二阶常系数线性齐次微分方程

合集下载

高等数学11-5.1二阶常系数齐次线性微分方程(18)

高等数学11-5.1二阶常系数齐次线性微分方程(18)

三、小结
高等数学
二阶常系数齐次微分方程求通解的一般步骤: (1)写出相应的特征方程; (2)求出特征根; (3)根据特征根的不同情况,得到相应的通解.
(见下表)
y py qy 0
高等数学
r 2 pr q 0
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
因此 u( x) 0
2r1 p 0
可取满足上式的简单函数 u( x) x
高等数学
由此得到方程 (1)的另一个与 y1 线性无关的解
y2
xe
r
1
x
于是,方程(1)的通解为 :y C1er1x C2 xer1 x (C1 C2 x)er1 x
3 当 p2 4q 0时,
特征方程有一对共轭复根 :
便是( 1 )的通解, 其中C1 , C 2是任意常数。
如何找出齐次方程的两个线性无关的解呢?
高等数学
下面介绍求解的欧拉指数法 ---特征方程法
由于当r为常数时,指数函数y erx及其各阶导数,
都只相差一个常数因子r, 根据指数函数的这个特点, 我们用y erx来尝试, 看能否取到适当的常数 r, 使y erx 满足方程(1)。
第五节 二阶常系数线性 微分方程
一、二阶常系数齐次线性方程
二、二阶常系数非齐次线性方程
高等数学
一、二阶常系数齐次线性方程解法
设二阶线性常系数齐次方程为
y py qy 0 (1) 由上一节的讨论可以知道,求出齐次方程的通解的 关键是找出方程的两个线性无关的特解 y1 , y2
这样
y C1 y1 C2 y2
y1线性无关的解
y2 ,
为此,

二阶常系数微分方程

二阶常系数微分方程

一、二阶常系数齐次线性微分方程
由上面分析可知,要求二阶常系数齐次线性微分方程的通解,关 键是寻找它的两个线性无关的特解.为此,首先找一个函数y,使 y″+py′+qy=0(p,q为常数).而指数函数erx(r为常数)就具备这种性质, 因为erx的一阶、二阶导数都是erx的常数倍,也就是说,只要适当选取 r,就可以使erx满足方程y″+py′+qy=0.于是,设y=erx (r为待定常数) 为方程y″+py′+qy=0的特解,将y=erx,y′=rerx,y″=r2erx代入方程中得 erx(r2+pr+q)=0.
一、二阶常系数齐次线性微分方程
定理6 如果y*是非齐次方程(12-20)的一个特解,而Y是其对应齐 次方程的通解,则y=Y+y*是非齐次方程(12-20)的通解.
证 因y*是非齐次方程(12-20)的一个特解,所以 y*″+py*′+qy*=f(x).又因Y是其对应齐次方程的通解,所以 Y″+pY′+qY=0.于是,对y=y*+Y有
y″+py′+qy=(Y+y*)″+p(Y+y*)′+q(Y+y*) =Y″+pY′+qY+y*″+py*′+qy* =0+f(x)=f(x) 所以,y=Y+y是非齐次方程(12-20)的解.又因为Y中含有两个任意常数, 从而,y=Y+y中也含有两个任意常数,所以y=Y+y是非齐次方程(1220)的通解.
定理5
如果y1与y2是齐次方程y″+py′+qy=0的两个特解,而且y1/y2不等 于常数,则y=C1y1+C2y2是齐次方程的通解,其中C1,C2为任意常数.

10.6二阶常系数齐次线性微分方程

10.6二阶常系数齐次线性微分方程
y" + py+qy = f (X)
微积分
二阶常系数齐次微分方程
―、特征方程法
二阶常系数齐次线性方程解法
特征方程法
y" + py' + qy = 0
设y = /x,将其代入上方程,
(r2 + pr + q )erx = 0

故有 r °+ pr + q = 0
主 ・.・e’x 特征0方, 程
特征根 % =~P2 -4q, 2
微积分
例2求微分方程y" -2y -8y=0
解特征方程为
r2 一 2r 一 8 = (r 一 4)(r + 2) = 0
解得 “=4g=_2
故所求通解为
一 y = c1 e4 x + c 2 e
2x
经济数学
微积分
例 , 3求方程y" + 2y + 5y = 0的通
解. 解 特征方程为r2 + 2r + 5 = 0 ,
3)有一对共轭复根(A< 0)
伊 特征根为 r = a + ip, r2 = a- ,
( 伊 ) y1 = e a+ )% y2 = e(a-ip x,
1
重新组合yi = 2顷1 + y 2) =e" * p,
_i
y2 =
(yi - y2) =e"sin p,
2i
(注:利用欧拉公式eliC = cosx + isinx.)
二阶常系数齐次线性微分 方
第6节二阶常系数齐次线性微分方程 第十章微分方程与差分方程
主讲 韩华

