2016年秋季学期新版北师大版八年级数学上册7.4平行线的性质导学案1
北师大版数学八年级上册导学案:7.4.1平行线的性质

7.4.1平行线的性质【学习目标】1、熟记平行线的三条性质,能熟练运用这三条性质证明几何题。
2、进一步理解和总结证明的步骤、格式和方法。
3、了解两定理在条件和结构上的区别,体会正逆的思维过程。
【学习重点】理解命题,分清其条件和结论,能正确对照命题画出图形,写出已知和求证。
【学法指导】预习课本172—173页内容,根据导学案的引导,完成导学案指定内容,注意将自己不清楚或不会的知识点用红笔标记,在对群学、大展示中解决。
【知识链接】默写平行线的判定定理:_____________________________________,_____________________________________。
_____________________________________。
【新课探究】探究一:“两条平行线被第三条直线所截,同位角相等”这个真命题是定理,这一定理可以简单说成: ______________________________.你能对以上定理进行证明吗?请阅读课本175页证明过程。
探究二:借助“两直线平行,同位角相等”这一定理,你还能证明哪些熟悉的结论呢?请证明:“两条平行线被第三条直线所截,内错角相等”。
探究三:请证明:“两直线平行,同旁内角互补”【活学活用】1、证明:邻补角的平分线互相垂直.2、已知:AB⊥EF于B, CD⊥EF于D, AB与CD相交于P,∠1=∠A,求证:CD平分∠ECF。
【课堂小结】①归纳两直线平行的判定定理和与性质定理。
②总结证明的一般思路及步骤。
【拓展延伸】(1)图(Ⅰ)AB∥EF,求证:∠BCF=∠B+∠F(2)当点C在直线BF的右侧时,如图(Ⅱ),若AB∥EF,则∠BCF与∠B,∠F的关系如何?试说明理由。
图ⅠEBFACE 图Ⅱ FA BCFE DBCAP1。
北师大版八年级数学上册导学案+课后巩固-7.4平行线的性质

《7.4平行线的性质》导学案【教学目标】1.掌握平行线的性质定理,会证明“两直线平行,内错角相等(或同旁内角互补)”;了解平行于同一直线的两条直线平行。
2.了解性质定理与判定定理的联系,初步感受互逆的思维过程。
3.进一步理解证明的步骤、格式、方法,发展演绎推理能力。
【教学重点】平行线性质定理的证明;【教学难点】运用公理、定理进行简单的推理,以及用几何语言进行表述。
;【教学方法】自主探究、引导发现、练习法【教学流程】(一)复习导入:1. 平行线的判定公理:平行线的判定定理:(二) 新知探究:探究活动一:利用以上公理和定理,你能证明哪些熟悉的结论?(1)定理1:两条平行线被第三条直线所截,。
已知:如图1,求证:证明:这一定理可以简单地说成:。
探究活动二:(2)定理2:两条平行线被第三条直线所截,。
已知:如图2,求证:证明:这一定理可以简单地说成:。
类似地,还可以证明:定理:简述为:2、学以致用:请你完成定理:“两直线平行,同旁内角互补”的证明。
探究活动三:证明:一般地,如果两条直线都和第三条直线平行,那么这两条直线也相互平行。
(如右图,写出已知、求证,并证明。
)(三)典例解析3.应用:探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关。
如图,从点O 照射到抛物线上的光线OB ,OC 等反射以后沿着与POQ 平行的方向射出。
图中,如果∠BOP=45°,∠QOC=88°,那么∠ABO 和∠DCO 各是多少度?(四)当堂检测:已知:如图,AD ∥BC,∠ABD=∠D.求证:BD 平分∠ABC.(五)课堂小结:(六) 作业布置(课外拓展单)分类完成A 、B 两类作业 (七)教后反思AB CD《7.4平行线的性质》 课后巩固--评价单姓名_________ 班级_________ 组名___________A.基础训练1. 如图,由A 测B 的方向是 。
2. 如图,已知AD ∥BC ,∠ABC=∠C ,求证:AD 平分∠EAC 。
北师大版数学八年级上册7.4 平行线的性质教案

