纳米晶体材料的研究进展(1994)245
纳米材料在电子器件领域的研究进展

纳米材料在电子器件领域的研究进展一、引言随着科技的不断发展和进步,纳米材料在各个领域的应用得到了广泛关注和研究。
在电子器件领域,纳米材料的应用正在改变传统器件的性能和功能。
本文将回顾纳米材料在电子器件领域的研究进展,并探讨其未来的发展方向。
二、纳米材料的定义与特征纳米材料是指材料的尺寸在纳米级别(10-9米)上具有特殊性质和效应的材料。
与传统材料相比,纳米材料具有较高的比表面积、较小的颗粒尺寸和量子效应等特征。
这些特征使纳米材料具有优异的电学、光学和磁学等性能,适用于电子器件的制造和应用。
三、纳米材料在晶体管领域的应用晶体管是电子器件的核心组成部分,纳米材料在晶体管领域的应用已取得了重要进展。
首先,纳米材料能够制备出更小尺寸的晶体管,提高集成度和工作频率。
其次,纳米材料能够改善晶体管的电子迁移率和开关特性,提高器件的性能和可靠性。
最后,纳米材料还可以用于制造新型晶体管结构,如纳米线、纳米片等,实现新功能的发现和应用。
四、纳米材料在存储器件领域的应用存储器件是电子器件中另一个重要的组成部分,纳米材料在存储器件领域也有广泛的应用。
首先,纳米材料能够制备出更高密度的存储器件,提高存储容量和速度。
其次,纳米材料能够改善存储器的抗氧化性和稳定性,延长器件的寿命。
最后,纳米材料还可以用于制造非易失性存储器件,如闪存、磁性存储器等,实现高速、低功耗的数据存储和传输。
五、纳米材料在传感器领域的应用传感器是电子器件中用于感知和检测环境信息的重要部件,纳米材料在传感器领域的应用也备受关注。
首先,纳米材料能够提高传感器的灵敏度和选择性,实现更精确的信号检测和分析。
其次,纳米材料能够制备出更小尺寸的传感器,实现更小型化和集成化的器件设计。
最后,纳米材料还可以用于制造多功能的传感器,如柔性传感器、生物传感器等,实现更广泛的应用场景和功能需求。
六、纳米材料在能量器件领域的应用能量器件是电子器件中用于能量转换和存储的重要组成部分,纳米材料在能量器件领域的应用也具有巨大潜力。
纳米晶体材料腐蚀行为的研究进展

Z HOU u XI a i W U a g ig , I is a J n , E F qn , Xi qn L n h n n J
( S h o fAeo a t s 1 c o l r n u i ,No t we tr lte ne l iest o c rh sen Poye h ia v ri Un y,Xia 1 0 2 ’ n7 0 7 ;
稳定 性最高 , 表面钝 化膜 的力 学 性 能最 高 , 与基 体 的结 合力最 好 。一 般认 为 : 面纳米晶化有利于提高合金 的耐腐蚀 性能 , 表 原
因是 纳米晶态提供了更多 的扩散通 道 , 从而提 高了扩散 速率 , 使
表面可 以生 成更稳定致密 的钝化膜 ; 同时 , 化膜 的厚 度和与基 钝 体 的结 合力 对耐蚀性 能也有很 大 的影 响 。但是 另一 方面 , 直接
2 S aeKe b rt r fS l i cto r c sig,No twe tr oy e h ia iest tt yLa o ao yo oi f ain P o e sn di rh sen P ltc n c l Unv r i y,Xia 1 0 2 ’n7 0 7 )
Ke r s y wo d
n n cy tln ,s ra en n c y tlz t n,c ro in b h vo ,c ro in rssa c a o r sal e u fc a o r sal ai i i o o r so e a ir or so e itn e
ly r to u e . Th o r so e a iro a o r sal e maeil r p r d b i e e tmeh d r ic se o sa ei r d c d n ec ro in b h vo fn n cy tln tr s p e a e y df rn t o sa ed su sd i a f a d c mp rd Th n,t xsigp o lmsaep e e td n h iet n frf rh rr sa c sas r p s d n o ae . e hee it r be r rs n e ,a dt edr ci o u t e e e rh i lo po o e n o .
