2021年新高考数学总复习第45讲:空间几何体的表面积、体积

合集下载

高考数学知识点之空间几何体的表面积和体积

高考数学知识点之空间几何体的表面积和体积

高考数学知识点之空间几何体的表面积和体积在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

下面小编给大家介绍高考数学知识点之空间几何体的表面积和体积,赶紧来看看吧!1、圆柱体:表面积:2πRr+2πRh体积:πRh(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR+πR[(h+R)的平方根]体积:πRh/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a,V=a4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr,S侧=Ch,S表=Ch+2S底,V=S底h=πrh10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R+Rr+r)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a+h)/6=πh(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r1+r2)+h]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr=π2Dd/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D+d)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D+Dd+3d/4)/15(母线是抛物线形)。

考点24 空间几何体体积及表面积——2021年高考数学专题复习讲义附解析

考点24 空间几何体体积及表面积——2021年高考数学专题复习讲义附解析

考点24:空间几何体的表面积和体积【思维导图】【常见考法】考法一:体积1.(等体积法之换顶点)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,222AD BD AB ===,平面PAD ⊥底面ABCD ,且2PA PD ==,E ,F 分别为PC ,BD 的中点.(1)求证://EF 平面PAD ;(2)求证:平面PAD ⊥平面PBD ;(3)求三棱锥B PCD -的体积.2.(等体积法之点面距)已知三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB ∆为正三角形.(1)求证:BC ⊥平面APC ;(2)若310BC AB ==,,求点B 到平面DCM 的距离.3.(补形法)将棱长为2的正方体1111ABCD A B C D -截去三棱锥1D ACD -后得到如图所示几何体,O 为11A C 的中点.(1)求证://OB 平面1ACD ;(2)求几何体111ACB A D 的体积.4.(分割法)如图,矩形ABCD 中,3AB =,1BC =,E 、F 是边DC 的三等分点.现将DAE ∆、CBF ∆分别沿AE 、BF 折起,使得平面DAE 、平面CBF 均与平面ABFE 垂直.(1)若G 为线段AB 上一点,且1AG =,求证:DG 平面CBF ;(2)求多面体CDABFE 的体积.考法二:表面积1.如图,在四棱锥P ABCD -中,2AD =,1AB BC CD ===,//BC AD ,90PAD ∠=︒.PBA ∠为锐角,平面PAB ⊥平面PBD .(Ⅰ)证明:PA ⊥平面ABCD ;(Ⅱ)AD 与平面PBD 所成角的正弦值为2,求三棱锥P ABD -的表面积.2.如图,在直三棱柱111ABC A B C -中,AB BC ⊥,1222AA AB BC ===,M ,N ,D 分别为AB ,1BB ,1CC 的中点,E 为线段MN 上的动点.(1)证明://CE 平面1ADB ;(2)若将直三棱柱111ABC A B C -沿平面1ADB 截开,求四棱锥1A BCDB -的表面积.3.如图,四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,3ABC π∠=,M 是PC 上一动点.(1)求证:平面PAC ⊥平面MBD ;(2)若PB PD ⊥,三棱锥P ABD -的体积为624,求四棱锥P ABCD -的侧面积.考法三:求参数1.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -3a 的值.2.如图,在四棱锥P ABCD -中,PAD ∆是等边三角形,O 是AD 上一点,平面PAD ⊥平面,ABCD //,,1,2,3AB CD AB AD AB CD BC ⊥===.(1)若O 是AD 的中点,求证:OB ⊥平面POC ;(2)设=OD OAλ=,当λ取何值时,三棱锥B POC -3考法四:求最值1.如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13,90,BB ABC =∠=点D 为侧棱1BB 上一个动点。