二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程
第五节
二阶常系数齐次线性 微分方程
一、定义 二、线性微分方程的解的结构 三、二阶常系数齐次线性方程的解法 四、n阶常系数齐次线性方程解法 阶常系数齐次线性方程解法 五、小结
一、定义
y′′ + py′ + qy = 0
二阶常系数齐次线性方程
y′′ + py′ + qy = f (x) 二阶常系数非齐次线性方程
1
′ ′ 代入原方程并化简, 将 y2 ,y2 ,y2′ 代入原方程并化简,
u′′ + ( 2r1 + p )u′ + ( r + pr1 + q )u = 0,
2 1
知 u′′ = 0,
得齐次方程的通解为
则 y2 = xe r x , 取 u( x) = x, rx rx 1 y = C1e + C2 xe 1
y′′ + py′ + qy = 0
特征根的情况
r 2 + pr + q = 0
通解的表达式
≠ r2 实根 r1 = r2 复根 r = α ± iβ 1, 2
实根 r
1
y = C1e + C 2 e y = (C1 + C 2 x )e r x y = eαx (C1 cos βx + C 2 sin βx )
1
=(C1 + C2 x)er1x;
有两个不相等的实根 (∆ > 0)
r1 = − p+ p 2 − 4q , 2 r2 = − p− p 2 − 4q , 2
两个线性无关的特解
y1 = e ,
r1 x
y2 = e ,
r2 x

4.6 二阶常系数齐次线性微分方程

4.6 二阶常系数齐次线性微分方程

r1
(二重根) 二重根), 则通解为
r1,2 = α ± iβ ,
则通解为
③根据特征方程的两个根的不同形式,按照下列规则写 出微分方程的通解:
y=e
αx
( C1 cos β x + C2 sin β x ) .
3
例1 求解微分方程 解 特征方程为
y′′ + y′ − 6 y = 0.
例2 求解微分方程 y′′ + 4 y′ + 4 y 解 特征方程为
x
x x 容易验证 y1 =e 和 y2 = 2e
都是方程的解. 但函数
探索一下原因:
x
y = C1e + C2 2e ,
虽是该方程的解, 虽是该方程的解,却不是通解。 却不是通解。因为上面的函数中 虽形式上包含两个任意常数, 虽形式上包含两个任意常数,而由于
函数
ex

2e x 是成比例的, 因此它们的线性组合

y = ( C1 + C2 x ) er1x .
u′′ + ( 2r1 + p ) u′ + ( r12 + pr1 + q ) u = 0.
r12 + pr1 + q = 0, 且 2 r1 + p = 0,
因r 是特征方程的二重根,故 1 是特征方程的二重根,
㈢ p − 4q < 0. 特征方程有一对共轭复根 特征方程有一对共轭复根 r 1 , r2 ,
αx
( cos β x + i sin β x ) , ( cos β x − i sin β x ) .
y = eα x ( C1 cos β x + C2 sin β x ) .

6-4二阶常系数线性微分方程

6-4二阶常系数线性微分方程
① 的一个特解, Y (x) 是对应齐次方程
的通解,则
y Y(x) y*(x)

是非齐次方程①的通解 .
定理 4.
是二阶非齐次线性方程的
y p(x) y q(x) y f (x)
两个解, 则 y y2( x) y1( x) 是该它对应的齐次方程
的解.
y p(x) y q(x) y 0
(1) 当 r1 r2 时, 通解为 y C 1 er1 x C 2 er2 x
(2) 当 r1 r2 时, 通解为 y (C 1 C 2 x )er1 x
(3) 当 r1,2 i 时, 通解为
y e x (C 1 cos x C 2 sin x)
三、二阶常系数非齐次线性方程解的结构
k的取值分下面三种情况: (1) 当λ不是特征方程的根时,取k=0;
(2) 当λ是特征方程的根,但不是重根时,取k=1;
(3) 当λ是特征方程的重根时,取k=2.
例1.
的通解.
解:易求 y y 0 的特征方程
的特征根为
1 1, 2 1. 本题取λ=0. λ=0不是特征方程的根,
故取k=0. 设所求特解为
一、f ( x) e x Pn ( x) 型 y p y q y f ( x) (1)
为实数 , Pn( x)为 n 次多项式 .
Pn x a0 xn a1xn-1 an-1x an
可以证明方程(1)的特解具有形式
y* xk e x Qn ( x) ,
其中 Qn ( x) 是一个与 Pn(x)具有相同次数的多项式,
转化
求特征方程(代数方程)之根
对于二阶常系数齐次线性方程 ①
和它的导数只差常数因子,
所以令①的解为 y er x ( r 为待定常数 ), 代入①得