纳米晶体种类及其制备技术进展

纳米晶体种类及其制备技术进展摘要本文主要介绍了纳米晶体种类及其制备技术进展情况。
从总体和实例两部分,结合最近一段时间内国内外的研究进展,阐明了金属纳米晶体、金属氧化物纳米晶体、药物纳米晶体和一些其他纳米晶体的特征属性及制备方法,并对它们的性能做了简单的介绍。
纳米晶体有许多独特优异的性能,这些性能在实际应用方面存在巨大的潜力。
因此,本文对相关的纳米晶体的应用也进行了介绍。
随着纳米晶体制备技术的发展,纳米晶体的应用会更加广泛。
同时,本文也注意到,人们对纳米晶体材料的认识还处于实验驱动认识的阶段,还有很多领域有待开拓。
随着人们对纳米晶体认识的不断深入,纳米晶体材料的研究将向着多元化的方向发展。
第一章引言纳米材料是指组分尺寸至少在某一个维度上介于1~100nm之间的材料,是纳米科学的一个重要的发展方向。
纳米材料就其结构上可以分为纳米晶体、纳米颗粒、纳米粉末、纳米管等。
由于纳米材料的纳米尺寸效应,使得纳米材料出现了许多不同于常规条件下的材料性能,例如光学性、电导性、抗腐蚀性等,因此人们对纳米材料在未来材料领域的应用与发展寄予了很大期望。
但由于纳米材料在结构上存在表面效应和小尺寸效应,使其能量高于平衡态,表面上原子数增多,具有较高的表面能,使得这些表面原子具有较高的活性,非常不稳定。
满足一定激活条件时,就会释放出过剩自由能,粒子长大,从而也将失去纳米材料所具有的特性,使块状纳米材料的制备产生困难。
而纳米晶体由于晶界数量增加,使材料的强度、密度、韧性等性能大为改善[1]。
纳米晶体材料是指由极细晶粒组成,特征维度尺寸在纳米量级的固态材料。
由于极细的晶粒,以及大量处于晶界和晶粒内缺陷的中心原子具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米晶体材料与同组成的微米晶体材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。
本文将分类介绍有关纳米晶体在制备、性能、应用等方面的研究进展。
酸水解法制备纤维素纳米晶体的研究进展

酸水解法制备纤维素纳米晶体的研究进展作者:邹竹帆杨翔皓王慧邹杨解洪祥司传领来源:《中国造纸》2019年第03期摘要:;基于目前纖维素纳米晶体的制备研究现状,本文综述了酸水解法制备纤维素纳米晶体的研究进展,重点介绍了传统无机酸水解法的影响因素以及其他4种新兴酸水解制备方法,包括可回收的有机酸水解法、绿色环保的固体酸水解法、高效的混合酸水解法、金属盐催化酸水解法。
并指出开发金属盐催化剂是酸水解法制备纤维素纳米晶体未来发展的一个重要方向。
关键词:纤维素纳米晶体;酸水解;金属盐;催化剂中图分类号:TS72 ;;;文献标识码:A ;;;;DOI:10.11980/j.issn.0254-508X.2019.03.011Abstract:;Based on the current research advances,;the preparation progress of cellulose nanocrystals via acid hydrolysis was reviewed,;with the focus on influence factors of traditional inorganic acid hydrolysis method,;and the development of another four new methods in recent years including recoverable organic acid hydrolysis,;environmental-friendly solid acid hydrolysis,;high efficiency mixed acid hydrolysis and metal salt catalyzed acid hydrolysis.Key words:;cellulose nanocrystals;;acid hydrolysis;;metal salt;;catalyst纤维素是地球上含量最丰富的天然高分子化合物,作为一种重要的可生物降解和可再生的生物质资源,年产量约为1800亿t[1]。
金属材料表面纳米化研究与进展

表面技术第53卷第4期金属材料表面纳米化研究与进展杨庆,徐文文,周伟,刘璐华,赖朝彬*(江西理工大学 材料冶金化学学部,江西 赣州 341000)摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。
研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。
金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。
根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。
最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。
关键词:金属材料;表面纳米化;梯度纳米结构;纳米化机理;表面性能中图分类号:TG178 文献标志码:A 文章编号:1001-3660(2024)04-0020-14DOI:10.16490/ki.issn.1001-3660.2024.04.002Research and Progress on Surface Nanocrystallizationof Metallic MaterialsYANG Qing, XU Wenwen, ZHOU Wei, LIU Luhua, LAI Chaobin*(Department of Materials Metallurgy and Chemistry, Jiangxi University ofTechnology, Jiangxi Ganzhou 341000, China)ABSTRACT: It is well known that the failure of most metallic materials starts from their