高数一试题与答案解析

合集下载

高数一真题及答案解析

高数一真题及答案解析

高数一真题及答案解析高等数学(一)是大多数理工科学生在大学期间必须修习的一门课程。

它作为数学的一门重要基础科目,不仅在理论上具有重要意义,更在实际应用中广泛发挥作用。

因此,掌握高等数学(一)的知识点和解题技巧对每位理工科学生都是至关重要的。

为了帮助同学们更好地复习和准备高等数学(一)的考试,下面将提供一些高数一真题及其答案的解析。

1.【题目】已知函数f(x)=x^2+2x,求f(-1)的值。

【解析】根据题目给出的函数f(x),我们需要求解f(-1)的值。

解题的关键在于将x替换为-1,然后计算f(-1)。

将x替换为-1,得到:f(-1) = (-1)^2 + 2(-1)化简得:f(-1) = 1 - 2f(-1) = -1所以,f(-1)的值为-1。

2.【题目】已知等差数列的首项为a,公差为d,前n项和为Sn,求Sn的表达式。

【解析】根据等差数列的定义,我们知道等差数列的第n项的表达式为an = a + (n-1)d。

要求解等差数列前n项和Sn的表达式,我们可以将Sn拆分为每一项an的和。

Sn = a + (a + d) + (a + 2d) + ... + [a + (n-1)d]通过观察,我们可以发现这个等差数列中的每一项an都包含一个公共的项a,并且公差d会依次增加。

所以,Sn可以写成公共项a与公差d的函数。

Sn = a + (a + d) + (a + 2d) + ... + [a + (n-1)d]Sn = n * a + (1 + 2 + ... + (n-1)) * d在这里,我们可以利用等差数列前n项和的公式来化简上式。

Sn = n * a + (n(n-1)/2) * d所以,Sn的表达式为Sn = n * a + (n(n-1)/2) * d。

通过解析以上两道题目,我们可以看到高等数学(一)题目的求解方法并不是单一的,需要根据具体问题的不同选择相应的解题技巧和数学公式。

因此,在复习高等数学(一)的过程中,我们需要掌握不同的解题方法,并且灵活应用于实际题目中。

高等数学一考试题及答案

高等数学一考试题及答案

高等数学一考试题及答案一、单项选择题(每题2分,共10题)1. 极限的定义中,当x趋近于a时,函数f(x)的极限为L,意味着:A. 对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<εB. 对于任意的正数ε,存在正数δ,使得当|x-a|<δ时,|f(x)-L|<εC. 对于任意的正数ε,存在正数δ,使得当x≠a时,|f(x)-L|<εD. 对于任意的正数ε,存在正数δ,使得当x>a时,|f(x)-L|<ε答案:B2. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 积分∫(0 to 1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 3/2答案:A4. 微分方程dy/dx = 2x的通解是:A. y = x^2 + CB. y = 2x^2 + CC. y = x + CD. y = 2x + C答案:A5. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + 4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ... 答案:D6. 函数f(x) = e^x的导数是:A. e^xB. e^(-x)C. -e^xD. -e^(-x)答案:A7. 以下哪个函数在x=0处有极值?A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = e^x答案:B8. 以下哪个选项是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B9. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = e^xC. f(x) = sin(x)D. f(x) = ln(x)答案:C10. 以下哪个函数是单调递增的?A. f(x) = -x^2B. f(x) = x^3C. f(x) = e^(-x)D. f(x) = ln(x)答案:B二、填空题(每题3分,共5题)1. 函数f(x) = x^3在x=1处的导数是______。

高等数学考试题库(含答案解析)

高等数学考试题库(含答案解析)

范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。

高等数学1试题(附答案解析)

高等数学1试题(附答案解析)

高等数学1试题(附答案解析)work Information Technology Company.2020YEAR一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。