2021高考数学 命题区间精讲 精讲10 空间几何体的三视图、表面积、体积

2021高考数学 命题区间精讲 精讲10 空间几何体的三视图、表面积、体积

空间几何体的三视图、表面积、体积命题点1 空间几何体的三视图、展开图、截面图三视图、展开图、截面图中的几何度量(1)空间几何体的三视图:①在长方体或正方体中根据三视图还原几何体的直观图,能快速确定几何体中线面位置关系;②根据“长对正,宽相等、高平齐”的原则由三视图确定对应几何体中的量.(2)空间几何体表面距离最短问题:其解题思路常常是将几何体展开.一般地,多面体以棱所在的直线为剪开线展开,旋转体以母线为剪开线展开.(3)空间几何体的三类截面:轴截面、横截面与斜截面.利用截面图可将空间问题转化为平面问题解决.[高考题型全通关]1.[教材改编]已知圆锥的侧面展开图为四分之三个圆面,设圆锥的底面半径为r,母线长为l,有以下结论:①l∶r=4∶3;②圆锥的侧面积与底面面积之比为4∶3;③圆锥的轴截面是锐角三角形.其中所有正确结论的序号是( )A.①② B.②③ C.①③ D.①②③A[对于①,由题意得错误!=错误!π,∴错误!=错误!,∴l∶r=4∶3,∴该结论正确;对于②,由题意得错误!=错误!=错误!=错误!,∴圆锥的侧面积与底面面积之比为4∶3,∴该结论正确;对于③,由题意得轴截面的三角形的三边长分别为错误!r,错误!r,2r,顶角α最大,其余弦值为cos α=错误!=-错误!〈0,∴顶角为钝角,∴轴截面三角形是钝角三角形,∴该结论错误.]2.在正方体ABCD。

A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧(左)视图为()C[过点A,E,C1的平面截去该正方体的上半部分后,剩余部分的直观图如图,则该几何体的侧(左)视图为C.故选C.]3。

(2020·芜湖仿真模拟一)如图,在正方体ABCD。

A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是( )A.①④ B.②③ C.②④ D.①②A[从上下方向上看,△PAC的投影为①图所示的情况;从左右方向上看,△PAC的投影为④图所示的情况;从前后方向上看,△PAC 的投影为④图所示的情况,故选A.]4.(2020·全国卷Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.FC.G D.HA[该几何体是两个长方体拼接而成,如图所示,显然选A.]5.[高考改编]某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是( )A.错误!B.错误!C.错误!D.错误!D[在棱长为2的正方体中还原该四面体P­ABC.如图所示,其中最短的棱为AB和BC,最长的棱为PC.因为正方体的棱长为2,所以AB=BC=2,PC=3,所以该四面体最长的棱长与最短的棱长的比值为错误!,故选D.]6.圆锥的母线长为l ,过顶点的最大截面的面积为12l 2,则圆锥底面半径与母线长的比r l的取值范围是( ) A .错误!B .错误!C .错误!D .错误!D [设圆锥的高为h ,过顶点的截面的顶角为θ,则过顶点的截面的面积S =12l 2sin θ,而0<sin θ≤1,所以当sin θ=1,即截面为等腰直角三角形时取得最大值,故圆锥的轴截面的顶角必须大于或等于90°,得l >r ≥l cos 45°=错误!l ,所以错误!≤错误!<1.]7.如图,已知正三棱柱ABC ­A 1B 1C 1中,AB =错误!,AA 1=4,若点P 从点A 出发,沿着正三棱柱的表面,经过棱A 1B 1运动到点C 1,则点P 运动的最短路程为( )A .5B .错误!C.4错误!D.6B[将三棱柱展开成如图的图形,让点C1与ABB1A1在同一平面内,C1D⊥AB交A1B1于Q,则C1Q⊥A1B1,∴A1Q=AD=错误!,两点之间线段最短,故AC1即为所求的最短距离,因为C1Q=A1C1×sin 60°=错误!×错误!=错误!,所以C1D=错误!+4=错误!,AD=错误!,所以AC1=错误!=错误!=错误!.]命题点2 空间几何体的表面积、体积求解几何体的表面积或体积的策略(1)直接法:对于规则几何体可直接利用公式计算;(2)割补法:对于不规则几何体,可采用“分割、补体"的思想,采用化整为零或化零为整求解.(3)轴截面法:对于旋转体的表面积问题,常常借助轴截面求解.(4)等体积转化法:对于某些动态三棱锥的体积问题,直接求解1.(2020·潍坊模拟)若圆锥的高等于底面直径,侧面积为5π,则该圆锥的体积为()A.错误!π B.错误!π C.2π D.错误!πB[圆锥的高等于底面直径,侧面积为错误!π,设底面半径为r,则高h=2r,∴母线长l=错误!=错误!r,∴s=π×r×错误!r=错误!π,解得r=1,该圆锥的体积为V=错误!π×12×2=错误!π.故选B.]2.[高考改编]榫卯(sǔn mǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫,凹进去的部分叫卯,榫和卯咬合,起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿、山西悬空寺等,如图是一种榫卯构件中榫的三视图,则该榫的表面积和体积为( )A.8+16π,2+8π B.9+16π,2+8πC.8+16π,4+8π D.9+16π,4+8πA[由三视图知该榫头是由上下两部分构成:上方为长方体(底面为边长是1的正方形,高为2),下方为圆柱(底面圆半径为2,高为2).其表面积为圆柱的表面积加上长方体的侧面积,2π×2+2×错误!+4×错误!=8+16π.所以S=2×(⎭⎫其体积为圆柱与长方体体积之和,所以V=错误!×2+1×1×2=8π+2。