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明要证明二阶常系数齐次线性微分方程的通解,我们需要先了解什么是齐次线性微分方程以及常系数线性微分方程。

一阶齐次线性微分方程可以表示为dy/dx + P(x)y = 0,其中P(x)是一个关于x的函数。

对于这个方程,我们可以使用分离变量法来解得通解。

二阶常系数线性微分方程可以表示为d²y/dx² + a dy/dx + by = 0,其中a和b是常数。

对于这个方程,我们可以假设一个特解y=e^(rx)来解方程。

将这个特解代入方程,我们可以得到一个特征方程r² + ar + b = 0。

解这个特征方程,我们可以得到两个不同的根r₁和r₂,也就是说特征方程有两个解。

现在我们来证明二阶常系数齐次线性微分方程的通解。

假设我们有一个二阶常系数齐次线性微分方程d²y/dx² + a dy/dx + by = 0,其中a和b是常数。

我们假设这个方程的通解为y = e^(rx),其中r是一个常数。

将这个通解代入方程,我们可以得到一个特征方程r² + ar + b = 0。

解这个特征方程,我们可以得到两个不同的根r₁和r₂。

因此,我们可以得到两个特解y₁ = e^(r₁x)和y₂ = e^(r₂x)。

根据线性微分方程的性质,我们知道齐次线性微分方程的通解是两个特解的线性组合。

因此,我们可以将通解表示为y=C₁e^(r₁x)+C₂e^(r₂x),其中C₁和C₂是任意常数。

这就是二阶常系数齐次线性微分方程的通解。

举一个具体的例子来说明。

假设我们有一个二阶常系数齐次线性微分方程d²y/dx² - 2 dy/dx + y = 0。

我们可以解特征方程r² - 2r + 1 = 0,得到一个重根r=1、因此,我们可以得到一个特解y₁ = e^(x)。

根据通解的表达式,我们可以得到这个方程的通解为y = C₁e^(x) + C₂xe^(x),其中C₁和C₂是任意常数。

二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程

第七章常微分方程7.10 二阶常系数齐次线性微分方程数学与统计学院赵小艳1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 二阶常系数齐次线性微分方程的形式 )(1)1(1)(t F x a x a x a x n n n n =++++-- n 阶常系数线性微分方程的标准形式21=++x a x a x 二阶常系数齐次线性方程的标准形式.,,,,121均为实常数其中n n a a a a - )1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- ,2211x C x C x +=则其通解为,,21解是其线性无关的两个特若x x .,21为任意常数其中C C 解的结构1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法,t e x λ=设则 ()0212=++t e a a λλλ得 0212=++a a λλ特征方程 ,2422111a a a -+-=λ,11t e x λ=,22t e x λ=且它们线性无关,通解为 .,)(212121为任意常数其中C C e C e C t x tt ,λλ+=特征根为: ,2422112a a a ---=λ情形1 有两个不相等的实根 )0(>∆,021=++x a x a x 对于对应特解 ,,21解是其线性无关的两个特若x x ,2211x C x C x +=则其通解为.,21为任意常数其中C C 待定系数法2 二阶常系数齐次线性微分方程的解法,11t e x λ=,2121a -==λλ情形2 有两个相等的实根 )0(=∆故一特解为 ,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,)(12t e t u x λ=设另一特解为特征根为 2121,)()('1112t t e t u e t u x λλλ+= ,)()('2)("1112112tt t e t u e t u e t u x λλλλλ++=,11t e x λ=情形2 有两个相等的实根 )0(=∆故一特解为 通解为 (),te t C C t x 121)(λ+=,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,0=''u 得(),t t u =取,12t te x λ=则特征根为 2121(),21C t C t u +=,)(12t e t u x λ=设另一特解为0=0=.,21为任意常数其中C C ,2121a -==λλ,1βαλi +=,2βαλi -=,)(1t i e x βα+=t i e x )(2βα-=情形3 有一对共轭复根 )0(<∆由解的性质 ()21121x x x +=,cos t e t βα=()21221x x ix -=.sin t e t βα=通解为 (),sin cos 21t βC t βC e x t α+=特征根为 2121对应特解为 t e i t e t t ββααsin cos -=.,21为任意常数其中C C .,21线性无关且x x.044的通解求方程=++x x x解 特征方程为 ,0442=++λλ,221-==⇒λλ故所求通解为 ().221te t C C x -+=例1 解 特征方程为 ,0522=++λλ,2121i ±-=⇒,λ故所求通解为 ().2sin 2cos 21x C x C e y x +=-.052的通解求方程=+'+''y y y 例2 021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为()().00,2004422的解满足初始条件求='==++y y y x y x y d d d d 解 特征方程为 ,01442=++λλ.212,1-=⇒λ故所求通解为 x e x C C y 2121)(-+=例3 ()()得由00,20='=y y ,21=C .12=C 为方程满足初始条件的解.22121x x xe e y --+=021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法01)1(1)(=+'+++--x a x a xa x n n n n 特征方程为 0111=++++--n n n n a a a λλλ 特征方程的根 相对应的线性无关的特解 重根是若k λt k t t et te e λλλ1,,,- 重是若共轭复根k i βα±.sin ,,sin ,sin ,cos ,,cos ,cos 11t βe t t βte t βe t βe tt βte t βe t αk t αt αt αk t αt α-- 注意: n次代数方程有n 个根, 而特征方程的每个根都对应着一个特解. 3 高阶常系数齐次线性微分方程的解法.2211n n x C x C x C x +++= 通解为特征根为.2,1321-===λλλ故所求通解为 ()t e t C C x 21+=解 ,0233=+-λλ特征方程为 ()(),0212=+-λλ().0233的通解求方程=+-x x x 例4 特征根为 .,,154321i i -====-=λλλλλ故所求通解为 ()()t.t C C t t C C sin cos 5432++++解 ,01222345=+++++λλλλλ特征方程为 ()(),01122=++λλ()()().022345的通解求方程=+++++x x x x x x 例5 .e C t 23-+t e C x -=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶常系数线性齐次微分方程
二阶常系数线性齐次微分方程,又称二阶次线性常系统,是数学分析
和积分变换中重要的问题,在系统控制、信号处理和信号检测中也得
到广泛应用。