4平行线的性质●复习导入问题:上节课我们通过推理证得了平行线的判定定理,要证明两条直线平行,有哪些方法?一个基本事实是__同位角相等__,两直线平行;两个定理分别是__内错角相等__,两直线平行;__同旁内角互补__,两直线平行.通过平行线判定的基本事实和判定定理,我们知道它们的条件是角的大小关系,结论是两直线平行.如果我们把它们的条件和结论互换,那么得到的命题是真命题吗?这节课我们就来研究“平行线的性质”.【教学与建议】教学:教师提出问题,复习回顾上节课的重点内容,迅速将学生的注意力集中于课堂.建议:让学生回顾知识,为本节课的学习做好铺垫.●悬念激趣在数学课上,好玩的张明同学不小心把一把长方形直尺折断了,善于思考的同桌想考考张明就拼成如图所示的图形.点E,D,B,F在同一条直线上,若∠ADF=55°,则∠DBC的度数为多少?∠F呢?你能帮张明同学解决这些问题吗?这些问题与我们将要学习的知识有关,这节课我们就来研究“如果两条直线平行,那么角之间会有什么关系”这一问题.【教学与建议】教学:通过趣题导入,引出“两条直线平行,内错角、同旁内角分别有怎样的大小关系”,激发学生探究知识的欲望.建议:在学生操作时,教师要引导学生进行思考、分析.命题角度1利用平行线的性质解决与三角尺、直尺有关的问题解决此类问题的关键是从图形中找准“三线八角”中对应的同位角、内错角和同旁内角.【例1】(1)如图,把一块含有45°角的直角三角尺两个顶点放在直尺的对边上,若∠1=20°,则∠2的度数是(C)A.15°B.20°C.25°D.30°[第(1)题图][第(2)题图](2)将一把直尺和一块含30°和60°角的三角尺ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为__10°__.命题角度2利用平行线的性质解决折叠问题解决折叠问题的关键是找折叠前后的对应元素,然后利用对应元素的相等关系解决问题.【例2】将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是(D)A.45°B.55°C.65°D.75°命题角度3平行线性质与判定的综合运用以平行线为背景的角度等量关系判定,关键是要抓住“三线八角”中角之间的数量关系,进而由角的数量关系判断直线的关系.【例3】(1)如图,直线a∥b,∠1=65°,∠2=140°,则∠3等于(B)A.100°B.105°C.110°D.115°[第(1)题图][第(2)题图](2)如图,因为DF∥AC(已知),所以∠D+__∠CBD__=180°(两直线平行,同旁内角互补).因为∠C =∠D(已知),所以∠C+__∠CBD__=180°(等量变换),所以DB∥EC(同旁内角互补,两直线平行).高效课堂教学设计1.结合图形用符号语言来表示平行线的三条性质的条件和结论.2.总结归纳出证明的一般步骤.▲重点平行线的性质的探索及应用.▲难点运用平行线的性质和判定来解决问题.◆活动1创设情境导入新课(课件)现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补判定两条直线平行这三种方法.在这一节课里,大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?这是本节课我们将要学习的内容.◆活动2实践探究交流新知【探究1】证明:两直线平行,同位角相等.已知:如图,直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角.求证:∠1=∠2.【思考】若直接用基本事实能否证明出来?证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2,如图所示.根据“同位角相等,两直线平行”,可知GH∥CD.又因为AB∥CD,这样经过点M存在两条直线AB和GH都与直线__CD__平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”相矛盾.这说明∠1≠∠2的假设不成立,所以∠1=∠2.【探究2】证明:两直线平行,内错角相等.(1)多媒体展示图形;(2)如图,直线l1∥l2,∠1和∠2是直线l1,l2被直线l截出的内错角.求证:∠1=∠2.证明:∵l1∥l2(已知),∴∠1=∠3(两直线平行,同位角相等).又∵∠2=∠3(对顶角相等),∴∠1=∠2(等量代换).【探究3】证明:两直线平行,同旁内角互补.(1)多媒体展示图形;(2)已知:如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角.求证:∠1+∠2=180°.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,内错角相等).∵∠1+∠3=180°(平角的定义),∴∠1+∠2=180°(等量代换).