人教版七年级下册数学6.2 立方根课件

合集下载

最新人教版七年级下册数学辅导班同步培优课件11-第六章6.2立方根

最新人教版七年级下册数学辅导班同步培优课件11-第六章6.2立方根

3.计算:(1)- 3 1 =
3
;(2) 3 3 =
;
64
8
(3) 3 -0.027 =
;(4) 3 (-2)3 =
.
答案 (1)- 1 (2) 3 (3)-0.3 (4)-2
4
2
解析
(1)∵
1 4
3
=
1 64
,∴-
3
1 64
=- 1
4
.
(2) 3
33 8
=3
27 8
=3
3 3 2
=3.
2
(3)∵(-0.3)3=-0.027,∴ 3 -0.027 =-0.3.
6.2 立方根
5.若一个数的平方根与它的立方根完全相同,则这个数是 (
栏目索引
)
A.1 B.-1 C.0 D.±1,0
答案 C 根据平方根与立方根的性质,一个数的平方根与它的立方根完 全相同,则这个数是0.故选C.
6.(-6)3的立方根是
.
答案 -6
解析 易知 3 a3 =a,∴ 3 (-6)3 =-6.
知识点二 立方根的性质
6.2 立方根
栏目索引
7.下列式子不正确的是 ( )
A. 3 -a =- 3 a
B. 3 a3 =a
C.( 3 a )3=a D.(- 3 a )3=a
答案 D 由立方根的性质知(- 3 a )3=-a,故选项D中式子不正确.
8.下列语句正确的是 (
6.2 立方根
)
栏目索引
答案 A 设棱长为x cm,则x3=100,∴x= 3 100 ,∵64<100<125,∴4< 3 100 <5, 故选A.

人教版七年级下册数学6.2 立 方 根课件

人教版七年级下册数学6.2 立  方  根课件

3a3
.
解:(1) 3 64 3 64 -4 ;
(2) 3 0.064 3 0.43 0.4 ;
(3) 3 27 3 3 3 3 ; 125 5 5
(4) 3 a 3 a.
提示:求一个负数的立方根,可以先求出这个负 数绝对值的立方根,然后再取它的相反数.
由于一个数的立方根可能是无限不循环小数,所以 我们可以利用计算器求一个数的立方根或它的近似值. 例4 用计算器求下列各数的立方根:343,-1.331.
如∵ (3)2 9 , ∴ ﹢3 是9的算术平方根,
即 9 3
式子读作“9的算术平方根等于3” 或“根号9等于3” 规定:0的算术平方根是0
填空:
求平方
1 1
1
2 2
4
3
9
3
平方 互逆 运算
开平方
求平方根
1
1 1
4
2 2
9
3
3
求一个数a的平方根的运算,叫做开平方.
你能类比平方根的定义给出立方根的定义吗?
立方根的估算 50的立方根记作
3 50 .
问题:3 50 有多大呢?
因为 33 27 , 43 64
所以
3
‗‗‗‗3‗.6‗8
3
50
‗3‗.6‗9‗4‗‗‗‗
因为 3.63 46.656 , 3.73 50.653
所以 ‗‗‗3‗.‗6‗3‗.‗68‗ 3 50 3‗.6‗39‗.7‗‗‗‗‗
你能看出正数,0,负数的立方根各有什么特点?
8的立方根是 2
0.125的立方根是
1 2
-8的立方根是 -2 0的立方根是 0
归纳:
一个数的立方根只有一个; 正数的立方根是正数; 零的立方根是零; 负数的立方根是负数。