高考数学(文)全程复习空间几何体的表面积和体积数学课件PPT

高考数学(文)全程复习空间几何体的表面积和体积数学课件PPT

3.(2013·湖南卷)已知正方体的棱长为 1,其俯视图是一个面 积为 1 的正方形,侧视图是一个面积为 2的矩形,则该正方体的 正视图的面积等于( )
3 A. 2
B.1
2+1 C. 2
D. 2
解析:本题考查的是空间想象能力及三视图、面积公式,由 棱长为 1 的正方体的俯视图及侧视图的面积可知正方体的一条 侧棱正对正前方,其三视图如下:
(或空间距离)以及证明垂直或平行关系都有简化解题过程、开阔 思维的优点.
题型探究 题型一 多面体的表面积与体积的计算 例 1 如图,已知几何体的三视图(单位:cm).
(1)画出这个几何体的直观图(不 要求写画法);
(2) 求 这 个 几 何 体 的 表 面 积 及 体 积.
解析:(1)这个几何体的直观图如图所示.
2.要注意领会和掌握两种数学思想方法:割补法与等积法 割补法是割法与补法的总称.补法是把不规则(不熟悉的或 复杂的)几何体延伸或补成规则的(熟悉的或简单的)几何体,把不 完整的图形补成完整的图形.割法是把复杂的(不规则的)几何体 切割成简单的(规则的)几何体.割与补是对立统一的,是一个问 题的两个相反方面.割补法无论是求解体积问题还是求解空间角
2.(2013·山东卷)一个四棱锥的侧棱长都相等,底面是正方 形,其正(主)视图如图所示,则该四棱锥的侧面积和体积分别是
() A.4 5,8 B.4 5,83 C.4( 5+1),83 D.8,8
解析:本题考查四棱锥的侧面积、体积公式及三视图. 由正视图知底面边长为 2,高为 2,又侧棱长相等,棱锥为 正四棱锥,斜高 h′= 22+12= 5,侧面积 S=4×12×2× 5= 4 5,体积 V=13×2×2×2=83. 答案:B
例 3 如图所示,在等腰梯形 ABCD 中,AB=2DC=2,∠DAB =60°,E 为 AB 的中点,将△ADE 与△BEC 分别沿 ED、EC 向 上折起,使 A、B 重合,求形成的三棱锥的外接球的体积.

高考数学复习 第八章 第二节 空间几何体的表面积和体积课件 理

高考数学复习 第八章 第二节 空间几何体的表面积和体积课件 理

知识点二 知识空间几何体的体积
几何体名称
体积
棱(圆)柱
V=Sh(S 为底面面积,h 为高)
棱(圆)锥
V=13Sh(S 为底面面积,h 为高)
棱(圆)台
V=13h(S+ SS′+S′)(S′,S 为上、下 底面面积,h 为高)

V=43πR3,(R 为球半径)
【名师助学】 1.本部分知识可以归纳为: (1)四个公式:①柱体:V 柱=Sh,②锥体 V 锥=13Sh,③台体 V 台 =13h(S+ SS′+S′),④球体 V 球=43πR3. (2)一个关系:柱体、锥体、台体的体积公式之间的关系
[点评] (1)解决空间几何体表面上的最值问题的根本思路是“ 展开”,即将空间几何体的“面”展开后铺在一个平面上,将 问题转化为平面上的最值问题. (2)如果已知的空间几何体是多面体,则根据问题的具体情况可 以将这个多面体沿多面体中某条棱或者两个面的交线展开,把 不在一个平面上的问题转化到一个平面上. 如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平 面上的问题. (3)本题的易错点是,不知道从哪条侧棱剪开展平,不能正确地 画出侧面展开图,缺乏空间图形向平面图形的转化意识.
为与三视图及柱、题背景,突出空间 的体积. 算公式(不要
锥与球的接切问题几何体的线面位置 求记忆公式).
相结合,难度有所 关系的命题.在备考
增大.
中应予以重视.
知识点一 空间几何体的侧面积和表面积 1.简单几何体的侧面展开图的形状
名称 侧面展开图形状
侧面展开图
圆柱
矩形
名称 侧面展开图形状
侧面展开图
2 是一个底面边长为 3,高为 2 的正四棱柱. 球的体积为 V1=43πR3=43π(32)3=92π, 正四棱柱的体积为 V2=3×3×2=18, 所以该几何体的体积为92π+18,故选 B. 答案 B