【归纳】证明文字叙述类命题的一般步骤:第一步:先根据命题的条件即已知事项画出图形,再把命题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步:根据条件、结论、结合图形,写出已知、求证.第三步:经过分析,找出由已知推出求证的途径,写出证明过程.◆活动3开放训练应用举例【例1】(教材P176例题)已知:如图,b∥a,c∥a,∠1,∠2,∠3是直线a,b,c被直线d截出的同位角.求证:b∥c.【方法指导】平行线的性质.证明:∵b∥a(已知),∴∠1=__∠2__(两直线平行,__同位角__相等).∵c∥a(已知),∴∠3=__∠1__(两直线平行,__同位角__相等).∴∠2=∠3(等量代换)∴b∥c(__同位角__相等,两直线__平行__).【例2】如图,已知∠ABC+∠C=180°,BD平分∠ABC.∠CBD与∠D相等吗?请说明理由.【方法指导】由∠ABC+∠C=180°得到AB∥CD,再根据AB∥CD得到∠D=∠ABD.最后由角平分线得到结果.解:相等,理由:∵∠ABC+∠C=180°,∴AB∥CD.∴∠D=∠ABD.∵BD平分∠ABC,∴∠CBD=∠ABD.∴∠CBD=∠D.◆活动4随堂练习1.如图,已知直线DE经过点A,∠1=∠B,∠2=52°,则∠3的度数为(A)A.52°B.38°C.130°D.80°(第1题图)(第2题图)2.如图,已知直线a⊥c,b⊥c,∠1=140°,那么∠2的度数是(A)A.40°B.50°C.60°D.140°3.如图,在梯形ABCD中,AD∥BC,∠D=120°,∠DCA=20°,求∠BCA和∠DAC的度数.解:∠BCA=40°,∠DAC=40°.◆活动5课堂小结与作业学生活动:这节课学习了两条直线平行,同位角相等,内错角相等,同旁内角互补.教学说明:对这节课所学内容,学以致用.作业:课本P177习题7.5中的T1、T2、T4.通过生活中的事例,让学生感受数学来源于生活,通过问题的设置,训练学生语言表达的准确性和简洁性,为学生提供充分参与数学活动和探索的机会,让学生在轻松愉快的学习中掌握证明的步骤和格式.。
北师大版八年级上册7.4《平行线的性质》教案

1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中有着重要的地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过观察教室内的墙壁和地板,我们可以发现平行线的应用,以及它们如何帮助我们理解和构造空间。
关于学生小组讨论的部分,我觉得整体效果还是不错的。学生们能够积极参与,提出自己的观点,也能在讨论中互相学习。但我也注意到,有些学生在讨论中比较沉默,可能是因为性格原因或者是缺乏自信。在今后的教学中,我要关注这些学生,鼓励他们大胆发表自己的看法,增强他们的自信心。
最后,总结回顾环节,我觉得可以进一步优化。在今后的课堂中,我可以尝试让学生来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能提高他们的表达能力。同时,我要提醒自己在这个环节中加强对学生的反馈,了解他们在学习过程中的困惑和问题,并及时给予解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如铁轨、黑板的边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
-举例:给定两条平行线和一条横截线,运用性质计算未知角度或线段长度。
2.教学难点
-理解平行线性质的推理过程:学生需要通过观察和操作,理解并掌握平行线性质的推理过程,这需要较强的逻辑思维能力。
-难点解析:如何引导学生从特殊实例中发现规律,进而推广到一般情况,并用严谨的几何语言表达出来。
-识别和应用平行线的条件:在实际问题中,学生需要能够识别哪些线段或角度与平行线有关,并运用性质来解决问题。
学年八年级数学上册 7.4 平行线的性质导学案(无答案)(

3、进一步理解证明的步骤、格式和方法,发展演绎推理能力。
综合练习:
独立探索3分钟;小组交流、展台展示讲解3分钟;讲评总结2分钟
总结升华
3分钟
达标反馈
(展台)
5分钟
活动安排
【情境引入】1、看图填理由:
∵直线AB,CD相交于O,(已知)
∴∠1与∠2是对顶角
7.4平行线的性质
课题
7.4平行线的性质
活动安排
同旁内角互补”。
归纳小结:平行线的判定定理与性质定理的区别与联系?