【新】人教版七年级数学下册第六章《立方根(一) 》公开课课件.ppt

【新】人教版七年级数学下册第六章《立方根(一) 》公开课课件.ppt

a3
表示a的立方根或a的三次方根
a4
表示a的四次方根
例1求下列各数的立方根:看看正数、0和负数的
立方根各有什么特点? (1)8;(2)0.125;(3)0
;(4) -8 ;(5)
8 27
.
分析:求一个数的立方根,可以通过立方运算来求.
解 (1)∵23=8,∴8的立方根是2,即 3 8 2
思考:除2以外,还有什么数的立方等于8?
P170
2、负数的立方根是一个负数
3、0的立方根是0
4、如果a≥0,则 3 a3 a 探究:
∵ 3 8 2 3 8 2 ∴ 3 83 8
∵ 3 27 3 3 27 3∴ 3 273 27
求下列各数的值,并找规律。 P171
3 2 3 2 3 (2) 3 -2
3 (3) 3 -3 3 4 3 4 3 0 3 0
类似的请同学们想一想a的立方根怎样表示?
立方根的表示方法:
数a的立方根 3 a用 表示
1.立方根的概念. 一般地,如果一个数的立方等于a,这个
数就叫做a的立方根(也叫做三次方根). 用式子表示,如果X3 =a,那么X叫做a的立方根.
数a的立方根用符号“3 a ”表示,读作“三次根号a
其中a是被开方数,3是根指数(注意:根指数3不能省略).
(1) x3=343 (2)(x-1)3=125
(3) 3 x 2 (4) 3 x 2 4
解: (1)x 3 343
∴x=7 (3)x=23
(2)x13 125 ∴x-1=5
X=6 (4) X-2=43
∴x=8
∴X=66
小结:
1、平方根的定义:如果
1、立方根的定义:如果

人教初中数学七下 6.2 立方根课件 【经典初中数学课件 】

人教初中数学七下 6.2 立方根课件 【经典初中数学课件 】


156 157 153 165 159 157 155 164 156

图 的 步 骤
1、计算最大值与最小值的差(极差)
在以上数据中, 最大值-最小值= 17_2_-__14_9__=__2_3___.
三、研读课文
2、决定组距与组数
(1)把所有的数据分成若干组,每个小组的两__个__端点
知 之间的距离(组内数据的取值范围)称为组距.
三、研读课文
158 158 160 168 159 159 151 158 159

168 158 154 158 154 169 158 158 158

159 167 170 153 160 160 159 159 160

149 163 163 162 172 161 153 156 162
例3 求下列各式的值(口答): (1)3 0.001 ; (2)3 1000 ;(3)3 216000 .
例4 求下列各式中的x:
(1) x3=0.125;
(2) 1
4
(10-x)3+54=0.
利用计算器算一算:
0.1
3 0.001
3 1 1
-0.06
3 0.000216
二、学习目标
1 了解频数及频数分布,掌握划分法 2 会用表格整理数据表示频数分布.
三、研读课文
认真阅读课本第145至149页的内容,
知 完成下面练习并体验知识点的形成过程. 识 点 一 问题 为了参加学校年级之间的广播体操比
赛,七年级准备从63名同学中挑出身高相 差不多的40名同学参加比赛.为此收集到这 63名同学的身高(单位:cm)如下:

立方根课件人教版七年级数学下册

立方根课件人教版七年级数学下册

(1)非负数a的平方根是________;
19.将一个体积为0.
一个数的立方根不是正数就是负数
新课学习
(2)由上表你发现了什么规律?请用语言叙述这个规律:_________________________________________________;
解:∵x-2的平方根是±2,∴x-2=4.
答:每个小立方体铝块的表面积为0.
知识点2 开立方及相关运算
3 解:∵x-2的平方根是±2,∴x-2=4. 0.002 744 =___0_.1_4___; (2)(x+5)3=27.
易错点拨:容易漏解,需要考虑平方根有两个.
216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.
3 3 正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( ) ②已知 0.004 913 =0.17,则 4 913 =___1_7__. 把x=6代入解得y=8,
-2674
=34
3 C.
3 38
=112
3 D.-
-1825
=-25
二级能力提升练
15.求下列各式中的x. (1)8x3+125=0;
(2)(x+3)3+27=0.
16.正方体A的体积是正方体B的体积的27倍,那么正方体
A的棱长是正方体B的棱长的( B )
A.2倍
B.3倍
C.4倍
D.5倍
17.比较下列各数的大小.
正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )
(3)根据你发现的规律填空: 解:设每个小立方体铝块的棱长为x m,则8x3=0.
(4)求一个数的立方根的运算叫作__________. (2)(x+5)3=27. 答:每个小立方体铝块的表面积为0. (2)(x+5)3=27.