surfaces, which in turn affects the overall performance of the whole material. Numerous studies have shown that the preparation of nanocrystals on the surface of metallic materials, i.e., surface nanosizing, can enhance the surface properties of materials and extend their service life. Surface nanosizing of metallic materials makes use of repeated violent plastic deformation to make the surface coarse grains gradually收稿日期:2023-02-23;修订日期:2023-06-29Received:2023-02-23;Revised:2023-06-29基金项目:国家自然科学基金项目(52174316,51974139);国家重点研发计划项目(2022YFC2905200,2022YFC2905205);江西省自然科学基金项目(20212ACB204008)Fund:National Natural Science Foundation of China(52174316, 51974139); National Key Research and Development Program of China (2022YFC2905200, 2022YFC2905205); Natural Science Foundation of Jiangxi Province (20212ACB204008)引文格式:杨庆, 徐文文, 周伟, 等. 金属材料表面纳米化研究与进展[J]. 表面技术, 2024, 53(4): 20-33.YANG Qing, XU Wenwen, ZHOU Wei, et al. Research and Progress on Surface Nanocrystallization of Metallic Materials[J]. Surface Technology, 2024, 53(4): 20-33.*通信作者(Corresponding author)第53卷第4期杨庆,等:金属材料表面纳米化研究与进展·21·refine to the nanometer level, forming nanostructured layers with gradient changes of grains along the thickness direction, including surface non-woven nanocrystalline layer, submicron fine crystal layer, coarse crystal deformation layer and matrix layer, and this unique gradient nanostructure is effective for the significant improvement of surface properties of metallic materials. The process technology and related applications of nanocrystalline layers on the surface of metallic materials in China and abroad are introduced, and the research progress of high-performance gradient nanostructured materials is discussed.Starting from the classification of the preparation process of gradient nanostructured materials and combining with the research results of surface nanosizing in China and abroad, a brief overview of three methods of metal surface nanosizing, namely, surface coating or deposition, surface self-nanosizing and hybrid nanosizing, was given, the advantages and disadvantages of each were discussed and the advantages of surface self-nanosizing technology were summarized. On the basis of this, the key role of dislocations and twins in the process of surface self-nanitrification of metallic materials was analyzed, and the mechanism of surface self-nanitrification of metallic materials was inextricably linked to the material structure and the size of layer dislocation energy, and the current research status of the mechanism of surface self-nanitrification of metallic materials was summarized. Finally, the