综合练习:
1、已知:直线 ∥ , ∥ ,∠1,∠2,∠3是直线 , , 被直线 截出的同位角。求证: ∥
通过证明得到定理:_____________________________________________。
【学习ቤተ መጻሕፍቲ ባይዱ究】
探究任务:证明“平行线的性质定理”
1、请你证明:“两直线平行,同位角相等”。
已知:如图7-8,直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角。
求证:∠1=∠2
证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2(如图7-9)
∵∥
∴M存在两条直线AB和GH都与直线CD(填“平行”或“不平行”)
∴与基本事实“过直线外一点一条直线与这条直线平行”相矛盾。
∴∠1≠∠2这个假设不成立
∴∠1=∠2。
2、以上面的定理为依据,同学们试着证明:“两直线平行,内错角相等”、“两直线平行
(课件展示)师生互动引出课题;师提炼板书目标关键词
(3分钟)
探究任务:
独学10分钟
组学5分钟
北师大版初中数学八年级上册《第七章 平行线的证明 4 平行线的性质》 赛课导学案_0

《平行线的性质》教学设计【内容】北师大版八年级上册第七章第四节《平行线的性质》【基于标准】1.掌握平行线的性质定理:两平行直线被第三条直线所截,同位角相等.了解平行线性质定理的证明.2.探索并证明平行线的性质定理:两平行直线被第三条直线所截,内错角相等(或同旁内角互补).3.了解平行于同一直线的两直线平行.【基于对教材的理解】在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《平行线的判定》和本节课安排的《平行线的性质》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路。
在证明过程中,初步掌握证明的要求和格式,认识到证明的严谨性,做到步步有据,发展学生的推理能力。
本节课定理得证明都要求画出相应的图形,写出具体的已知、求证、证明,并在证明过程中要求注明证明的依据。
【基于对学情的分析】1.学生已有知识基础在七年级下册,学生已经探索过平行线的性质,并且已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础.2.已有的活动经验在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.3.学习本节可能出现的难点之前的学习中,证明题都给出了已知求证,学生只需思考证明思路,并规范的用数学符号和数学语言写出证明过程即可,但是现在定理的证明需要先正确写出定理的已知、求证,这可能会是本节的难点。
【学习目标】1.借助已经证明过的定理,通过教师引导,合作交流,展示,会证明两直线平行,内错角相等(或同旁内角互补)。
2.通过定理的证明,能用自己的语言归纳命题证明的一般思路,并会利用定理求角度。
【学习重点】平行线性质定理:两直线平行,内错角相等(或同旁内角互补)的证明。
7.4 平行线的性质北师大版八年级上册数学 7.4 平行线的性质教案1
7.4 平行线的性质1.理解并掌握平行线的性质公理和定理;(重点)2.能熟练运用平行线的性质进行简单的推理证明.(重点)一、情境导入一条公路两次拐弯后和原来的方向相同,第一次拐的角度∠B 是130°,第二次拐的角度∠C 是多少度?二、合作探究探究点一:平行线的性质定理1如图,在△ABC 中,点D 、E 、F 分别为BC 、AB 、AC 上的点,DE ∥AC 且DF∥AB.求证:∠BED=∠CFD.解析:由DE∥AC 可知∠BED =∠A ,由DF∥AB 可知∠CFD =∠A ,从而可得∠BED =∠CFD.证明:∵DE∥AC(已知),∴∠BED =∠A(两直线平行,同位角相等).∵DF∥AB(已知),∴∠CFD =∠A(两直线平行,同位角相等).∴∠BED=∠CFD(等量代换).方法总结:在已知两直线平行的前提下,若要求证的两角不是平行线被第三条直线所截得的角,就要借助一个中间量,将两者联系起来.探究点二:平行线的性质定理2如图,已知∠B=∠C,AE ∥BC ,说明AE 平分∠CAD.解析:要说明AE 平分∠CAD ,即∠DAE =∠CAE.由于AE∥BC ,根据平行线性质定理1和性质定理2可知∠DAE =∠B ,∠EAC =∠C.由∠B =∠C 即可得证.解:∵AE∥BC(已知),∴∠DAE =∠B(两直线平行,同位角相等), ∠EAC =∠C(两直线平行,内错角相等). ∵∠B =∠C(已知),∴∠DAE =∠EAC(等量代换), ∴AE 平分∠CAD.方法总结:单独考平行线某一性质的题很少,通常都是平行线的性质与其他知识的综合运用.探究点三:平行线的性质定理3如图,已知DA⊥AB,CB ⊥AB ,DE 平分∠ADC,CE 平分∠BCD,试说明DE⊥CE.解析:要证DE ⊥CE ,即∠DEC =90°.需证∠1+∠2=90°.由DE 、CE 分别平分∠ADC 、∠BCD ,则需证∠ADC +∠BCD =180°,从而需证AD∥BC. 