专题3空间几何体、三视图、表面积与体积-2021届高三高考数学二轮复习PPT全文课件

专题3空间几何体、三视图、表面积与体积-2021届高三高考数学二轮复习PPT全文课件

的周长为8,则该几何体侧面积的最大值为
ቤተ መጻሕፍቲ ባይዱ
(D )
A.2π
B.4π
C.16π
D.不存在
(2)(2020·江苏省宿迁市重点中学一模)已知一圆锥的体积为
3 3
π,母
线与底面所成角为π3,则该圆锥的表面积为___3_π_.
【解析】 (1)由题意可知几何体是圆锥,设底面半径为r,r∈ (0,2),高为h,则2r+2 r2+h2=8,即r+ r2+h2=4,

(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于
x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.
专题3空间几何体、三视图、表面积与 体积-2 021届 高三高 考数学 二轮复 习PPT全 文课件

1 . ( 2 0 2 0 ·浙 江 模 拟 ) 一 个 几 何 体 的 三 视 图 如 图 所 示 , 则 该 几 何 体 表 面 两 两 垂 直 的 平 面 共 有
()
● A.3对
C
● B.4对
● C.5对
● D.6对

【解析】 根据几何体的三视图转换为直观图为:该几何体为四棱锥体.如图所示:平面
与平面的位置关系:平面ABCD⊥平面PBC、平面ABCD⊥平面PCD、平面PBC⊥平面PCD、平
面 PA B ⊥ 平 面 P B C 、 平 面 PA D ⊥ 平 面 P C D . 故 选 C .
● 1.三视图问题的常见类型及解题策略: ● (1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部 分用实线表示,不能看到的部分用虚线表示. ● (2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直 观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代 入,再看看给出的部分三视图是否符合.

2021年高考数学复习精选课件 第二节 空间几何体的表面积和体积


在Rt△AOO'中,∵AO2 =AO'2 +OO'2,
2
∴R2 =( 9 )2 +(4 -R)2,
4
解得R = ,
9 2 81 4 4
∴该球的外表积为4πR2 =4π× = . (面2)积设S正1=四4×面43体·a内2=切3a球2,其的内半切径球为的r,正半四径面为体正的四棱面长体为高a的,那么14,正即四r=面14 体×3的6 表a=
名称 几何体
表面积
柱体 (棱柱和圆柱)
S表面积=S侧+2S底
锥体 (棱锥和圆锥)
S表面积=S侧+S底
台体 (棱台和圆台) 球
S表面积=S侧+S上+S下 S=⑥ 4πR2
栏目索引
体积
V=④ Sh
V=⑤
1 3
Sh
V= 13 (S上+S下+ S上S)下h
V=⑦
4 3
πR3
栏目索引
判断以下结论的正误(正确的打 "√〞,错误的打 "×〞) (1)多面体的外表积等于各个面的面积之和. (√) (2)锥体的体积等于底面积与高之积. (×) (3)台体的体积可转化为两个锥体的体积之差. (√) (4)简单组合体的体积等于组成它的简单几何体体积的和或差.(√) (5)正方体既有外接球又有内切球. (√) (6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧 面积是2πS. (×)
1
3 83
8
4
×4π×22+3× ×π×
22=17π.选A.
栏目索引
1 -2 (2021课标全国Ⅱ,7,5分)以下图是由圆柱与圆锥组合而成的几何体 的三视图,那么该几何体的外表积为 ( )

高考数学复习—空间几何体的表面积与体积

• 8.2 空间几何体的表面 积与体积
1.柱体、锥体、台体的表面积
(1)直棱柱、正棱锥、正棱台的侧面积 S 直棱柱侧=__________,S 正棱锥侧=__________, S = 正棱台侧
__________(其中 C,C′为底面周长,h 为高,h′为斜高).
(2)圆柱、圆锥、圆台的侧面积 S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________
故正方体的体积为 223= 42,所以三棱锥 P-CDE 的体积为 42-
4×13×12× 22× 22× 22= 122.故填122.
类型四 空间旋转体的体积问题
已知球的外切圆台上、下底面的半径分别为 r,
R,求圆台的体积.
解:如图,图①是该几何体的直观图,图②是该几何体的轴
截面平面图.
圆台轴截面为等腰梯形,与球的大圆相切,根据切线长定理, AC=AO1,BO=BC,得梯形腰长为 R+r,梯形的高即球的直径 长为 OO1= AB2-(OB-O1A)2= (R+r)2-(R-r)2
则 AD1= 32+42+122=13,所以直三棱柱外接球的半径为123.故选
C.
点 拨: 求解几何体外接球的半径主要从两个方面考 虑:一是根据球的截面的性质,利用球的半径 R、 截面圆的半径 r 及球心到截面圆的距离 d 三者的关 系 R2=r2+d2 求解,其中确定球心的位置是关键; 二是将几何体补成长方体,利用该几何体与长方体 共有外接球的特征,由外接球的直径等于长方体体
=123.即直三棱柱外接球的半径为123.
解法二:(补体法)如图所示,将直三棱柱 ABC-A1B1C1 的底面补
成矩形,得到长方体 ABDC-A1B1D1C1.显然,直三棱柱 ABC-A1B1C1 的 外 接 球 就 是 长 方 体 ABDC-A1B1D1C1 的 外 接 球 . 而 长 方 体

