变量 X 具有概率密度
0 ≤ x < 3, kx, x f ( x) = 2 − , 3 ≤ x ≤ 4, 2 0, 其它. (1) 确定常数 k ; (2) 求 X 的分布函数; 7 (3) 求 P{1 < X ≤ }. 2
的正态分布或高斯分布, 记为
X ~ N ( µ , σ 2 ).
22
正态概率密度函数的几何特征
1 ( 2) 当x = µ时, p( x )取得最大值 ; 2 πσ
(1) 曲线关于 x = µ 对称;
(4) 曲线在 x = µ ± σ 处有拐点;
23
(3) 当 x → ±∞ 时, f ( x) → 0;
x 1 −θ k e , f ( x) = θ 0,
x ≥ 0, x < 0.
1 且已知 P{ X > 1} = , 试求常数 θ 2
10
例
设随机变量 X : 0, 2 F ( x) = Ax + B, 1, x ≤ 0, 0 p x ≤ 1, x > 1.
试求常数A,B以及密度函数f(x)。
连续型随机变量与概率密度函数
不可能事件的概率为零,但概率为零的事件不一定是不可能事件。
同样:
必然事件的概率为1,但概率为1的事件不一定是必然事件。
01
若X是连续型随机变量,
02
{ X=a }是不可能事件,则有
03
若 X 为离散型随机变量,
04
注意
05
连
06
续
07Байду номын сангаас
型
08
离
09
散
10
型
STEP4
STEP3
STEP2
由
得
解得
于是
的概率密度为
设随机变量
具有概率密度
(1)
确定常数
【练习】
解
由
得
解得
于是
的概率密度为
其它
.
设随机变量
具有概率密度
求
的分布函数
【练习】
解
设随机变量
01
具有概率密度
02
03
求
04
解
05
或
06
【练习】
07
例4 设随机变量 K 的概率密度为
于是, 所求的概率为
06
可见
04
试求方程 有实根的概率.
(1) P{ x1<X ≤x2} = P{ x1≤X ≤x2} = P{ x1<X <x2} = P{ x1≤X <x2} = F(x2) -F(x1) =
(2)
点概为零的重要启示
若 A 为不可能事件,则 P (A) = 0 ; 然而 P (A) = 0 时, A 却不尽为不可能事件 .
那么就称该随机变量 X 服从均匀分布,也称 X为均匀分布变量(简称均匀量),并记为
同样:
必然事件的概率为1,但概率为1的事件不一定是必然事件。
01
若X是连续型随机变量,
02
{ X=a }是不可能事件,则有
03
若 X 为离散型随机变量,
04
注意
05
连
06
续
07Байду номын сангаас
型
08
离
09
散
10
型
STEP4
STEP3
STEP2
由
得
解得
于是
的概率密度为
设随机变量
具有概率密度
(1)
确定常数
【练习】
解
由
得
解得
于是
的概率密度为
其它
.
设随机变量
具有概率密度
求
的分布函数
【练习】
解
设随机变量
01
具有概率密度
02
03
求
04
解
05
或
06
【练习】
07
例4 设随机变量 K 的概率密度为
于是, 所求的概率为
06
可见
04
试求方程 有实根的概率.
(1) P{ x1<X ≤x2} = P{ x1≤X ≤x2} = P{ x1<X <x2} = P{ x1≤X <x2} = F(x2) -F(x1) =
(2)
点概为零的重要启示
若 A 为不可能事件,则 P (A) = 0 ; 然而 P (A) = 0 时, A 却不尽为不可能事件 .
那么就称该随机变量 X 服从均匀分布,也称 X为均匀分布变量(简称均匀量),并记为
高等数学第三节连续型随机变量及其概率密度函数
▲ P() 0 (不可能的事件的概率为0),但概率
为零的事不一定是不可能事件.
概率统计
2. 概率密度函数的性质
性质1 f ( x) 0
性质2
f ( x)dx 1
f (x)
这两条性质是判定 一个函数 f(x) 是否 为某随机变量 X 的 概率密度函数的充 要条件.
面积为1
o
x
概率统计
性质3
F ( x0 x) F ( x0 )
x0x f (t)dt x0
当 x 0时, 两边取极限:
0
P(X
x0 )
lim
x0
x0x f (t)dt
x0
0
P( X x0 ) 0
概率统计
注 ▲ 这个结论的意义:
(1). P( X x0 ) 0 从积分的几何意义上说,当 底边缩为一点时,曲边梯形面积退化为零。
(2).由此可知连续型随机量X 在某区间上取值的 概率只与区间长度有关,而与区间是闭、开、 半开半闭无关,即有:
P( x1 X x2 ) P( x1 X x2 ) P( x1 X x2 )
P( x1 X x2 )
x2 x1
f ( x)dx
F ( x2 ) F ( x1 )
概率统计
注 P( x X x x) F( x x) F(x)
不计高阶 无穷小
x x
x f (t) dt
f ( x)x
b
(相当于积分中值定理 f ( x)dx f ( x)(b a) ) a
这表示落在区间 ( x, x x] 上的概率近似等 于 f ( x)x ,称 f ( x)x 为概率微分。
P( x1 X x2 ) F ( x2 ) F ( x1 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a,有 P{X=a}=0
0 P{X a} P{a x X a} F(a) F(a x)
而F (x)连续,故x 0时,F (a) F (a x) 0
由此 P{a X b} P{a X b} P{a X b}
P{a X b}
b a
f
( x) d
x
f
x dx=P{X
F( x) P{X x} P{X xk } pk ( x∈R )
xk x
xk x
P{X xk} F(xk ) F(xk 0)
Ⅰ:确定X及其分布,A={X∈L} Ⅱ:P{X∈L}= →F(x) 【分布律、概率密度f(x)】 →高等数学、 F(x) 、分布律、密度函数f(x)的性质、 各种概型的规律。
得t ln2/2 0.3446(小时)。
15解:(迅速)设X为这批投保人一年内死亡的
人数,则X ~ b(5000, 0.00015), X 近似服从 (75),
由题意,所求为P{X 10}=...