解:∵DA⊥AB,CB ⊥AB ,∴AD ∥BC(垂直于同一直线的两直线平行),∴∠ADC +∠BCD =180°(两直线平行,同旁内角互补).∵DE 平分∠ADC,CE 平分∠BCD,∴∠1=12∠ADC ,∠2=12∠BCD.∴∠1+∠2=12×180°=90°,∴∠DEC=90°,即DE⊥CE.方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB ∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD ,但没有一条直线既与AB 相交,又与CD 相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E 作AB 的平行线.证明:如图所示,过点E 作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED +∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.三、板书设计 平行线的性质⎩⎪⎨⎪⎧两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补平行于同一条直线的两直线平行从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,进一步理解和总结证明的步骤、格式、方法.了解两定理在条件和结构上的区别,体会正逆的思维过程. 进一步发展学生的推理能力,培养学生的逻辑思维能力.。
北师大版八年级数学上册:7-4平行线的性质(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线性质的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
4.学会运用平行线性质和判定方法进行图形的证明和构造。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力,通过探索平行线的性质,使学生能够理解和掌握几何图形的内在规律,提高推理能力;
2.培养学生的空间想象力和几何直观,通过平行线性质的探究,使学生能够在脑海中构建几何图形,培养空间观念;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中具有重要作用,可以帮助我们解决角度和图形线在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调平行线的性质,如同位角相等、内错角相等、同旁内角互补。对于难点部分,我会通过举例和比较来帮助大家理解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、重要性质和应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级上册第七章7.4 平行线的性质(教案)
7.4平行线的性质(教案〕教学目标知识与技能:会根据“两直线平行,同位角相等〞证明“两直线平行,内错角相等〞和“两直线平行,同旁内角互补〞,并能简单地应用这些结论.过程与方法:了解性质定理与判定定理的联系,初步感受互逆的思维过程.情感态度与价值观:进一步理解证明的步骤、格式和方法,开展演绎推理能力.教学重难点【重点】理解和简单应用平行线的性质定理.【难点】运用公理、定理进行简单的推理,以及用几何语言进行表述.教学准备【教师准备】问题探索和例题的教学用图.【学生准备】复习平行线的判定定理.教学过程一、导入新课导入一:师:同学们,上课前,老师在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如下图的一局部,如果不能同时反向延长CD,EF的话,你能否利用所学的数学知识测出∠A的度数?(多媒体展示)(学生思考,互相交流解决方法)生1:根据两直线平行,同位角相等的知识,可以过C点作FE的平行线,构造∠A的同位角,那么可以测出∠A的度数.生2:根据两直线平行,内错角相等的知识,也可以过C点作FE的平行线,构造∠A的内错角.师:同学们利用平行线的性质解决这个问题的想法太棒了!那么,你知道这些性质是如何证明的吗?这节课就让我们来探究这个问题.(板书课题:4平行线的性质)[设计意图]通过趣味题导入,激发学生的探究知识的欲望,点燃学生思维的火花,使其进入最正确的学习状态.导入二:如下图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐30°,那么第二个弯应朝什么方向,才能不改变原来的方向?[处理方式]先给学生2分钟的时间自己探究,得出结论后小组讨论,最后选代表发言.学生观察,小组讨论,交流问题并发表见解,教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题.在学生探究讨论的过程中,少局部学生可能对题意理解不透彻,此时教师可以结合实际问题加以引导,引导性语言如下:(1)不改变方向,在数学中的理解应是什么;(2)在这个问题中包含了什么问题;(3)如何将它转化为数学问题.