数学建模多目标规划
基于混合整数线性规划的多目标物流路径规划数学建模

基于混合整数线性规划的多目标物流路径规划数学建模多目标物流路径规划是指在满足多个目标的前提下,确定物流运输网络中各个节点之间的最佳路径和运输量。
在实际生产和配送过程中,物流路径规划的优化对于提高物流效率和降低物流成本具有重要意义。
本文将介绍基于混合整数线性规划的多目标物流路径规划数学建模方法。
首先,我们需要明确多目标物流路径规划的目标。
一般来说,物流路径规划需要同时满足以下多个目标:最短路径、最小成本、最小运输时间、最小能源消耗、最小污染排放等。
在实际问题中,可能还会根据具体需求提出其他目标。
我们将这些目标定义为优化目标函数。
其次,我们需要建立多目标物流路径规划的数学模型。
多目标规划中,常用的方法是加权法。
即将每个目标根据其重要性分配一个权重,然后将多个目标函数线性组合成一个总目标函数。
以最短路径和最小成本为例,假设分别对应的权重为w1和w2,则总目标函数可以表示为Z = w1 * f1 + w2 * f2,其中f1和f2分别表示最短路径和最小成本的目标函数。
在建立目标函数之后,我们需要确定决策变量,即模型中需要优化的变量。
在物流路径规划中,常用的决策变量包括运输路径、运输量、起点和终点等。
我们可以使用二维矩阵表示网络节点之间的路径,使用变量x[i,j]表示节点i到节点j的路径是否存在。
同时,使用变量y[i,j]表示节点i到节点j的运输量。
接下来,我们需要定义约束条件,以限制变量的取值范围。
常见的约束条件包括物流路径一致性条件、运输量限制条件、起点和终点限制条件等。
例如,路径一致性条件可以表示为sum(x[i,j]) = 1,即每个节点只能有一条进出路径。
运输量限制条件可以表示为y[i,j] <= C[i,j],即运输量不能超过节点i到节点j的最大运输能力。
最后,我们可以使用混合整数线性规划求解器对建立的多目标物流路径规划模型进行求解。
求解过程中,需要根据具体情况设置目标函数权重和约束条件,并根据求解结果进行调整和改进。
数学模型与数学建模5.4 多目标规划

2 p
(
x1
,
x2
,
nn
xn ) ij xi x j
i1 j 1
n
max Rp (x1, x2 , xn ) Ei Ci xi i 1
s.t.
n i1
xi
n
Ci xi
i 1
m
xi 0 , i 1, 2, , n,
(5.4.4)
( x2
3)2
x1
,
x2
0
7. 已知某指派问题的有关数据(每人完成各项工作的时间 )如下表所示,试对此问题用动态规划方法求解。要求: (1)列出动态规划的基本方程; (2)对该动态规划模型求解。
表3 指派问题中人员完成任务的工作时间
8. 某公司去一所大学招聘一名管理专业应届毕业生。从众 多应聘学生中,初选3名决定依次单独面试。面试规则为: 当对第1人或第2人面试时,如满意(记3分),并决定聘用 ,面试不再继续;如不满意(记1分),决定不聘用,找下 一人继续面试。但对决定不聘用者,不能同在后面面试的人 比较后再回过头来聘用。故在前两名面试者都决定不聘用时 ,第三名面试者不论属何种情况均需聘用。根据以往经验, 面试中满意的占20%,较满意的占50%,不满意者占30%。要 求用动态规划方法帮助该公司确定一个最优策略,使聘用到 的毕业生期望的分值为最高。
标规划问题进行标量化处理,即将其转化为单目标
规划问题来求解。通常对m个目标 f1(x), f2(x), , fm (x)
分别乘以权系数 1, 2 , , m ,然后求和得新的目标
m
函数:U (x) i fi (x)。从而有如下单目标规划问题
数学建模目标规划方法

30
x1
2x1
12x2 x2
d1 d2
d1 d2
2500 140
x1
d
3
d3
60
a x (,)b
ij j
i
j 1
(i 1,2, , m)
绝对约束
x 0 ( j 1,2, , n) j
d , d 0 (l 1,2, , L) ll
非负约束
K
L
min Z
pk
(kl
d
l
kl
dl
)
k 1
l 1
n
c(l) x d d g ( l 1,2, , L)