第四节 连续型随机变量及其概率密度
一、连续型随机变量及其概率密度的概 念与性质 二、常见连续型分布
x0
x
x0
x
若不计高阶无穷小,有P{x X x x} f (x)dx
.
P{X=x}
50 连续型随机变量x的分布函数F(x)是连续函数
因为对x,lim F (x) lim[F (x x) F (x)]
x0
x0
xx
lim f (t)dt 0 x0 x
说明: 若 X 为连续型随机变量,则对任一实数
Ⅰ:确定X及其分布,A={X∈L} Ⅱ:P{X∈L}= →F(x) 【分布律、概率密度f(x)】 →高等数学、 F(x) 、分布律、密度函数f(x)的性质、 各种概型的规律。
★离散型→利用分布律:P{X=xk}=pk , k 1, 2,...
P{X L} P{X=xk} pk
x k L
x k L
13、X ~ ( t ),t为时间间隔,与起终点无关;
2
解:(1)
X
~
(
3
),
所求P{X=0}=e
-3 2
...
2
(2) X ~ (5),所求P{X 1}(查表)或=1-P{X 0}...
2 14、(2)解:设外出时间为t(小时),则t内接到的
电话次数X ~ (2t),由P{X=0}=e-2t 0.5,
70 (2)假设他是瞎猜的(构造对称性,古典)
则猜10次为10重波努利试验,每次P("成功")=1/70
设X表示他在10次中猜中的次数,则X ~ b(10, 1 )
70
P{X=3}=C130
(
1 70
)3
(1
1 )7 70
3.163*104为小概率事件
居然一次就发生,故推翻原假设,他不是猜的。
13、14、15-----“主线”、解题步骤!
1º f ( x) 0;
2º
f ( x)d x 1;
3º 对于任意实数 x1 , x2 ( x1 x2 ),
P{ x1 X x2 } F ( x2 ) F ( x1 )
x2 f ( x)d x.
x1
证明 P{ x1 X x2} F ( x2 ) F ( x1)
x2 f ( x) d x x1 f ( x) d x x2 f ( x)d x.
L}
L
例1 设随机变量 X 具有概率密度
kx,
f
(
x)
2
x 2
,
0,
0 x 3, 3 x 4, 其它.
(1) 确定常数 k; (2) 求 X 的分布函数;
(3) 求 P{1 X 7}. 2
解 (1)由 f ( x)d x 1,
得
3
kx d x
4
(2
x)d x 1,
f (x)
x1
1
S1
o
•• xx
x
同时得以下计算公式
a
P{X a} F(a) f ( x)d x,
P{X a} 1 P{X a} 1 F(a) a f ( x)d x.
40 若 f (x) 在点 x 处连续,则有 F(x) f (x).
即:lim F(x x) F(x) lim P{x X x x} f (x)
重点:一、二
一、连续型随机变量及其概率密度 1.定义
如果对于随机变量 X 的分布函数 F (x), 存在 非负函数f(x),使对于任意实数 x 有
x
F (x) f (t) d t,
则称 X 为连续型随机变量, 其中 f (x) 称为 X的概 率密度函数, 简称概率密度.
2. 概率密度函数 f ( x)的性质:
指数分布
P55,4(1,3);5(1)-----几何分布
(1)P{X k} 1 ( 2)k1, k 1, 2,... 33
(2) P{Y 1} 1 P{Y 2} 2 1 1 P{Y 3} 2 1 1 1
3
32 3
32 3
(3)P{Y X} P{X 1,Y 1} P{X 2,Y 2} P{X 3,Y 3}
1 1 2 k1 1 1 2 k1 1 1 2 k1
() () ()
3 k2 3 3
3 k3 3 3
3 k4 3 3
9、设X表示第一次检验的次品数, Y表示第二次检验的次品数
则X ~ b(10, 0.1),Y ~ b(5, 0.1)
(1)P{X=0}= (2)P{1 X 2}= (3)P{Y=0}=
(4)P{Y=0,1 X 2}=P{Y=0}P{1 X 2}
(5)P({X=0} {Y=0,1 X 2})
P56 10(1,2)-----古典概型的构造;
(1)n C84 70, nA C44 1(挑对); 由对称性知等可能(因为是猜的)为古典概型 P{“成功(猜中)”} 1
解之得
0
3
2
k 1. 6
(2)由 k 1 知 X 的概率密度为 6
x 6
,
f
( x)
2
x, 2
0,
0 x 3,
3 x 4, 由 F ( x) x f ( x)d x 得
★连续型→利用f(x),F(x)
x
F (x) f (t) d t,
x R,f(x) 0
PX L f xdx
如Pa
X
b
b
a
f
xdx
L
第四节 连续型随机变量及其概率密度
1. 连续型随机变量
x
F(x) f (t)dt
分布函数 概率密度
2. 常见连续型随机变量的分布
均匀分布
正态分布(或高斯分布)