[设计意图]通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实生活,效劳于现实生活,同时也调动了学生的积极性,提高了学生的兴趣.二、新知构建[过渡语]上节课我们通过推理证得了平行线的判定定理,知道它们的条件是角的大小关系,其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换,那么得到的命题是真命题吗?(1)、两直线平行,同位角相等思路一活动内容:画出直线a的平行线b,结合画图过程思考:画出的平行线被第三条直线c所截的同位角的关系是怎样的?[处理方式]本节证明平行线的性质定理,将性质定理“两直线平行,同位角相等〞的证明作为选学内容,因此,第一局部以自学阅读的形式呈现,自学教材第175页内容(包括证明过程),学有余力的学生可以思考探究:应用平行线的性质定理“两直线平行,同位角相等〞可以得出什么?[设计意图]学生在自学的过程中,理解平行线的性质,并明确两直线平行的性质定理“两直线平行,同位角相等〞是推理论证后面两个性质定理的根底;“同位角相等〞是在“两直线平行〞的前提下才成立的,是平行线特有的性质.要防止一提到同位角就以为其相等的错误.思路二师:我们先来证明定理:两直线平行,同位角相等.你能否发现定理的条件是什么?生:两条平行直线被第三条直线所截.师:结论是什么?生:同位角相等.师:证明命题,要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为以下形式.【课件展示】:如下图,直线a∥b,∠1和∠2是直线a,b被直线c所截出的同位角.求证:∠1=∠2.请同学们自主学习教材第175页“两直线平行,同位角相等〞的证明过程.(学生阅读思考,互相交流心得)师:利用这个定理,你能证明哪些熟悉的结论?思路三【问题】:如下图,直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角.求证:∠1=∠2.【思考】(1)∠1和∠2在数量关系上有哪两种情况?(2)过直线外一点有几条直线与这条直线平行?[设计意图]为接下来用反证法证明上述定理作准备.证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2,如下图.根据“同位角相等,两直线平行〞,可知GH∥CD.又因为AB∥CD,所以此时经过点M存在两条直线AB和GH都与直线CD平行.这与根本领实“过直线外一点有且只有一条直线与这条直线平行〞相矛盾.这说明∠1≠∠2的假设不成立,所以∠1=∠2.【思考】为什么不能按如下方法证明上述定理?∵AB∥CD,∴∠2=∠AMN.又∵∠1=∠AMN,∴∠1=∠2.(2)、两直线平行,内错角相等;同旁内角互补(多媒体出示)根据同位角相等可以判定两直线平行,反过来,如果两直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?1.两条平行直线被第三条直线所截,同位角是相等的,那么内错角、同旁内角之间有什么关系呢?∵a∥b(),∴∠1=∠2(两条直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).师:由此我们又得到了平行线有怎样的性质呢?【学生活动】同学们积极举手答复以下问题.教师根据学生表达,给出板书:两条平行直线被第三条直线所截,内错角相等.2.下面请同学们自己推导同旁内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).∵∠1+∠4=180°(邻补角的定义),∴∠2+∠4=180°(等量代换),即两条平行直线被第三条直线所截,同旁内角互补,简单说成“两直线平行,同旁内角互补〞.师:我们知道了平行线的性质,在今后我们经常要用它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).∵a∥b(),∴∠2=∠3(两直线平行,内错角相等).∵a∥b(),∴∠2+∠4=180°(两直线平行,同旁内角互补).(板书在三条性质的对应位置上)[处理方式]在完成“两直线平行,同位角相等〞的证明后,要求学生自主证明“两直线平行,内错角相等〞“两直线平行,同旁内角互补〞,然后将学生的证明过程整理出来,与教材中的进行比照,感受证明的过程和标准格式.通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性.引导学生使用符号语言,充分调动学生的主动性和积极性,开展学生的符号感.[设计意图]在前面复习引入的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,而应充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣. (3)、两类定理的比拟两条直线被第三条直线所截.平行线的判定平行线的性质条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补[处理方式]引导学生分组探究,并明确平行线的性质定理和判定定理的条件和结论正好相反.