key technologies required to be overcome in the existing surface strengthening process were summarized, and future research work was prospected. It was proposed to combine surface nanosizing technology with some existing surface treatment technologies such as electroplating, vapor deposition, tack coating, spraying, chemical heat treatment, etc., to replace the high-cost manufacturing technologies and prepare inexpensive complex-phase surface layers with more excellent performance.Techniques for the preparation of gradient nanostructured materials include surface coating or deposition, surface self-nanosizing, and hybrid surface nanosizing. Surface coating or deposition technology has the advantages of precise control of grain size and chemical composition, and relatively mature process optimization, etc. However, because the coating or deposition technology adds a cover layer on the material surface, the overall size of the material increases slightly, and there is a certain boundary between the coating and the material, and there will be defects in the specific input of production applications.In addition, the thickness of the gradient layer prepared by this technology is related to the deposition rate, which takes several hours to prepare a sample. The surface self-nanitrification technique, which generates intense plastic deformation on the surface of metal materials, has the advantages of simple operation, low cost and wide application, low investment in equipment and easy realization of unique advantages. The nanocrystalline layer prepared on the surface of metal materials with the surface self-nanitrification technique has a dense structure and no chemical composition difference from the substrate, and no surface defects such as pitting and pores, but the thickness of the gradient layers and nanolayers prepared by this technique as well as the surface quality of the material vary greatly depending on the process. Hybrid surface nanosizing is a combination of the first two techniques, in which a nanocrystalline layer is firstly prepared on the surface of a metallic material by surface nanosizing technology, and then a compound with a different composition from the base layer is formed on its surface by means of chemical treatment.To realize the modern industrial application of this new surface strengthening technology, it is still necessary to clarify the strengthening mechanism and formation kinetics of surface nanosizing technology as well as the effect of process parameters, microstructure, structure and properties on the nanosizing behavior of the material. For different