三 目标规划方法
通过前面的介绍和讨论,我们知道,目标规划方法 是解决多目标规划问题的重要技术之一。
这一方法是美国学者查恩斯(A.Charnes)和库 伯(W.W.Cooper)于1961年在线性规划的基础上提 出来的。后来,查斯基莱恩(U.Jaashelainen)和李 (Sang.Lee)等人,进一步给出了求解目标规划问题 的一般性方法——单纯形方法。
34
4
所以目标规划模型为:
min Z p d p (7d 12d ) p (d d )
11
2
2
3
34
4
70x 120x d d 50000
1
2
1
1
x 1
d d 200
2
2
x d d 250
生产甲、乙两种产品,
非线性规划和多目标规划模型数学建模

进一步考虑到角度的周期性,不碰撞的约束条件可写成:
ij i'jij 2ij
第5讲 非线性规划和多目标模型
最终,原非线性规划问题转化为
6
min i
iji'j 1 2 ( i ij) i2 6 1 , i ij,1i, 2,j,i,j , 61 ,2 , ,6
,
vsinyi0i'
,if
i'
3
2
,tani'
yi0 xi0
or 3
2
i'
2, tani'
yi0 Dxi0
(2)计算任意飞机在t时刻两者的距离:
d ij(i i,j j,t)2 (x i0 v tc o s (i i) x 0 j v tc o s (j j))2 (y i0 v ts in (i i) y 0 j v ts in (j j))2
s . t .
6
m in i i 1
d i j(i i,j j,t ) 8i j
i
6
目标函数也可以定义为
minmax 1i6
i
第5讲 非线性规划和多目标模型
我们来简单看一下其复杂程度
(1)区域内飞行时间:假设飞行角度为θi ’= θi + Δ θi
vDcosxi0i'
,if
0 i'
2
,
最优解 迭代法是主要求解方法: 通常从一个初始解出发,在可
行域中沿着使得目标函数降低的方向前进到下一个解。 一般求解方法:罚函数法,拉格朗日乘子法,近似规划
法等,或者采用智能算法,如:遗传算法,模拟退火算 法,蚁群算法等。
数学建模-多目标规划

例 选课策略
课号
课名
学分
所属类别
先修课要求
1
微积分
5
数学
2
线性代数
4
数学
3
最优化方法
4
数学;运筹学 微积分;线性代数
4
数据结构
3
数学;计算机
计算机编程
5
应用统计
4
数学;运筹学 微积分;线性代数
6
计算机模拟
3
计算机;运筹学
计算机编程
7
计算机编程
2
计算机
8
预测理论
2
运筹学
应用统计
9
数学实验
3
运筹学;计算机 微积分;线性代数
min h(F (x)) st x R
方法:(1)理想点法
第一步:计算出 个单目标规划问题
f* i
min fi ( x) st x R
第二步:构造评价函数
p
h(F(x))
(
fi (x)
f *)2 i
i 1
3、评价函数法
(2)、线性加权法
p
p
h(F(x)) j f j 其中j 0, j 1
上班时间 加班情况
X1+d3- -d3+=24 X2 +d4- -d4+=30
市场需求
X1 , X2 , di- , di+ 0 di- .di+= 0 (i=1,2,3,4)
多目标线性规划问题的Matlab7.0求解
多目标线性规划标准形式 min f (x) ( f1(x), f2(x), fn(x))T gi (x) 0 i 1, 2 , m hj (x) 0 j 1, 2, , k x0
数学建模-多目标规划

将上述问题化为标准后,用单纯形方法求解可得最佳决策
方案为: x1 4, x 2 3, Z 62 (万元)。
但是,在实际决策时,企业领导者必须考虑市场等 一系列其它条件,如: ① 根据市场信息,甲种产品的需求量有下降的趋势,因 此甲种产品的产量不应大于乙种产品的产量。 ②超过计划供应的原材料,需用高价采购,这就会使生产 成本增加。 ③应尽可能地充分利用设备的有效台时,但不希望加班。 ④应尽可能达到并超过计划产值指标56万元。 这样,该企业生产方案的确定,便成为一个多目标决 策问题,这一问题可以运用目标规划方法进行求解。