性质是由条件“平行〞得到结论“角的关系〞;判定是由条件“角的关系〞得到结论“平行〞.[设计意图]初步建立平行线的性质定理和判定定理之间的联系,初步感受互逆的思维过程.具体为:在判定中,把角相等或互补作为判断两直线是否平行的前提,角相等或互补是,结论是两直线平行,那么判定是由“角相等或互补〞推理论证“两直线平行〞.在性质中,两直线平行是条件,结论是角相等或互补,性质是用来说明两个角相等或互补的,即由“两直线平行〞推理论证“角相等或互补〞.四、平行线的传递性如果两条直线都和第三条直线平行,那么这两条直线也互相平行.:直线a,b,c被直线d所截,且a∥b,c∥b.求证:a∥c.[处理方式]学生自行尝试解答,小组合作探究后,比照不同的解法,并推荐一人答复以下问题,这样的气氛,激发了学生强烈的学习兴趣.[设计意图]对学生中出现的不同解法给予肯定,培养学生的解题能力.议一议:完成一个定理的证明,需要哪些环节?与同伴进行交流.[处理方式]引导学生回忆证明过程,梳理证明活动中的经验,小组尝试整理证明的步骤.教师强调:(1)证明的一般步骤:①理解题意;②根据题意正确画出图形;③结合图形,写出“〞和“求证〞;④分析题意,探索证明的思路;⑤依据寻求的思路,运用数学符号和数学语言条理清晰地写出证明过程;⑥检查表达过程是否正确、完善.(2)证明的思路:①可以从求证出发向追溯,也可以由向结论探索,还可以从和结论两个方向同时出发,互相接近.②对于用文字表达的命题的证明,要先分清命题的条件和结论,然后根据题意画出图形,写出和求证,证明即可.[设计意图]使学生明确证明的步骤与思路,能更好地完成几何证明题.[知识拓展]该定理的主要作用是判断两个角相等,即由两条直线之间的“位置关系〞转化为两角之间的“数量关系〞,能正确找到内错角是证明该定理的重点.如下图,AB∥CD,∠CDE=140°,那么∠A的度数为()A.140°B.60°C.50°D.40°〔解析〕∵∠CDE=140°,∴∠ADC=180°-140°=40°,∵AB∥CD(),∴∠A=∠ADC=40°(两直线平行,内错角相等).应选D.三、课堂总结四、课堂练习1.平行线的性质定理有:,,.答案:两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补2.如下图,∠4=∠C,∠1=∠2,求证BD平分∠ABC.证明:∵∠4=∠C,∴AD∥BC,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3,即BD平分∠ABC.3.如下图,CD∥OB,EF∥AO,求证∠1=∠O.证明:∵CD∥OB,∴∠1=∠2,又∵EF∥AO,∴∠2=∠O,∴∠1=∠O.五、板书设计4平行线的性质探索1两直线平行,同位角相等探索2两直线平行,内错角相等探索3两直线平行,同旁内角互补探索4平行于同一条直线的两条直线平行六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.5第4题.(2)、课后作业【根底稳固】1.如下图,由AB∥CD能得到∠1=∠2的是()2.如下图,AB∥CD,E是AB上一点,ED平分∠BEC交CD于D,∠BEC=100°,那么∠D的度数是()A.100°B.80°C.60°D.50°3.如下图,AB∥CD,DB⊥BC于B,∠2=50°,那么∠1的度数()A.40°B.50°C.60°D.140°4.如下图,AB∥CD,EF分别交AB,CD于M,N,∠EMB=50°,MG平分∠BMF,MG交CD于G,那么∠1等于()A.65°B.50°C.115°D.120°5.如下图,AB∥EF∥DC,EG∥BD,那么图中与∠1相等的角(∠1除外)有()A.6个B.5个C.4个D.2个【能力提升】6.如下图,∠1与∠2互补,∠3=100°,求∠4的度数.7.如下图,直线AB∥CD,直线EF分别交AB,CD于E,F,∠BEF的平分线与∠DFE的平分线交于P.求证∠P=90°.8.如下图,C,P,D在一条直线上,∠BAP与∠APD互补,∠1=∠2.求证∠E=∠F.【拓展探究】9.如下图,AB∥ED,∠CAB=135°,∠ACD=80°.求∠CDE的度数.【答案与解析】1.B2.D(解析:根据角平分线的定义可得∠BED=50°,再根据平行线的性质可得∠D=∠BED=50°.)3.A4.A(解析:综合运用平行线的性质和三角形内角和定理求出∠1的度数.)5.B6.解:∵∠1+∠2=180°,∠2=∠5,∴∠1+∠5=180°,∴a∥b,∴∠3=∠4,∴∠4=100°.7.证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵EP,FP分别平分∠BEF,∠DFE,∴∠BEF=2∠PEF,∠DFE=2∠PFE.∴∠PEF+∠PFE=90°,∴∠P=90°.8.证明:∵∠BAP+∠APD=180°,∴AB∥CD.∴∠BAP=∠CPA.∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥FP,∴∠E=∠F.9.解:如下图,过点C作CF∥AB,∵CF∥AB,∴∠A+∠ACF=180°(两直线平行,同旁内角互补).而∠A=135°,那么∠ACF=45°,∴∠FCD=∠ACD-∠ACF=80°-45°=35°.又∵CF∥AB,AB∥ED,∴CF∥DE,∴∠FCD=∠CDE(两直线平行,内错角相等),∴∠CDE=35°.。