高考数学第1轮总复习 第45讲 空间几何体的表面积和体积课件 理 (广东专版)


(1)求该几何体的体积 V; (2)求该几何体的表面积 S.
【解析】 (1)由三视图可知,该几何体是一个平行六面体(如图), 其底面是边长为 1 的正方形,高为 3,
所以 V=1×1× 3= 3.
(2)由三视图可知,该平行六面体中,A1D⊥平面 ABCD, CD⊥平面 BCC1B1,
所以 AA1=2,侧面 ABB1A1、CDD1C1 均为矩形, 所以 S=2×(1×1+1× 3+1×2)=6+2 3.
【解析】 (1)A=x· 4-x2(0<x<2). (2)V=x· 4-x2·1= x24-x2= -x2-22+4. 因为 0<x<2,所以当 x= 2时,Vmax=2.
1.对于基本概念和能用公式直接求出棱柱、 棱锥、棱台与球的表面积的问题,要结合 它们的结构特点与平面几何知识来解决. 2.要注意将空间问题转化为平面问题. 3.当给出的几何体比较复杂,有关的计算 公式无法运用,或者虽然几何体并不复杂, 但条件中的已知元素彼此离散时,我们可 采用“割”、“补”的技巧,化复杂几何体为简 单几何体(柱、锥、台),或化离散为集中, 给解题提供便利.
【解析】方法 1:过 C 作平行于 A1B1C1 的截面 A2B2C, 交 AA1、BB1 于 A2、B2.
由直三棱柱性质可知 B2C⊥平面 ABB2A2, 则 V=V 柱 A1B1C1-A2B2C+V 锥 C-ABB2A2 =21×2×2×2+31×12(1+2)×2×2 =6.
在△ABC 中,AB= 22+4-32= 5, BC= 22+3-22= 5, AC= 2 22+4-22=2 3. 则 S△ABC=12×2 3× 52- 32= 6.
【解析】因为 DC⊥平面 ABC,所以 AC⊥DC,又 AC⊥BC, 所以 AC⊥平面 BCDE. 所以 VB-ADE=VA-BDE=31S△BDE·AC=13×21×2×2×2=34.

2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理

§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 7 页 2021年新高考数学总复习第45讲:空间几何体的表面积、
体积
1.(2018·课标全国Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )
A .8
B
.6 2 C .8 2 D .8 3 答案 C
解析 连接BC 1,因为AB ⊥平面BB 1C 1C ,所以∠AC 1B =30°,AB ⊥BC 1,所以△ABC 1为直角三角形.又AB =2,所以BC 1=2 3.又B 1C 1=2,所以BB 1=(23)2-22=22,故该长方体的体积V =2×2×22=8 2.
2.(2015·山东,理)在梯形ABCD 中,∠ABC =π2
,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A.2π3
B.4π3
C.5π3
D .2π 答案 C
解析 如图,过点D 作BC 的垂线,垂足为H.则由旋转体的定义可知,该梯形
绕AD 所在的直线旋转一周而形成的曲面所围成的几何体为一个圆柱挖去一个
圆锥.其中圆柱的底面半径R =AB =1,高h 1=BC =2,其体积V 1=πR 2h 1=
π×12×2=2π;圆锥的底面半径r =DH =1,高h 2=1,其体积V 2=13
πr 2h 2=13π×12×1=π3.故所求几何体的体积为V =V 1-V 2=2π-π3=5π3
.故选C. 3.(2020·淮北市模拟)某几何体的三视图如图所示,则该几何体的表面积等于( )
A .8+22
B .11+2 2
C .14+2 2
D .15。

相关文档
最新文档