一. 二阶常系数线性齐次微分方程的概念
1、定义:二阶常系数线性齐次微分方程是指有形式U′′ + pU′ + qU = 0
的二阶常系数齐次线性微分方程,其中,p和q为常数,U是未知函数。

2、求解:若对未知函数U,有形如U′′ + pU′ + qU = 0的二阶常系数齐
次线性微分方程,则求解之所有实根解形式有:U(t)=C1eλ1t+
C2eλ2t,其中,C1,C2为常数,λ1,λ2为方程的根,则得到方程:λ2
+pλ+q=0。

二. 二阶常系数线性齐次微分方程的特点
1、齐次:二阶常系数线性齐次微分方程是等号右边完全为零的一次方
程的特殊形式,其解实际上也就是方程的根,二阶齐次方程的解可以
通过求根公式求出。

2、常系数:二阶常系数线性齐次微分方程所有项都是常系数,不会改变,所以可以用公式进行解法简化,使用求根公式求出二阶常系数线
性齐次微分方程的实根解,比一般的常系数线性非齐次微分方程的解
法要简单得多;
3、线性:二阶常系数线性齐次微分方程里面的未知函数和其倒数的次
数有明确的关系,所以它是线性的;
4、微分:二阶常系数线性齐次微分方程里面的未知函数不仅要满足一
次微分方程,而且要满足特定的二次微分方程;
三. 二阶常系数线性齐次微分方程的应用
1、系统控制:二阶常系数线性齐次微分方程可以用来描述内外环回路
的联系,可以用来优化被控系统的输出;
2、信号处理:二阶常系数线性齐次微分方程可以用来对信号进行插值、滤波、离散傅里叶变换等处理;
3、信号检测:二阶常系数线性齐次微分方程可以用来检测周期性变化
或者噪声等不平凡现象,从而处理信号。

四. 二阶常系数线性齐次微分方程的扩展
1、非齐次:不论是一阶常系数线性非齐次微分方程还是二阶非齐次微
分方程,都可以通过常系数变换将其转化为齐次方程;
2、常数变量:在适当的条件下,可以将二阶常系数线性齐次微分方程
中的未知函数转化成一、二阶常数变量方程组;
3、转化:二阶常系数线性齐次微分方程可以用Laplace变换、线性变
换和积分变换等转化手段将其转化为容易求解的形式;
4、衍生:可以从二阶常系数线性齐次微分方程发展出求解波。

相关文档
最新文档