nanosizing technologies, the precise numerical models for nanosizing technologies need to be established and improved, and the surface self-nanosizing equipment suitable for industrial scale production needs to be developed. In the future, surface nanosizing technology will be combined with some existing surface treatment technologies (e.g. electroplating, vapor deposition, adhesion coating, spraying, chemical heat treatment, etc.) to prepare a complex phase surface layer with more excellent performance, which is expected to achieve a greater comprehensive performance improvement of the surface layer of metal materials.KEY WORDS: metal material; surface nanocrystallization; gradient nanostructures; nanocrystallization mechanism; surface properties金属材料在基建工程、航空航天中扮演着重要角色,随着当今科学技术的高速发展,传统金属材料的局限性日趋明显,开发一种综合性能优异的金属材料迫在眉睫。
纳米晶体材料的本构模型研究进展

类似的复合体系( 假定纳米 晶体材料 由晶粒 和晶界
两相夹 杂 组 成 ) 并 假定 纳 米 晶 粒 尺 寸 与 其 强 度 关 ,
系依然符合 H— P关系。
晶界 的 强度 为 常 数 , 采用 两 相 各 承担 部 分应 力 的原则 , 步解 释 了材 料 随 晶粒 尺 寸 减 小 而软 化 的 初
收 稿 日期 :0 6— 4— 1 20 0 0
基金项 目: 国家 自然科 学基金( 00 0 5 ; 152 2 ) 霍英东青年教师基金(0 0 5 ; 1 10 ) 江苏省高校 自然科 学基金 ( 5 J 10 4 1 0 KB302 ) 作者简介 : 周剑秋( 9 2一) 男 , 17 , 江苏镇江人 , 教授 , 博士 , 主要研究方向为纳米晶体材料 。E m i yz c - al yj c@ sh .o : g ou cm
理和 本构方程、 含孔 隙多相 复合 夹杂体的协调 变形 力学理论研 究、 实验制备和表征 , 并就这 4个关键 点提 出了一些
思路 与建议。 关键 词 : 纳米 晶体材料 ; 本构模型 ; 位错 ; 变 蠕 中图分类号 :G 4 T 1 文献标识码 : A 文章 编号 :6 1— 6 3 2 0 )5— 15— 6 17 7 4 ( 06 0 0 0 0
行 了深入的研 究。有针对性地 回顾 了国内外纳 米晶体 材料本 构模 型 的研 究工作 , 国际上 最新成 果进 行 了评 述 , 对
指 出了尚未解决的一些关键技术 问题 。结合相关领域的 最新研究成果 , 出了今后 应 着重研 究的 4个关键 点分别 提 为 : 米晶体相 与应 变速 率和晶粒尺 寸相关的变形机 理和本 构方程 、 纳 晶界相 与应 变速 率和 晶粒尺 寸相关 的变形机
纳米晶体材料的制备方法
纳米晶体材料的制备方法纳米晶体材料是目前材料科学领域中备受关注的研究方向之一。
纳米晶体材料具有优异的物理、化学和机械性能,其制备方法的研究对于材料科学和工程领域的进展至关重要。
本文将介绍一些常见的制备纳米晶体材料的方法,并对其优缺点进行评述。
1. 氧化物法:氧化物法是制备纳米晶体材料中常用的一种方法。
它通过控制金属氧化物的热分解反应来合成纳米晶体。
具体步骤包括混合金属盐和脱水剂,然后通过加热使其分解成金属氧化物。
随后,通过升温还原反应将金属氧化物转化为纳米晶体。
这种方法具有简单易行、成本低廉等优点。
然而,氧化物法制备的纳米晶体尺寸分布较宽,往往需要进一步的后处理工艺来提高其分散性和稳定性。
2. 溶胶凝胶法:溶胶凝胶法是通过溶胶和凝胶中的水合物分解来制备纳米颗粒的方法。
它通常通过酸碱中和、水解或胶体沉淀等反应来形成凝胶。
然后,通过热退火或热处理将凝胶转化为纳米晶体。
溶胶凝胶法制备的纳米晶体具有较窄的尺寸分布和较高的纯度,具有良好的分散性和稳定性。
然而,溶胶凝胶法的制备过程复杂,需要较长的时间和特殊实验条件。
3. 气相沉积法:气相沉积法是一种通过气相反应在固体基底上制备纳米晶体材料的方法。
它通常包括化学气相沉积、物理气相沉积和分子束外延等技术。
气相沉积法具有制备高纯度、高质量纳米晶体的优势,并且可实现对纳米晶体尺寸和形貌的精确控制。
然而,气相沉积法的设备复杂、操作条件苛刻,制备过程对杂质敏感,对环境污染的压力较大。
4. 高能球磨法:高能球磨法是一种机械力作用下制备纳米晶体材料的方法。
其原理是通过机械合金化和粉末强化使颗粒尺寸减小至纳米级。
高能球磨法具有简单易行、操作灵活的优点,并且能够制备大量纳米晶体材料。
然而,高能球磨法需要较长的时间和较高的能量消耗,同时会引入机械应力导致材料性能下降。
5. 模板法:模板法是制备具有特定形貌和尺寸的纳米晶体材料的一种方法。
它通过将溶胶或气相前体封装在一些具有特定形貌和尺寸的模板中,然后通过化学反应或物理处理来生成纳米晶体。
纳米晶
纳米晶合金材料—导磁率是铁氧体的10倍多
纳米晶市场分析—市场需求1800-2000吨