min Z pl ( lk d k lk d k )
l 1 k 1
L
K
i ( x1 , x2 , , xn ) g i ( i 1,2, , m )
f i d i d i f i ( i 1,2, , K )
式中:
min Z i ( fi fi ) 2
k
i ( x1 , x2 , , xn ) gi ( i 1, 2, , m ) 或写成矩阵形式: min Z ( F F )T A( F F )
( X ) G
i 1
式中, i 是与第i个目标函数相关的权重; A是由 i (i=1,2,…,k )组成的m×m对角矩阵。
目标规划模型 目标规划软件求解
目标规划模型
给定若干目标以及实现这些目标的优先顺 1.基本思想 : 序,在有限的资源条件下,使总的偏离目 标值的偏差最小。
2.目标规划的有关概念
例1:某一个企业利用某种原材料和现有设备可生产甲、 乙两种产品,其中,甲、乙两种产品的单价分别为8万元 和10万元;生产单位甲、乙两种产品需要消耗的原材料 分别为2个单位和1个单位,需要占用的设备分别为1单位 台时和2单位台时;原材料拥有量为11个单位;可利用的 设备总台时为10单位台时。试问:如何确定其生产方案 使得企业获利最大?
数学建模股票多目标规划模型

数学建模股票多目标规划模型
数学建模在股票多目标规划模型中可以起到非常重要的作用。
股票投资是一个复杂的决策过程,需要考虑多个目标和约束条件。
数学建模可以帮助我们将问题转化为数学表达式,并使用数学方法进行求解。
在股票多目标规划模型中,我们需要考虑的目标可能包括风险、收益、流动性等。
我们可以根据投资者的偏好和风险承受能力,权衡这些目标,并建立相应的数学模型。
例如,我们可以使用线性规划模型,将投资组合的权重作为决策变量,收益和风险等目标作为目标函数,约束条件可以包括资金限制、投资比例限制、行业限制等。
通过求解这个数学模型,我们可以得到一个最优的投资组合,从而实现多目标优化。
另外,还可以使用非线性规划或者多目标规划等方法进行建模,以更准确地表示实际情况。
同时,还可以考虑引入时间序列分析、模拟等方法,以提高模型的准确性和可靠性。
需要注意的是,股票市场的变化非常复杂,数学建模只是一种工具,不能保证投资的成功。
在进行股票投资时,还需要考虑市场风险、信息不对称等因素,并做出合理的决策。
数学建模工作规划

一、背景与目的随着我国经济社会的快速发展,数学建模作为一种重要的研究方法,在各行各业中得到广泛应用。
为了提高数学建模能力,培养创新型人才,特制定本工作规划。
二、工作目标1. 提高数学建模理论水平,掌握常用数学建模方法。
2. 培养团队协作精神,提高数学建模实践能力。
3. 发表高质量数学建模论文,提升团队在国内外的影响力。
三、工作内容1. 学习与培训(1)深入学习数学建模理论,包括线性规划、非线性规划、整数规划、动态规划、图论等。
(2)参加国内外数学建模竞赛,了解竞赛规则和评分标准。
(3)邀请专家学者进行讲座,拓宽知识面,提高研究能力。
2. 实践与项目(1)结合实际需求,开展数学建模项目研究,如城市规划、环境保护、交通运输等。
(2)针对具体问题,运用数学建模方法进行求解,提高解决实际问题的能力。
(3)总结经验,撰写数学建模论文,争取在国内外期刊发表。
3. 团队建设(1)选拔和培养团队成员,提高团队整体实力。
(2)加强团队内部沟通与协作,形成良好的团队氛围。
(3)定期组织团队活动,增进成员间的感情。
四、实施步骤1. 制定详细的学习计划,明确学习目标和进度。
2. 每月至少开展一次数学建模实践活动,提高团队实战能力。
3. 每季度组织一次团队交流活动,分享经验,共同进步。
4. 每年至少参加一次国内外数学建模竞赛,提升团队知名度。
5. 定期总结工作,对工作规划进行调整和优化。
五、保障措施1. 加强组织领导,明确责任分工。
2. 提供必要的经费和资源支持,为数学建模工作提供保障。
3. 定期对团队成员进行考核,激发团队活力。
4. 建立激励机制,鼓励团队成员积极参与数学建模工作。
通过本工作规划的制定与实施,我们相信能够提高团队的整体数学建模能力,为我国经济社会发展贡献一份力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
4 5 6 7 8 9
∗ ∗ ∗
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7 Z − 0.3W
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件 先修课程要求 x3=1必有x1 = x2 =1
∗ 1 ∗ 2 ∗ 3 ∗ ∗ ∗
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
决策变量 xi=1 ~选修课号i 的 课程(xi=0 ~不选) 目标函数 选修课程总数最少
Min
Z = ∑ xi
i =1
9
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
x1 + x 2 + x3 + x 4 + x5 ≥ 2
x3 + x5 + x6 + x8 + x9 ≥ 3
x4 + x6 + x7 + x9 ≥ 2
问该企业应如何安排生产,使得在计划期内 总利润最大?
1. 线性规划建模
该例是一个线性规划问题,直接考虑它的线性规划模型 设甲、乙产品的产量分别为x1,
x2,建立线性规划模型:
Max
z = 200 x 1 + 300 x 2 ;
s. t. 2x1 + 2x2 ≤ 12 , 4x1 ≤ 16, 5x2 ≤ 15, x1, x2 ≥ 0.
• 以课程最少为目标, 不管学分多少。 • 以学分最多为目标, 不管课程多少。
Min {Z , − W }
最优解如上,6门课 程,总学分21 。 最优解显然是选修所 有9门课程 。
多目标优化的处理方法:化成单目标优化。
多目标规划
• 在课程最少的前提下 以学分最多为目标。
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
化法二
min {ρ Q( X ) − (1 − ρ ) R( X )} s .t . F ( X ) = M X ≥O
ρ 为目标权重或偏好系数。
a ,b, ρ 均可看成参数,对不同的参数值求出 最优解,然后加以讨论,选出满意解。
例 选课策略
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3 所属类别 数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机 先修课要求
目标规划的数学模型
目标规划的基本概念
为了克服线性规划的局限性,目标规划采用如下手段: 1. 设置偏差变量; 2. 统一处理目标与约束; 3. 目标的优先级与权系数。
1. 设置偏差变量
用偏差变量(Deviational variables)来表示实际值与目标值 之间的差异,令 + ---- 超出目标的差值,称为正偏差变量 d d d − ---- 未达到目标的差值,称为负偏差变量 + − 其中d 与 d 至少有一个为0
求解算法 实例2:旅游路线设计
转化为单目标
今年暑假,我校要召开“××学术会议”,届时来自国内外 的许多著名学者都会相聚成都。在会议结束后,主办方希望能 安排这些远道而来的贵宾参观四川省境内的著名自然和人文景 观,初步设想有如下线路可供选择: 一号线:九寨沟、黄龙; 二号线:乐山、峨嵋; 三号线:四姑娘山、丹巴; 四号线:都江堰、青城山; 五号线:海螺沟、康定; 每条线路中的景点可以全部参观,也可以参观其中之一。 不仅如此,一起参观景点的人数越多,每人承担的费用也会越 小。车费与车型、乘客人数、路程种类及公里数有关。
矛 盾 的
一般形式: min Q( X ) max R( X ) s .t . F ( X ) = M X ≥O 双目标规划模型
化成单目标规划模型 化法一
min Q( X ) s .t . R ( X ) ≥ a F(X ) = M X ≥O
或
max R( X ) s .t . Q ( X ) ≤ b F(X ) = M X ≥O