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同. (七)布置作业《垂线》一、选择题:(每小题3分,共18分)827-+1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.lA五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴ 43∠BOC=•1 80°,lA∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《垂线》一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.。

人教版七年级数学下册课件:6.2 立方根(共17张PPT)

4 立方根概念的起源与几何中的正方体有关.如果一个正 方体的体积为 V,这个正方体的棱长为多少?
解:这个正方体的棱长为 3 V
谢 谢 观 看!
8 27
,所以

8 27
的立方根是(
).
6.2 立方根
归纳 正数的立方根是正数, 负数的立方根是负数, 0 的立方根是 0.
你能说说数的 平方根与数的立方 根有什么不同吗?
6.2 立方根
实际上,很多有理数的立方根是无限不循环小数.例如 3 2 ,3 3 等都是无限不循环小数.我们可以用有理数近似地表 示它们.
这就是说,如果 x³= a,那么 x 叫做 a 的立方根. 在上面的问题中,由于 3³= 27,所以 3 是 27 的立方根.
6.2 立方根
求一个数的立方根的运算,叫做开立方(extraction of cube root).
正如开平方与平方互为逆运算一样,开立方与立方也互 为逆运算.我们可以根据这种关系求一个数的立方根.
6.2 立方根
2 用计算器求下列各式的值:
(1)3 1728;
(2)3 15625 ;
解:(1)12 (2)25 (3)±13
(3) 3 2197 .
6.2 立方根
3 比较3,4, 3 50 的大小. 解:因为 3³= 27,4³= 64,
所以 3 < 3 50 < 4.
6.2 立方根
一些计算器设有 3 键,用它可以求出一个数的立方根 (或其近似值).
6.2 立方根
例如,用计算器求 3 1845,可以按照下面的步骤进行: 依次按键 3 1845 = ,显示:12.26494081.
这样就得到 3 1845 的近似值12.264 940 81. 有些计算器需要用第二功能键求一个数的立方根.例如 用这种计算器求 3 1845 ,可依次按键 2nd F 3 1845 = , 显示:12.26494081.

人教版七年级数学课件《立方根》

8 ___
=
3
3

27
27 ___
=
.
典例解析
人教版数学七年级下册
例1.求下列各式的值:
(1)
3
64 ;
解:(1)
3
(2)
3
125 ;
64 = 4; (2) 125 =-5;
3
(3)
3
27

64 .
3
27
(3)
=- .
4
64
3
针对练习
人教版数学七年级下册
求下列各式的值:
(1) 3 1000 ;
3
6.137=1.8308,
.
613.7=_________,②若
3
=0.18308,
达标检测
人教版数学七年级下册
11.已知 − 5的平方根是±4,2 − 1的立方是−27,求 − 4的算
术平方根.
解:∵ − 5的平方根是±4,
∴ − 5 = ±4
2
= 16,
解得 = 21,
人教版数学七年级下册
例5.对于结论:当 + = 0时.3 + 3 = 0也成立.若将a看成
3 的立方根,b看成 3 的立方根.由此得出结论:“如果两数的立
方根互为相反数,那么这两个数也互为相反数”
(1)举一个具体的例子进行验证;
(2)若 3 7 − 和 3 2 − 5互为相反数,且 − 3的平方根是它本身,求 + 的
3
46.42
100000≈_______.
典例解析
人教版数学七年级下册
例2.比较下列各组数的大小.
(1) 9 与2.5;

【新】人教版七年级数学下册第六章《6.2 立方根(1)》公开课课件.ppt

第六章 实 数
6.1 立方根(1)
活动一 创设情境,复旧导新 1. 1想. 想一想一想:
(1) 16的平方根是____4__;
(2)-16的平方根_不__存__在___;
(3)0的平方根是___0_____. 问题:
平方根是如何定义的?平方根有哪些性质?
zX.x.K
2. 做一做
问题: 要制作一种容积为27 m3的正方体形状
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights.
(2) 因为(0.5)3 =0.125,所以0.125的立方是(0.5 );
(3)因为( 0 )3=0,所以0的立方根是( 0 );
(4)因为 ( 2)3=-8,所以-8的立方根是( 2);
(5)因为(
2)3=-
3
-287 ,所以--287
的立方根
是( 2).
3
探究题中正数、0和负数的立方根各有
活动六 布置作业,提升能力 1 ; (2) 3 4 3 ; (3)0.216.
1 000
2.求下列各式的值.
( 1 ) 3-8 ; ( 2 ) -32 7 ; ( 3 ) 33 -1 7 ; ( 4 ) 331 1 21.
2 7
24
3.如果3x+16的立方根是4,求2x+4的算术平方根.
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/102021/1/10January 10, 2021

山西省忻州市第五中学七年级数学下册 6.2 立方根课件 (新版)新人教版


求下列各数的立方根。 1 (1) 27 (2)-27 (3) (4)-0.064 (5) 0 27 3 (1) ∵ 3 27 解: 即 3 27 3 ∴27的立方根是3
(2)∵ (3Βιβλιοθήκη 273例1∴-27的立方根是-3 即 3
1 3 1 (3)∵ ( ) 3 27