超薄带市场前景好,电子行业需要的优质纳米晶,市场需 求量在1800-2000吨,而这类带材只有极少企业能够稳定生 产,2014年提供不到800吨。带材价格也较高,一般是普 通带材价格的2~3倍,而且容量也较大。 我国电子产业各种电子元器件使用纳米晶材料3%左右, 部分高端产品约占到7~10%,部分产品甚至占到30%。只要 升级转型发展,以纳米晶为代表的软磁新材料就拥有市场 。 2015年9月23日的国务院常务工作会议上,对充电桩事宜 也进行了部署,这将推动纳米晶在充电桩中的应用。
导磁率(20KHz)(Gs/Oe) 矫顽力 Hc(A/m) 饱和磁致伸缩系数(×10-6) 电阻率(muOhm· cm) 居里温度(℃) 铁芯叠片系数
纳米晶铁芯
1.25 < 0.20 < 3.4 < 35 < 40
> 20,000 < 1.60 < 2 80 570 > 0.70
铁氧体铁芯
0.5 0.2 7.5 不能使用 不能使用
1K202 1K203 1K204 1K205
1K105
高起始磁导率快淬软磁钴基合金
1K106
高频低损耗Fe-Si-B快淬软磁铁基合 1K206 金
淬态高磁导率软磁钴基合金 Fe-Ni-P-B快淬软磁铁镍基合金 Fe-Ni-V-Si-B快淬软磁铁镍基合金
1K501
1K107
高频低损耗Fe-Nb-Cu-Si-B快淬软磁 铁基纳米晶合金
铁镍基非晶合金/坡莫合金 组成:40%Ni、40%Fe及20%类金属元素 性能:1. 具有中等饱和磁感应强度(0.8T )、 较高的初始磁导率和很高的最大磁 导率以及高的机械强度和优良的韧性。2.在 中、低频率下具有低的铁损。3.空气中热处 理不发生氧化,经磁场退火后可得到很好 的矩形回线。 应用:广泛用于漏电开关、精密电流互感 器铁芯、磁屏蔽等。
纳米晶材料的塑性变形研究
纳米晶材料的塑性变形研究纳米科技是当今科技发展的热门领域之一,而其中的纳米晶材料更是备受关注。
纳米晶材料的塑性变形特性是该领域研究的重点之一,本文将探讨纳米晶材料塑性变形研究的最新进展和未来发展趋势。
1. 引言纳米晶材料具有显著的尺寸效应和表面效应,在力学性能方面有着独特的优势。
然而,由于晶粒尺寸的减小和界面的增多,纳米晶材料的塑性变形行为与普通晶体材料存在很大的不同。
因此,研究纳米晶材料的塑性变形规律对于深入理解纳米材料的力学行为和应用具有重要意义。
2. 纳米晶材料塑性变形机制研究的技术手段目前,研究纳米晶材料塑性变形机制的技术手段主要包括原子力显微镜技术、透射电子显微镜技术和分子动力学模拟等。
原子力显微镜技术可以直接观察和测量纳米晶材料的力学性能,为深入研究其塑性变形提供了重要的实验手段。
透射电子显微镜技术则可以通过高分辨率成像和衍射技术,揭示纳米晶材料中的晶界结构和塑性变形过程。
分子动力学模拟是一种基于分子尺度的计算方法,可以模拟纳米晶材料的塑性变形行为,为实验结果的解释和理论预测提供了有力支持。
3. 纳米晶材料的屈服强度和延伸性研究纳米晶材料的屈服强度和延伸性是其塑性变形特性的关键指标。
研究发现,纳米晶材料的屈服强度随晶粒尺寸的减小呈现出显著的增加趋势,而延伸性则呈现出相反的趋势。
这与普通晶体材料的力学行为有所不同,主要原因是由于纳米晶材料中晶界的增加导致塑性变形的局部化,从而降低了材料的延伸性能。
此外,研究还发现,通过控制纳米晶材料的结构和成分,可以有效地调控其屈服强度和延伸性能。
例如,通过合金添加元素、纳米晶材料的堆垛方式和合适的热处理工艺等方式,可以显著改善纳米晶材料的力学性能。
4. 纳米晶材料塑性变形机制的研究进展纳米晶材料的塑性变形机制是纳米材料领域的研究热点之一。
已有的研究表明,纳米晶材料的塑性变形主要通过晶界滑移、晶界扩散和纳米孪晶形成等方式进行。
晶界滑移是指纳米晶材料中晶粒沿晶界发生滑移的过程,它是纳米晶材料塑性变形的基本机制。
纳米材料的研究进展以及应用前景研究
纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。
主要包括晶态、非晶态的金属、陶瓷等材料组成。
因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。
这些特殊性质所表现出来的有导电、导热、光学、磁性等。
目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。
纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。
纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。
其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。
从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。
然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。
2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。
还使得衣服不易出现折叠的痕迹。
很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。
利用纳米材料,冰箱可以消毒。
利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。
另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。
这个技术可以提高水的重复使用率,可以运用到化学工业中。
比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。
纳米技术还可以应用到食品加工领域,有益健康。
纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。
玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。
这样就可以节约成本,提高装修公司的经济效益。
使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。
纳米材料可以提高汽车、轮船,飞机性能指标。