八年级上册北师大版第七行平行线的证明学案道客巴巴
八年级上册北师大版第七行平行线的证明学案学案名称:八年级上册北师大版第七行平行线的证明学习目标:1.掌握平行线的证明方法。
2.能够运用平行线的性质解决实际问题。
3.培养逻辑推理能力和数学思维能力。
学习内容:一、平行线的定义及性质1.平行线的定义:在同一平面内,两条永不相交的直线称为平行线。
2.平行线的性质:(1)同位角相等:两直线平行,同位角相等。
(2)内错角相等:两直线平行,内错角相等。
(3)同旁内角互补:两直线平行,同旁内角互补。
二、平行线的证明方法1.证明两直线平行的方法:(1)同位角相等:如果两直线的同位角相等,则这两直线平行。
(2)内错角相等:如果两直线的内错角相等,则这两直线平行。
(3)同旁内角互补:如果两直线的同旁内角互补,则这两直线平行。
2.证明多条直线平行的条件:(1)如果一条直线与另外两条直线分别平行,那么这两条直线也平行。
(2)如果两条直线都与第三条直线平行,那么这两条直线也平行。
三、平行线在实际生活中的应用1.交通标志:道路上的斑马线、指示箭头等都是利用平行线的性质来设计的。
2.建筑学:在建筑设计时,利用平行线的性质可以保证建筑物的垂直和平行,提高建筑物的稳定性和安全性。
3.电子工程:在电路设计中,利用平行线的性质可以保证电流的稳定和导线的平行,提高电路的工作效率和稳定性。
学习活动:1.小组讨论:请同学们分组讨论,总结出证明两直线平行的三种方法,并举例说明如何应用。
2.实践操作:请同学们利用平行线的性质,设计一个简单的实际应用方案,例如如何利用平行线的性质来检查一个门是否垂直于地面。
3.练习与巩固:请同学们完成以下练习题,以巩固所学知识。
练习题:1.填空题:(1)如果同位角相等,则两直线____。
(2)如果内错角相等,则两直线____。
(3)如果同旁内角互补,则两直线____。
2.选择题:(1)下列说法中正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上说法都不对(2)下列条件中,不能判定两直线平行的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上条件都不能判定3.证明题:(1)已知:直线a与直线b平行,直线b与直线c平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)∠E=78°时,∠1、∠2各等于多少度?为什么?
(2)∠F=58°时,∠3、∠4各等于多少度?为什么?
四、拓展延伸(提高)
五、收获盘点(升华)
证明命题的一般步骤:(1)根据题意画出图形(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;(3)经过分析,找出已知退出求证的途径,写出证明过程;(4)检查证明过程是否正确完善。
你能证明它们吗?
(1)证明:两直线平行,内错角相等
(2)证明:两直线平行,同旁内角相等
3、议一议:完成一个命题的证明,需要哪知平行线AB、CD被直线AE所截
(1)若∠1=110°,可以知道∠2是多少度吗?为什么?
(2)若∠1=110°,可以知道∠3是多少度吗?为什么?
六、当堂检测(达标)
习题7.5知识技能1,2
七、课外作业(巩固)
1、必做题:①整理导学案并完成下一节课导学案中的预习案。
②完成《优化设计》中的本节内容,习题7.5数学理解3,4
2、思考题:
学习反思:
2、一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是130°,第二次拐的角∠C是多少度?
二、合作探究(理解)
1、画出直线AB的平行线CD,结合画图过程思考:画出的平行线,被第三条直线所截的同位角的关系是怎样的?
平行公理:两直线平行,同位角相等,你会证明吗?自学教材上关于它的证明。
2、利用平行公理,你能得到两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢?
(3)若∠1=110°,可以知道∠4是多少度吗,为什么?
2、如图是梯形有上底的一部分,已知量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?
3、如图,已知直线DE经过点A,DE∥BC,∠B=44°,∠C=57°
(1)∠DAB等于多少度?为什么?
(2)∠EAC等于多少度?为什么?
(3)∠BAC、∠BAC+∠B+∠C各等于多少度?
学科
数学
年级
八年级
授课班级
主备教师
参与教师
课型
新授课
课题
§7.4平行线的性质
备课组长审核签名
教研组长审核签名
学习目标:1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;
2、能熟练应用平行线的性质公理及定理。
辅助教学:多媒体
学习内容(学习过程)
一、自主预习(感知)
1、七年级时我们学过两条直线平行的性质?它们是: