民航飞机电气系统(附图)

合集下载

飞机电气系统

飞机电气系统

1号交流汇流条

控制信号


交流备用汇流条
APU控制系统
SW HOT BAT BUS
2.3 导航和自动飞行
DME 1 VOR/MB 1
GPS 1 ADF 1 ATC 1 DME 2 VOR/MB 2 GPS 2 ADF 2 ATC 2
AC STBY BUS AC XFR BUS 2
惯导系统IRS
• 正常电源: – 左IRS AC备用汇流条(115V) – 右IRS 2号转换汇流条(115V)
• 备用电源: 转换的热电瓶汇流条(28V)
• 当交流电源不可用,自动转换为备用电源供电: – 左IRS一直可以使用直流电。(直到电瓶电源小于18v)
– 右IRS只可使用 5 分钟直流电。如果 5 分钟之内交流电没有恢
IDG 脱开装置
一旦脱开,只有地面维护 人员才能重新连接发电机
交流汇流条
备用电瓶 主电瓶 充电器 充电器
备用 电瓶
直流汇流条
主电瓶
汇流条分类
厨正房厨风主常用房挡汇汇电汇加流设流流温条备条条、 转重惯换流要导防汇汇汇平撞流流台灯条流条、条直 飞交直火应行流流警急警备备、汇告用用广计汇汇流播算流流条、机条条
在接通LNAV 之前,必须指示FMC 如何回到航路上。选择 所需的现飞航路点并直飞或切入至该航路点的航道。
2.4 飞行仪表
直流备用汇流条
2号直流汇流条
DC BUS 1 → FCC A DC BUS 2 → FCC B
BAT BUS
不需要电源
2.5 防火系统
发动机 APU 轮舱
火警探测 BAT BUS BAT BUS AC XFR BUS 2
AC电源系统

1 飞机电气概述

1 飞机电气概述

导线的连接装置有4大类型
接线条
接线片
接线管
插钉
接线钉
螺钉
螺栓
接线条——汇流条
用于汇集电能和分配电能。
接线条用于供配电系统的汇 流条。
飞机上有各种级别的汇流条
主交流汇流条 应急汇流条,热电瓶汇流条
各分系统的供电汇流条 直流汇流条 请看下图
接线盒结构
用于简单的分支电路中
典型插座头
飞机上航空插头座实物
飞机电气系统
Aircraft electrical system
回顾历史
6V、12V、28V直流电源为主
主流飞机
单一直流电源
115V、400HZ三相 交流 变压整流的28V直流 电源
737电源系统图
115V、400HZ 交流电
28V直流电
现代飞机
三、用电设备
1、全电的空调 2、机轮刹车 3、电启动发动机
布线
2、机架涵道式电缆布置
布线
3、电子系统的电缆
不受电磁干扰!
不同电缆的形式要求
电子系统 免受电磁干扰
电源ቤተ መጻሕፍቲ ባይዱ统
电源系统的高可靠性
对空间强磁场的干扰小,远离信号线
2.1.3 连接装置
1、连接装置的典型类型 2、电气搭接
3.飞机导线故障的发生规律及故障的预防
1、连接装置的典型类型
拆装方便
特点
连接装置
保证安全可靠、性能较好的一项措施
飞机搭接的作用
①消除电位差,防止由于静电积累。 ②防止火花放电引起的火灾和对无线电干扰
③使飞机金属壳体为一整体,构成电回路的一部分, 提供电流通路。 需要搭接的部位 飞机机体 各构件之间
各种设备金属外壳之间

第章B7飞机电源系统

第章B7飞机电源系统
PDP 2。
编辑版pppt
37
BPCU和GCU功能
BPCU和GCU控制并保护电源系统。 GCU控制并监控电源质量。GCU控制GCB的通断 GCU和BPCU可相互联系。 BPCU与GCU一起控制BTB的位置。 BPCU控制卸载继电器(主汇流条和厨房汇流条)
起动变换组件(SCU)控制APU发电机的电压, AGCU与SCU一起保持APU发电机电源良好。 AGCU监控电源的质量。APU电源质量不好会使 AGCU断开APB。
编辑版pppt
30
IDG输出电源控制
GCU从下列三个地方监控IDG输出电源的质量: ① 在IDG中线侧的电流互感器(NCT),在发电机
和接地之间;
② 差动保护电流互感器(DPCT),在发电机和 GCB之间的馈线上;
③ 在发电机到AVR的反馈线路上,在GCB之前 (POR)。
相位超前接头 三相交流反馈导线和地线安装在这一接头上。
29
IDG电气接头功能
电气接头A: ⑴ 将中线电流互感器(NCT)信号发送给GCU; ⑵ 从IDG脱开电门(P5)断开电磁线圈电源; ⑶ 将PMG输出的交流电提供给GCU。 电气接头B: ⑴ 来自于GCU的交流励磁机磁场直流电源输入; ⑵ 将IDG的滑油压力信号传送给P5面板上的
“DRIVE”灯。
DRIVE、XFR BUS OFF、SOURCE OFF、 GEN OFF BUS
编辑版pppt
42
GCU的输入/输出信号
编辑版pppt
43
GCB的控制逻辑(1)
GCB-人工闭合条件——“与”逻辑 ⑴ 控制电门1瞬时到ON位 ⑵ 防火电门在正常位 ⑶ 电源质量OK ⑷ GCU有来自显示电子组件(DEU)的准备加载
编辑版pppt

A320电气系统概述

A320电气系统概述

驱动应急发电机的液压动力由冲压空气涡轮(RAT) 提供。RAT位于机腹整流区,在严重的电气或液压失效 时放出。
BAT 1
BAT 2
电气
TR 1
EMER GEN
TR 2
GEN 1
APU GEN
IDG 1
MENU 系统概述
GEN 2
IDG 2 16/41
电气
电气系统还装有一个主变压整流器(ESS TR).
电气
GEN 1
IDG 1
MENU 系统概述
GEN 2
IDG 2 4/41
每台发电机向各自的汇流条提供交流电: • 发电机1供给一号交流汇流条, • 发动机2供给二号交流汇流条。
电气
GEN 1
IDG 1
MENU 系统概述
GEN 2
IDG 2 5/41
电气
TR 1 GEN 1 IDG 1
MENU 系统概述
电气
MENU 系统概述
30/41
电气
电气面板在顶板上。
MENU 系统概述
31/41
电气
还有一个应急电源面板在顶板的左侧,供应 急情况下使用。
现在让我们来看一下电气面板和ECAM电气 页面的关系。
MENU 系统概述
32/41
电瓶电压可以通过顶板或 ECAM页面进行监控。
电气
MENU 系统概述
33/41
电气
MENU 系统概述
37/41
汇流条互联(BUS TIE)按 钮开关让飞行员能够将系统的 一侧与另一侧隔离。你将在非 正常操作单元看到这个按钮并 进行操作。
电气
MENU 系统概述
38/41
在失效情况下,这些按钮开关使你能够将 一台IDG从它的驱动轴上脱开。

飞机电气系统PPT全套课件

飞机电气系统PPT全套课件
➢ 定子 ➢ 转子 ➢ 电刷装置
59
直流发电机
60
直流发电机
电容器
引线组件
接线柱 火花抑制盒 接线盖
夹子
带窗孔 的带 与驱动端相 对的端架
夹板
密封滚珠轴承
转轴和 板组件 转轴花键 轴承支承架
端盖 挡盖
滚珠轴承
电刷
电枢
磁轭和 激磁线圈
61
直流发电机
➢ 标称电压为30V(对应的电网 电压一般为28V)
➢特点:既有遥控式的特点,又简化了控制 线。
19
正常和非正常供电
➢ 正常供电 :
在各个飞行 阶段均可完 成对用电设 备的供电任 务
➢ 非正常供电:
系统的短时意 外失控状态
20
主电源容量
➢ 飞机上主发电系统的台数与单 台发电系统额定容量的乘积
➢ 直流电源容量单位为千瓦(kW) ➢ 交流电源为千伏安(kVA)
电阻较小,一般为百分之几 到千分之几欧姆。 3.端电压 充电 U=E+IR 放电 U=E-IR
44
铅蓄电池放电曲线
极板附近及 孔隙中的电 解液浓度迅
速下降
A
2.0
B
U
1.5
E
F
C D
极板孔隙中的 硫酸浓度与极 板外的浓度达
到一定值
1.0
孔隙内硫酸
0.5
迅速下降
扩散 作用
极板 硬化
0 1 2 3 4 5 6 7 8 9 10 11
t(h)
45
铅蓄电池充电曲线
2.6
2.4 b
2.2 a
2.0
1.8
de U
c
E
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

第四节飞机电气系统

第四节飞机电气系统

航空蓄电池——一种化学电源,是化学能和电能 相互转换的装置。放电时,它把化学能转化为电能,向 用电设备供电;充电时,它又将电能转化为化学能储存 起来。
当飞机主电源采用直流电源系统时,航空蓄电池 通常与直流发电机并联供电。
正常飞行时,航空蓄电池处于被充电状态; 某些短时工作的“尖峰”用电设备工作时,作为电源系统的 辅助电源,与发电机并联一起向用电设备供电; 当发电机损坏时,作为应急电源向重要负载供电; 在应急状态下,还用作为起动发动机的电源 在地面时,又作为机上检查用的电源。
容量:30、40、60、90、120KVA 辅助电源:APU.G ; 应急电源:BAT 、INV 、RAT 、HMG 二次电源:TRU 特点:恒装的采购费用、维修费用、寿命周期费用 高;重量重、效率低、供电质量差;可靠性和可维 修性也较差。恒频。
(5)变速恒频交流电源系统(VSCF) 结构示意图:
碱性蓄电池有银锌蓄电池和镍铬蓄电池,它们的 电解质都是氢氧化钾。
银锌蓄电池的突出优点是体积小、重量轻、容量大、放电电 压平稳、自放电小;其缺点是寿命短、容易产生内部短路故障, 而且造价很高。
镍铬蓄电池与银锌蓄电池一样,也具有能适应大电流放电和 自放电小等优点;其突出的优点是寿命长,另外其低温性能好、 结构牢固、使用维护简便;其主要缺点是原材料来源少,因此造 价很高。
4)直流发电机的优缺点
缺点:可能产生电弧,烧毁换向器。 优点:并联比较容易,只要直流电压相等,正负极正确就可以通过电 源并联的方式提高供电系统的稳定性,飞机上通常用直流发电机和蓄 电池并联供电。直流发电机还可以作为起动发电机使用。
5)交流发电机的优缺点
优点:交流发电机没有换向器,不会产生火花,可靠性高,重量轻。 缺点:交流电并联比较困难,需要交流电的幅值、频率和相位完全 一致,否则并联时可能会损坏发电机,因此交流电通常不进行并联 供电。

飞机电气系统:飞机的配电方式

飞机电气系统:飞机的配电方式

B787 飞机厨房汇流条切断电门
➢ 交流配电系统
⑦ 交流多电源配电系统 原理
典型多电源供电的飞机一般都是安装有四台发动机的飞机,在飞机两侧各安装有两台发 动机,四台发动机驱动的发电机都可以向电网并联供电,这就需要这四台发电机发出的交流 电的电压、频率、相位和相序都相同,发电机的监控组件 GCU 监控发电机发出的交流电的 参数,自动控制GCB 闭合来实现发电机的并联供电。与单电源供电飞机相比,多电源供电 的飞机除了安装有相应的电路断路器GCB、APB、EPC、BTB,还安装了系统分离断路器 (Split System Breaker,SSB)。
混合式配电
用 电
G设 备
用 电 设 备


设 备
G
中央汇流条
用 电 设 备
混合配电系统特点:
结构简单、功能分散 易于检查和排查故障 配电导线质量轻 但用电设备端电压随用电设备个数和负载变化 适用于中型或者中大型飞机
供电网分类 • 开式(辐射式)
• 电能只能从一个方向传送到用电设备汇流条。 • 结构简单、电网质量轻 • 闭式(环形) • 由两个或者两个以上方向向用电设备汇流条供
④交流2台发动机驱动发电机供电构型
原理
2台发动机启动成功后,汇流条控制组件关断 BTB1 和 BTB2,2 台发动 机驱动发电机分别给 2 个转换汇流条供电,飞机电网被分割为两部分,一 部分由 1#转换汇流条供电,另一部分由 2#转换汇流条供电,这种供电构 型是飞机在空中最常见的构型。
➢ 交流配电系统
单电源配电系统
➢ 交流配电系统 ①交流外部电源供电构型
原理
当外电源供电时,汇流条控制组件首先断开 GCB1、GCB1、和 APB,防止并联供电。 汇流条控制组件闭合 EPC、BTB1 和 BTB2,外部电源供电给 1#转换汇流条和 2#转换汇流 条。转换汇流条得电后,分配电到主汇流条、厨房汇流条和备用交流汇流条,交流汇流 条通过变压整流器给直流分配系统供电,飞机电网全部得电。

第四节飞机电气系统

第四节飞机电气系统

(2)变速变频交流电源系统(VSVF ) ——此时发电机由发动机通过减速器直接驱动。该电源 输出的交流电频率随发动机转速变化,对用电设备要求 很高。A380有采用。
结构图:
特点:不需要CSD ,结构简单,重量轻,可靠性高。 适用机型:涡桨飞机:接近于恒频交流电
涡喷飞机:需另配变频器
(3)混合电源系统 组成:低压直流 + 变速变频交流电源 应用:30座以上80座以下的 支线飞机 特点:变频交流电适合供给加热和防冰负载;支线
当飞机主电源采用交流供电系统时,航空蓄电池仅 用作应急电源。 航空蓄电池按电解质的性质,分为酸性蓄电池和碱 性蓄电池
酸性蓄电池主要是铅蓄电池,其电解质是稀硫酸。
铅蓄电池具有电势高、内阻小、能适应高放电率 放电以及成本较低等优点,所以应用广泛;其缺点是 机械强度差、自放电大、寿命短、使用维护不够简便。
④ 外接地面电源(EP ): 工作场合:飞机在地面 类型:电源车(柴油发电机组)、中频电源、电瓶车 作用:加油、装卸货物、清洁、地面检查、起动主发
动机等
⑤ 二次电源:
概念:将主电源电能变换为另一种 形式或规格的电能
类型:DC →AC :旋转变流机、静止变流器 AC →DC :变压整流器; DC →DC :直流升压机、直流变换器
容量:30、40、60、90、120KVA 辅助电源:APU.G ; 应急电源:BAT 、INV 、RAT 、HMG 二次电源:TRU 特点:恒装的采购费用、维修费用、寿命周期费用 高;重量重、效率低、供电质量差;可靠性和可维 修性也较差。恒频。
(5)变速恒频交流电源系统(VSCF) 结构示意图:
在用电设备接入供电系统之前,电流表指示为零,当用电设备 开关接通后,电流表指示用电设备消耗的电流值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

民航飞机电气系统(附图)1. 炭片调压器的工作原理(P134,图5-3)当发电机转速上升或负载减小时,发电机电压会升高而超过其额定值。

此时电磁铁线圈中的电流会立即增大,作用在衔铁上的电磁力会随之增大,衔铁向电磁铁方向移动,炭片之间的压力便减小,炭柱电阻逐渐增大,发电机励磁电流逐渐减小,发电机电压逐渐下降。

当炭柱电阻的改变所引起的电压变化量,恰好抵消了由于转速和负载改变所引起的电压变化量时,发电机电压就恢复至额定值。

经过这一变化后,作用在衔铁上的三个力又重新平衡,衔铁停在新的平衡位置,调压器又处于新的平衡状态。

当发电机转速下降或负载增加时,电压调节器的工作过程与上述相反。

即:当发电机转速下降或负载增加时,发电机电压会下降而低于其额定值。

此时电磁铁线圈中的电流会立即减小,作用在衔铁上的电磁力会随之减小,衔铁向炭柱方向移动,炭片之间的压力便增大,炭柱电阻逐渐减小,发电机励磁电流逐渐增大,发电机电压逐渐上升。

当炭柱电阻的改变所引起的电压变化量,恰好抵消了由于转速和负载改变所引起的电压变化量时,发电机电压就恢复至额定值。

经过这一变化后,作用在衔铁上的三个力又重新平衡,衔铁停在新的平衡位置,调压器又处于新的平衡状态。

2. 负载均衡电路的工作原理(P139,图5-6)如果负载分配不均衡,设I1>I2, 则A、B 两点电位不相等,ΦA<ΦB,于是有电流自B 点经过W eq2和W eq1流向A点,产生相应的磁势。

在输出电流大的发电机调压器中,均衡线圈磁势页工作线圈磁势方向相同,使调压器铁芯合成磁势增强,调节点电压U1降低;输出电流小的发电机调压器,均衡线圈磁势与工作线圈磁势方向相反,使铁芯合成磁势减弱,调节点电压U2升高。

结果原来输出电流大的发电机电流I1减小,输出电流小的发电机电流I2增大,使负载趋于均衡。

如果I1<I2, 则调节过程相反。

即:如果负载分配不均衡,设I1<I2, 则A、B 两点电位不相等,ΦA>ΦB,于是有电流自A 点经过W eq2和W eq1流向B点,产生相应的磁势。

在输出电流大的发电机调压器中,均衡线圈磁势与工作线圈磁势方向相反,使调压器铁芯合成磁势减弱,调节点电压U1升高;输出电流小的发电机调压器,均衡线圈磁势与工作线圈磁势方向相同,使铁芯合成磁势增强,调节点电压U2降低。

结果原来输出电流小的发电机电流I1增大,输出电流小的发电机电流I2减小,使负载趋于均衡。

3. 差动保护电路工作原理(P191-192,图6-40,图6-41)当发电机内部或电流互感器之间的馈电线发生相与相或相与地短路时,如短路点a 对地发生短路,则将流过一短路电流,于是短路点两侧的电流的大小和相位一般都不相等,于是, 1'∙I 将不再等于2'∙I ,21'''∙∙∙-=∆I I I 为一个较大的值。

当短路电流达到一定数值时,△'∙I 在电阻R 2上的压降经二极管D 整流,电容C 滤波,再经分压后在电阻R 8上产生电压U R8,当U R8大于鉴压值U W (U W 为稳压管DW 的击穿电压)时,将发出差动保护故障信号,经过GCR 故障信号放大器去断开GCR ,然后断开GB ,从而将故障发电机励磁电路和输出电路迅速断开。

若短路故障发生在保护区以外的b 点,则差动保护电路不会输出故障信号。

4. 过压保护电路工作原理(P192-193,图6-42)发生持续过电压时,U A 大于U W1,D W1被击穿,向反延时电路输入一信号电压,经R 4向C 2充电。

当充电电压达到DW 2的击穿值U W2时,DW 2被击穿,而输出一故障信号到GCR 故障信号放大器,使GCR 断开,从而断开发电机励磁回路。

同时GB 也断开,使被保护的发电机退出电网。

过电压越高,对电容器C 2的充电电流就越大,C 2的电压达到击穿DW 2的时间就越短,因而该电路具有反延时特性。

对于瞬时过电压,由于时间很短,C 2上的电压还不足以达到DW 2的击穿值,过电压就已消失,故DW 2不能被击穿,该电路也就不会输出故障信号。

C 2上的积累电荷,可通过D 4、R 3释放掉。

在发电机正常供电(即U=U N )时,经变压整流滤波分压后的电压U A 低于鉴压值U W1(稳压管DW 1的击穿电压),DW 1不能击穿,电路无信号输出。

5. 直流发电机的工作原理(P69-70)电枢线圈切割磁力线,电枢线圈中的感应电动势是一个交流电动势。

换向器和电刷起着整流的作用,因此,俗称“整流子”。

只有一个线圈时,电刷A 、B 之间获得直流电动势较小,而且脉动很大。

实际上直流发电机的电枢铁心表面均匀分布了许多线圈,而每个线圈的出线端分别连接两个换向片,这样在电刷A 、B 之间就可获得较大且平稳直流电动势。

该电动势称为电枢电动势,以E a 表示。

其大小可由下式表示:a e E C n Φ=6. 并励直流发电机自励发电的条件(P148)(1)电机必须有剩磁。

必要时,可用其它电源对其激励一次,以获得剩磁。

有的发电机是在其定子铁心片中嵌放永久磁铁片,来增加剩磁;(2)励磁绕组连接极性正确,即励磁磁势与剩磁方向一致;(3)励磁电路电阻不能过大,必须小于该转速下的临界电阻;(4)转速不能过低。

7. 三级式无刷同步发电机的组成及各部分电机的结构特点(P156,图6-6,6-7)它主要由主发电机、旋转整流器、主励磁机和副励磁机四部分组成。

其中,主发电机和副励磁机为旋转磁极式,主励磁机为旋转电枢式,旋转整流器安装在转子上,随转子转动。

8. (三相)异步电动机的工作原理及工作状态(转差率s 与工作状态的对应关系)(P88)当异步电机与旋转磁场转向相同,转速在0<n <n 0范围内时,转差率1>s>0。

这时,电机处于电动状态。

当异步电机与旋转磁场转向相同,转速n >n 0时,s<0。

这时,电机处于发电状态。

当异步电机与旋转磁场转向相反,转速n <0,s>1。

这时,电机处于电磁制动状态。

9. 晶体管控制励磁电流的原理(P173) Tt t t t on off on on =+=σ是功率管在一个周期里的相对导通时间,叫晶体管的导通比或占空比。

在功率管的控制下,励磁电流的平均值是和功率管的导通比成正比,改变功率管的导通比,即可改变励磁电流,以调节发电机电压。

通过脉冲电压调节励磁电流通常采用两种方法:一种是保持脉冲宽度不变,仅调节脉冲的频率,叫做脉冲调频式;另一种是脉冲频率保持不变,仅调节脉冲的宽度,叫做脉冲调宽式。

注意:增加脉冲宽度就可以增加导通比的说法是错误的。

保持脉冲频率(周期)不变时,增加脉冲宽度可以增加导通比。

10. 磁电机的工作原理(磁电机产生高压电的原理)(P206)磁电机产生高压电是分两步进行的。

第一步是产生低压电,即改变穿过初级线圈的磁通而使初级线圈感应出低压电;第二步是把低压电变成高压电,即在适当的时机断开低压电路,使初级线圈的感应电流和伴随感应电流而产生的感应电磁场迅速消失,使铁芯磁通发生剧烈的变化,从而使次级线圈感应而产生高压电。

11. 涡桨发动机电力起动设备(直流电动机)的增速方法(P216)要使其增速,可以采取三种措施:①增大起动电源电压,实行电压调速;②减小电动机磁通,即减小电动机的励磁电流,实行磁通调速;③在电枢电路内串联附加电阻而后短接,也可使电动机增速。

12. 运7飞机上WJ5A发动机的五级起动(P217-218)第一级——在电枢电路中串联附加电阻的起动第二级——切除附加电阻起动第三级——减小电机磁通起动第四级——升高电源电压起动第五级——减小电机磁通起动13. 襟翼收放电路工作原理(P224,图8-4)(1)在图上画出电流通路;(2)襟翼收上后“放位微动电门”触点闭合;(3)“收位微动电门”触点断开。

14. 论述紧急放襟翼的工作原理(P225,图8-5)接通紧急放下襟翼的保险电门243,接通紧急放襟翼操纵电门244。

正28V电压由汇流条011,经由保险电门243和操纵电门244的2-l触点使紧急液压油泵接触器241工作,使紧急液压油泵242电动机工作,同时因接触器24l的活动触点3和固定触点连通,使紧急油泵工作指示灯775燃亮。

紧急放下襟翼操纵电门的4-3触点接通,使28V直流电经襟翼紧急放下终点电门245的触点加至紧急放襟翼电磁活门的电磁线圈1-2接地,接通紧急放下襟翼的液压油路,使襟翼放下。

襟翼放下之后压断终点电门245,断开紧急放下襟翼电磁活门电路。

为防止电磁活门248断开电路时产生的自感电势使终点电门245产生火花,在电磁活门(248)线圈两端并联有二极管,用以短路电磁活门自感电势。

15. 调整片工作原理(P227,图8-9)(1)在图上画出电流通路;(2)“传动杆”向上运动(伸出);(3)调整片与舵面取齐时,“中立信号灯”亮。

17. 单端双金属片火警探测电路原理(P241-242,图9-1,图9-2)单端双金属片火警传感器它只有一个引线端与探测器封闭回路相连,并通过其金属壳体与飞机搭铁接地。

当某个传感器探测到高温时,触点接通,从而将火警信号电路接通,系统发出警告。

探测器电路中的回路可以保证火警信号电路从两条路径接通。

当封闭回路的一端断开时,火警信号电路可以从另一端接通,从而提高了系统的可靠性。

按压接通火警测试按钮可直接将回路接地,接通火警信号电路。

18. 温升率探测器电路原理(P243,图9-4,图9-5)一般使用多个热电偶传感器安装在监控区的关键部位,其中一个传感器安装在一个隔热罩里面,称之为参考接点。

其余则称为测量接点。

当监控区正常时,各接点的温度相同,热电偶之间无热电动势产生,就没有火警信号输出。

如果监控区有火灾发生,就会有一个或多个测量接点的温度迅速升高,而参考接点温度上升得很慢,于是热电偶之间有很大的温差存在,就有热电动势产生。

它将会驱动敏感继电器使其触点接通,从而将从动继电器线圈电路接通,从动继电器工作,将火警信号电路接通,输出火警信号。

19. 气体感温线式探测系统原理(P245,图9-10)Lindberg型气体感温线式探测系统中构成探测环路的不锈钢管中充填有气体和感温装置,不锈钢管一端封闭,另一端与一个压力开关密封相连。

不锈钢探测环路安装在监控区周围,当出现火灾或过热情况时,使感温装置局部被加热,从而释放气体,管内气体压力增大,使得压力开关闭合。

压力开关闭合后,警告信号电路被接通,输出信号。

正常情况下,按压测试开关,就有电流流过不锈钢管对其加热,管内感温装置就会释放气体,使压力开关接通,触发火警信号。

20. 极化继电器则具有两个显著特点:其一是能反映输入信号的极性;其二是具有很高的灵敏度,即其所需动作电流或电压值很小。

相关文档
最新文档