1 1 的立方根是 27 3
如果x a, 那么x叫做a的立方根。
3
其中a是被开方数, 3 3是根指数,符号 “ ”读做“三次根 号”. 求一个数的立方根的运算,叫做开 立方.
立方和开立方互为逆运算
正数的立方根是
负数的立方根是 0 的立方根是

负 0


任意一个数的立方根都是存在且 被开方数可以为任意数。 唯一的。
被开方数互为相反数时,其立方根 结论: 也互为相反数。
有两个平方根, 互为相反数
有一个平方根,是0 没有平方根
求一个数的平方根的运算叫开平方; 求一个数的立方根的运算 开平方与平方是互逆运算。 叫开立方;开立方与立方 是互逆运算。
a ,其中a 是被开方数,
3
a ,其中a 是被开方数,
2是根指数(省略)
3是根指数(不能省略)
练一练
1.判断下列说法是否正确,并说明理由
1.21 的立方根是
3
21
,- 21 的立方根是
3
21
2
2.若一个数的平方根是
8 ,则这个数的立方根是
3.- 8的立方根与9的平方根的积是 ± 1 1 3 3 4.若 a ,则 的值为 3
6
3 5.已知 x 2 64 ,则 3 x
a
2
B.立方根等于本身的数是0和 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算术平方根的符号 a 实际省
略了 2中a 的根指数 2,因此,
a 也可读作“二次根号 a”.
探究
因为 3 8 =__–_2_, 3 8 =__–__2, 所以 3 8 __=__ 3 8; 因为 3 27 =__–_3_, 3 27=__–__3, 所以 3 27 ___=_ 3 27;
一般地, 3 a = 3 a
2.比较 3,4, 3 50 的大小.
解:33 = 27,43 = 64 因为 27 < 50 < 64 所以 3 < 3 50 < 4
3.立方根概念的起源与几何中正方体有关, 如果一个正方体的体积为 V,这个正方体的棱 长为多少?
解: 3 V
知识点2 用计算器计算一个数的立方根
实际上,有很多有理数的立方根是无限不循 环小数,例如 3 2 , 3 3等都是无限不循环小数. 我们可以用有理数近似地表示它们.
错解:A或B或C 正解:D
错因分析:选项 A 把 16的平方根与立方 根看成 16 的平方根与立方根,选项 B 是没有掌 握任何数的立方根都只有一个,选项 C 是混淆 了平方根与算术平方根这两个概念. 在计算一个 数的平方根或立方根时,一定要先弄清是求什 么数的平方根或立方根,如果它不是最简的, 将其化简后,再按照定义去解答.
D)
A.1个
B.2个
C.3个
D.4个
3. 已知 3 0.343=0.7,则 3 343 00=0____7_0; 3 0.000 343=__﹣__0_.0_7.
综合运用
4.求下列各式的值.
(1)3 0.027(2)3 8 27
= – 0.3
= 2
3
(3)3 1 37 (4)3 7 1
64
8
27
➢ 正数的立方根是正数; ➢ 负数的立方根是负数; ➢ 0 的立方根是 0.
类似于平方根,一个数 a 的立方根,用符号 “ 3 a ”表示,读作“三次根号 a”,其中 a 是 被开方数,3 是根指数.
3 8 表示 8 的立方根,3 8 = 2 3 8 表示﹣8 的立方根,3 8 = ﹣2
3 a 中的根指数 3 不能省略.
1.审查下列说法:(1)2 是 8 的立方根;(2)
±4 (–
4是)634的的立立方方根根是;(–34), 其13 是中正 2确17的的立个方数根是;((4)C )
A.1个
B.2个
C.3个
D.4个
2.下列各式:(1) 3 3;(2) 3 3;
(3)
3
(3)3 ;(4)
3
1 中,有意义的有( 103
2
课堂小结
定义 如果x3 = a,那么 x 叫做 a 的立方根
➢ 正数的立方根是正数,
立 方 根
性质
➢ 负数的立方根负数; ➢ 0 的立方根是 0.
➢ 被开方数的小数点向左或向 右移动 3n 位时立方根的小数
用计算 器计算
点就相应的向左或向右移动 n 位(n为正整数).
若 3 x =2, y2=4,求 x 2 y的值.
例 求下列各式的值:
(1)3 64
(2) 3 1 8
解:(1) 3 64 = 4;
(2) 3 1 = 1; 82
(3) 3 27 =
3
.
64 4
(3)3 27 64
练习
1.求下列各式的值.
(1)3 1000 (2)3 0.001
10
– 0.1
(3) 3 1 –1
(4)3 64 27
4 3
一般地,如果一个数的立方等于 a,那么这 个数就叫做 a 的立方根或三次方根.
如果 x3 = a,那么 x 叫做 a 的立方根. 33 = 27,所以 3 是 27 的立方根.
求一个数的立方根的运算,叫做开立方.
开立方与立方互为逆运算.
探究 根据立方根的意义填空.你能发现正
数、0 和负数的立方根各有什么特点吗?
误区二:求负数的立方根时,漏掉负号导致错误 例 2 下列计算中正确的是 ( )
A. 3 5 = 3 5
B. 3 =8 2
C. 3 (5)3 = 5
D. 3 2=7 3
64
4
错解:A或B或C
正解:D
错因分析:错解均为计算过程中漏掉负号,任 何数的立方根的正负号与它本身的正负号一致.
基础巩固
随堂演练
复习巩固
习题6.2
综合运用
拓广探索
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
因为 23 = 8,所以 8 的立方根是( 2);
因为(0.4)3 = 0.064,所以 0.064 的立方根是
(0.4 );
因为( 0)3 = 0,所以 0 的立方根是( 0);
因为( -2)3 = - 8,所以 -8 的立方根是( -2);

因为(
2 3
).
2)3
3
=
8,所以
27
8的立方根是
探究
用计算器计算…, 3 0.000 216, 3 0.216, 3 216 , 3 216 000,…,你能发现什么规律?用计 算器计算 3 1(00精确到 0.001),并利用你发现 的规律求 3 0,.1 3 0.00,0 1 3 100 0的00近似值.
小结
3 0.000 216 = 0.06 3 0.216 = 0.6 3 216 = 6 3 216 000 = 60
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
一些计算器设有 3 键,用它可以求出一个 数的立方根(或其近似值).
用计算器求 3 1 845
依次按键
3
1845
=
显示: 12.264 940 81
这样就得到 3 1 845的近似值 12.264 940 81.
有些计算器需要用第二功能键求一个数 的立方根. 例如用这种计算器求 3 1 845,可 以依次按键 2nd F 3 1845 = ,显示 12.26494081.
解:∵ 3 x=2, y2=4. ∴x = 23,y2 = 16, ∴x = 8,y = ±4. ∴x + 2y = 8 + 2×4 = 16 或 x + 2y = 8 – 2×4 = 0. ∴ x 2 y= 1=64 或 x 2=y = 0.
课后作业
1. 从课后习题中选取; 2. 完成练习册本课时的习题.
6.2 立方根
R·七年级下册
学习目标:
(1)知道什么是立方根,什么是开立方,并能运用开立方与 立方之间互为逆运算的关系求一个数的立方根. (2)知道立方根的性质,会用符号正确表示一个数的立 方根. (3)能用计算器求立方根,知道立方根的小数点的位置 移动规律. (4)类比平方根来学习立方根,体会类比思想.
被开方数的小数点向左或向右移动 3n 位 时立方根的小数点就相应的向左或向右移动 n 位(n 为正整数).
练习
1.利用计算器求下列各式的值.
(1)3 1 728 (2)3 15 625 (2) 3 2 197
12
25
±13
误区诊断
误区一:审题不清,导致错误 例1 16 的平方根和立方根分别是 ( ) A.±4,3 16 B.±2, 3 4 C. 2, 3 4 D.±2, 3 4
情景导入
要制作一种容 积为 27 m3 的正方体形 状的包装箱,这种包装 箱的棱长应该是多少?
探究新知 知识点1 立方根的概念与性质
设这种包装箱的棱长为 x m,则 x3 = 27
这就是要求一个数,使它的立方等于 27. 因为 33 = 27,所以 x = 3. 因此这种包装箱的棱长为 3 m.
= 3 27 64
= 31 8
=3
4
= 1
2
5.比较下列各组数的大小.
(1) 3 9 与2.5;
(2) 3 3 与 3 .
2
解:因为 ( 3 9)3 = 9 2.53 = 15.625 所以 ( 3 9)3 < 15.625 所以 3 9 < 2.5
因为 ( 3 3)3 = 3
( 3)3 27 2 8 27 所以 3 < 8 所以 3 3 < 3
相关文档
最新文档