x8 − x5 ≤ 0
2 x9 − x1 − x 2 ≤ 0
讨论:选修课程最少,学分尽量多,应学习哪些课程? 课程最少 学分最多
9
Min
Z = ∑ xi
i =1
Max W = 5x1 + 4x2 + 4x3 + 3x4 + 4x5 + 3x6 + 2x7 + 2x8 + 3x9
两目标(多目标)规划
求解算法 转化为单目标 实例1:投资的收益和风险
市场上有n种资产(如股票、债券、…)Si ( i=1,…n) 供投资者选择,某公司有数额为M的一笔相当大的资金可用 作一个时期的投资。公司财务分析人员对这n种资产进行了 评估,估算出在这一时期内购买Si的平均收益率,并预测出 购买Si的风险损失率。考虑到投资越分散,总的风险越小, 公司确定,当用这笔资金购买若干种资产时,总体风险可用 所投资的Si中最大的一个风险来度量。 购买Si要付交易费,费率已知,并且当购买额不超过最低限 额时,交易费按购买最低限额计算(不买当然无须付费)。 另外,假定同期银行存款年利率是1%, 且既无交易费又无风 险。试给该公司设计一种投资组合方案 目标一:使净收益尽可能大; 目标二:而总体风险尽可能小。
Z = ∑ xi
i =1
9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
W = 5x1 + 4x2 + 4x3 + 3x4 + 4x5 + 3x6 + 2x7 + 2x8 + 3x9
最优解: x1 = x2 = x3 = x4 = x5 = x6 = x7 = x9 =1, 其它为0;总学分28。
求解算法之一:
转化为单目标
用Lindo或Lingo软件求解,得到最优 解 *
x1 = 3, x2 = 3, z = 1500.
Max
பைடு நூலகம்
z = 200 x 1 + 300 x 2 ;
2. 目标规划建模
若在上例中,企业的经营目标不仅要考
s. t. 2 x1 + 2 x2 ≤ 12 ,
4 x1 ≤ 16, 5 x2 ≤ 15, x1 , x2 ≥ 0.
求解算法之二:
目标规划法
二、多目标优化目标规划法
线性规划通常考虑一个目标函数(问题简单) 目标规划考虑多个目标函数(问题复杂) 。
例 生产安排问题
某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的盈利与使用设备的工时及限 制如下表所示。
甲 2 A/(h/件) 4 B/(h/件) 0 C/(h/件) 赢利/(元/件) 200 乙 设备的生产能力/h 2 12 0 16 5 15 300
线性多目标规划模型---线性加权和法
品 产
例: 一个生产问题,有关数 据如表。问如何安排生产可 使总利润最大,产量之和最 小。要求第二种原料用完。
4 4 B 1 C 单位利润 80
单耗 原料
甲
乙 总量
5 2 0 100
80 48 6
A
解 设 x1 , x2 为甲,乙的产量 min z1 = x1 + x2 则 max z2 = 80 x1 + 100 x2 s .t . 4 x1 + 5 x2 ≤ 80 4 x1 + 2 x2 = 48 x1 ≤6 x1 , x2 ≥ 0
增加约束
∑
9
i =1
xi = 6,
以学分最多为目标求解。 最优解: x1 = x2 = x3 = x5 = x7 = x9 =1, 其它为0;总 学分由21增至22。 注意:最优解不唯一! 可将x9 =1 易为x6 =1 LINDO无法告诉优化 问题的解是否唯一。
∗1 ∗ ∗2 ∗ ∗3 ∗ ∗ ∗ ∗
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
要求至少选两门数学课、三门运筹学课和两门计算机课 为了选修课程门数最少,应学习哪些课程 ? 选修课程最少,且学分尽量多,应学习哪些课程 ?
0-1规划模型
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 所属类别 数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机