2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。

3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。

4.11dx =⎰。

5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。

6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。

二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。

A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。

A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )( 3.+∞ C 。

A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。

A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。

A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点 A 。

A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。

高等数学试题及答案解析

高等数学试题及答案解析

高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。

计算f(2) = 2^2 - 4*2 + 3 = -1。

接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。

因此,最大值为f(5) = 9。

2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。

因此,f'(x) = cos(x) - sin(x)。

二、填空题1. 求不定积分∫(2x + 1)dx = __________。

答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。

将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。

2. 若y = ln(x),则dy/dx = __________。

答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。

三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。

答案:极值点为x = 3。

解析:首先求导f'(x) = 3x^2 - 12x + 9。

令f'(x) = 0,解得x = 1 和 x = 3。

计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。

(完整版)大一高数试题及答案.doc,推荐文档

(完整版)大一高数试题及答案.doc,推荐文档

大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。

22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。

2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。

4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。

5._____________。

=-⎰dx xx41 6.__________。

=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。

9.微分方程的阶数为____________。

22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。

n=1 n=1000二、单项选择题。

(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。

自考高数(一)试题及答案

自考高数(一)试题及答案

自考高数(一)试题及答案自考高等数学(一)试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是基本初等函数?A. 正弦函数B. 常数函数C. 指数函数D. 绝对值函数答案:D2. 函数f(x) = x^2 + 3x + 2在区间(-∞,-2)上的单调性是:A. 单调递增B. 单调递减C. 不确定D. 非单调答案:B3. 微积分基本定理指出:A. 定积分可以转化为不定积分求解B. 不定积分是定积分的基础C. 定积分的值等于其原函数的不定积分的差值D. 所有连续函数都有原函数答案:C4. 曲线y = x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 2答案:C5. 以下哪个级数是发散的?A. 1 + 1/2 + 1/3 + ...B. (1/2) + (1/4) + (1/8) + ...C. 1 - 1/2 + 1/3 - 1/4 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...答案:A6. 微分方程dy/dx = x^2 - y^2的解的形式是:A. y = x^2B. y = C/xC. y = x + CD. y = Cx^2答案:B7. 函数f(x) = e^x在x=0处的泰勒展开式的前两项是:A. 1 + xB. 1 - xC. 1 + x^2D. 1 + x + x^2答案:A8. 以下哪个选项是二元函数f(x, y) = x^2 + y^2的极值点?A. (0, 0)B. (1, 1)C. (-1, -1)D. (2, -2)答案:A9. 曲线积分∮(x^2 + y^2) ds 在圆周x^2 + y^2 = 1上的值是:A. 0B. 1C. 2πD. 4π答案:D10. 以下哪个选项是函数f(x) = sin(x)的傅里叶变换?A. 1/2B. 1/2δ(x - π)C. 1/2δ(x)D. δ(x - π)答案:C二、填空题(每题4分,共20分)11. 极限lim (x→0) (sin(x)/x) 的值是 _______。

大一高数试卷试题含解答.docx

大一高数试卷试题含解答.docx

大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是 ______________。

f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。

_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。

00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。

dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。

n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数一试题(卷)与答案解析(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《 高等数学(一) 》复习资料一、选择题1. 若23lim 53x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim 21x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( )A.22y x =+B.22y x =-+C.23y x =+D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+ 5. 211lim sin x x x →-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( ) A 1 B 2 C 3 D 47. 求函数43242y x x =-+的拐点有( )个。

A 1B 2C 4D 08. 当x →∞时,下列函数中有极限的是( )。

A. sin xB.1x e C. 211x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3)lim 2h f h f h→--=( ) 。

A. 32 B. 32- C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 222(ln )()f x f x x ' 14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C + 15. 2ln x dx x=⎰( D ) A.2ln x x C + B.ln x C x + C.2ln x C + D.()2ln x C + 16. 211lim ln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( ) A 1 B 0 C 2- D 218. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A ) A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x - D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求.3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分80⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x ⎰13. 求21ln e xdx x ⎰14.求⎰三、解答题1.若(1lim 36x x →∞=,求a 2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型 4. 设2sin ,.xy xy x e y '+=求5.求y =的导数. 6. 求由方程cos sin x a t y b t =⎧⎨=⎩确定的导数x y '. 7. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin y y y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1y y xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解.4. 求方程3595x y y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题1-5: DABAA6-10:DBCDD11-15: BCCBD16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求dx x⎰.解:13(43ln )(ln )x d x x=+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1x x x dx x =-+⎰21arctan ln(1)2x x x C =-++. 4.求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C =+.5. 求2356x dx x x +-+⎰. 解:由上述可知23565623x x x x x +-=+-+--,所以 2356()5623x dx dx x x x x +-=+-+--⎰⎰115623dx dx x x =-+--⎰⎰5ln 26ln 3x x C =--+-+.6.求定积分80⎰t =,即3x t =,则23dx t dt =,且当0x =时,0t =;当8x =时,2t =,于是28222000313ln(1)3ln312t dt t t t t ⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算20cos x xdx π⎰. 解:令2u x =,cos dv xdx =,则2du xdx =,sin v x =,于是 22200000cos sin (sin )2sin 2sin x xdx x d x x x x xdx x xdx πππππ==-=-⎰⎰⎰⎰. 再用分部积分公式,得20000cos 2cos 2(cos )cos x xdx xd x x x xdx ππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰ 002(cos )sin 2x x x πππ⎡⎤=-=-⎣⎦.8. 求2128dx x x +-⎰. 解:221113(1)(1)ln 28(1)963(1)x dx d x C x x x x -+=+=++-+-++⎰⎰ 12ln 64x C x-=++. 9. 求解:令u =32x u =-,23dx u du =,从而有22311311u u du du u u -+==++⎰⎰ 213(1)3(ln 1)12u u du u u C u =-+=-++++⎰ 11. 求2212x xe dx -⎰ 解:2222222411112x x x xe dx e dx e e e -----===-⎰⎰12. 求3x ⎰解:333223(3)(3)3xx x C =--=--+⎰13. 求21ln ex dx x⎰ 解:22111ln 111ln (ln )ln ln 333e e e x dx xd x x e x ====⎰⎰ 14.求⎰解:3322222121(3)(3)(3)233x x C x C =--=-⋅-+=--+⎰三、解答题1.若(1lim 36x x →∞=,求a解:因为223x =,所以9a =否则极限不存在。

2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间 解:2'()43f x x x =-+由2'()430f x x x =-+=得121,3x x ==所以()f x 在区间(,1)-∞上单调增,在区间(1,3)上单调减,在区间(3,)+∞上单调增。

3. 求函数22()2x x f x x --=-的间断点并确定其类型 解:函数无定义的点为2x =,是唯一的间断点。

因2lim ()3x f x →=知2x =是可去间断点。

4. 设2sin ,.xy xy x e y '+=求解:22cos ()xy y xy y x e y y ''+⋅+=+,故 ()cos (2)xy xy y e y x y x y e --'=-5.求y =的导数. 解:对原式两边取对数得:1ln 3ln(1)ln(2)5ln(3),2y x x x =+++-+ 于是 3115,1223y y x x x '=+⋅-+++ 故3115[].1223y x x x '=+⋅-+++6. 求由方程cos sin x a t y b t =⎧⎨=⎩确定的导数x y '. 解: 22()cos .()sin x y t b t b x y x t a t a y''===-'- 7. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?解:100lim ()lim 0x x x f x e --→→== 00lim ()lim tan 0x x f x x ++→→== 故在0x =处不连续。

相关文档
最新文档