探索与表达规律教案(1)
北师大版数学七年级上册3.5《探索与表达规律》(第1课时)教学设计

北师大版数学七年级上册3.5《探索与表达规律》(第1课时)教学设计一. 教材分析《探索与表达规律》是北师大版数学七年级上册3.5的内容,本节课主要让学生通过观察、实验、猜测、推理等方法,探索并表达一些简单的数学规律。
教材内容由浅入深,环环相扣,符合学生的认知规律。
教学内容主要包括:探索数列的规律、探索图形的规律、探索事件的规律等。
二. 学情分析学生在之前的学习中已经接触过一些规律性的知识,如数的规律、图形的规律等,具备一定的观察、实验、推理能力。
但七年级学生思维仍以形象思维为主,对于一些抽象的规律还需要通过具体的实例来理解。
此外,学生的学习习惯、学习兴趣等方面也需要考虑到。
三. 教学目标1.理解探索与表达规律的意义,掌握探索简单数学规律的方法。
2.能通过观察、实验、猜测、推理等方法,探索并表达一些简单的数学规律。
3.培养学生的观察能力、实验能力、推理能力,提高学生解决实际问题的能力。
4.激发学生学习数学的兴趣,培养学生的合作意识。
四. 教学重难点1.探索简单数学规律的方法。
2.如何将探索得到的规律进行表达。
五. 教学方法1.情境教学法:通过设置具体的情境,让学生在实际问题中感受到规律的存在。
2.探究式教学法:引导学生通过观察、实验、猜测、推理等方法,主动探索数学规律。
3.小组合作教学法:鼓励学生分组讨论,培养学生的合作意识。
4.反馈评价教学法:及时给予学生反馈,提高学生的学习效果。
六. 教学准备1.教学课件:制作课件,展示探索与表达规律的过程。
2.教学素材:准备一些具体的实例,用于引导学生探索规律。
3.学生活动材料:为学生提供一些实验器材,如卡片、小球等。
4.教学评价工具:设计相关的问题,用于检验学生对知识掌握的程度。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的规律现象,如日历中的星期循环、四季更替等,引导学生对规律产生好奇。
2.呈现(10分钟)呈现教材中的例1,让学生观察并尝试找出数列的规律。
北师大版数学七年级上册3.5《探索与表达规律》教案1

北师大版数学七年级上册3.5《探索与表达规律》教案1一. 教材分析《探索与表达规律》是北师大版数学七年级上册第三章第五节的内容。
本节课主要让学生通过探索实际问题,发现并表达其内在的数学规律。
教材通过引入生活中的实例,引导学生利用数学知识去分析和解决问题,培养学生的数学应用能力。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和简单的数学逻辑思维能力。
他们对数学知识有一定的认识,但还需要通过具体的实例来培养他们将数学知识应用到实际生活中的能力。
此外,由于这是一个新的知识点,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.知识与技能:使学生能够通过探索实际问题,发现并表达其内在的数学规律。
2.过程与方法:培养学生利用数学知识分析和解决实际问题的能力。
3.情感态度与价值观:激发学生对数学知识的兴趣,培养他们积极探究的学习态度。
四. 教学重难点1.重点:引导学生发现并表达实际问题中的数学规律。
2.难点:培养学生利用数学知识分析和解决实际问题的能力。
五. 教学方法采用问题驱动法、案例教学法和小组讨论法。
通过提出问题,引导学生主动探究;通过分析具体案例,让学生理解并掌握数学规律的表达方法;通过小组讨论,培养学生的合作能力和口头表达能力。
六. 教学准备1.准备相关案例和问题,以便在课堂上进行教学。
2.准备黑板和粉笔,以便在课堂上进行板书。
七. 教学过程1.导入(5分钟)通过提出一个实际问题,引导学生进入学习状态。
例如:“某商店举行打折活动,原价100元的商品打8折,请问打折后的价格是多少?”2.呈现(10分钟)呈现相关案例,让学生了解实际问题中的数学规律。
例如,呈现一系列的购物场景,让学生观察并分析其中的数学规律。
3.操练(15分钟)让学生通过计算和分析,表达实际问题中的数学规律。
例如,给出一些购物场景,让学生计算打折后的价格,并表达出其中的数学规律。
4.巩固(10分钟)通过一些练习题,让学生巩固所学知识。
北师大版数学七年级上册3.5《探索与表达规律》(第1课时)教案

北师大版数学七年级上册3.5《探索与表达规律》(第1课时)教案一. 教材分析《探索与表达规律》是北师大版数学七年级上册3.5的内容,本节课主要让学生通过观察、分析、归纳等方法探索数学规律,进一步培养学生的逻辑思维能力和抽象概括能力。
教材内容主要包括探索数字变化的规律、图形的规律和字母表示的规律等,通过这些探索活动,让学生体会数学的趣味性和魅力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于简单的规律探索和归纳总结已经有了一定的能力。
但学生在探索复杂规律时,可能还会存在一定的困难,需要教师在教学中给予引导和帮助。
此外,学生可能对数学规律的探究兴趣不够浓厚,教师需要通过设计有趣的教学活动,激发学生的学习兴趣。
三. 教学目标1.知识与技能目标:让学生通过观察、分析、归纳等方法探索数学规律,提高学生的逻辑思维能力和抽象概括能力。
2.过程与方法目标:培养学生独立思考、合作交流的能力,提高学生的解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的趣味性,培养学生的学习兴趣,增强学生对数学的热爱。
四. 教学重难点1.教学重点:让学生掌握探索数学规律的方法,提高学生的逻辑思维能力和抽象概括能力。
2.教学难点:如何引导学生发现并表达复杂的数学规律,以及如何运用规律解决实际问题。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、分析、归纳,发现数学规律。
2.合作交流法:学生分组讨论,分享各自的发现和思考,共同探索数学规律。
3.实践操作法:学生通过动手操作,验证规律的正确性,加深对规律的理解。
六. 教学准备1.教师准备:教师需要准备相关的教学素材,如数字变化规律的图片、图形变化规律的例子等。
2.学生准备:学生需要提前预习本节课的内容,了解探索数学规律的基本方法。
七. 教学过程1.导入(5分钟)教师通过提出一个简单的数字变化规律问题,激发学生的学习兴趣,引导学生进入本节课的主题。
2.呈现(15分钟)教师展示相关的数字变化规律的图片和图形变化规律的例子,让学生观察、分析,尝试归纳出规律。
北师大版七年级数学上册《探索与表达规律(第1课时)》教学教案

《探索与表达规律(第1课时)》教学教案法则验证所探索的表示数(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?解:2+3+4+9+10+11+16+17+18=90日历图的套色方框中的9个数之和与该方框正中间的数的9倍。
(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?解:这个关系对任何一个月的日历都成立。
因为任何一个月的日历左右相邻都的数相差1,上下相邻都的数相差7。
(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.解:第二行的3个数的和,第二列3个数的和,两对角线上3个数的和都相等。
归纳,总结出日历中数字的变化规律,分组交流、汇报发现,然后教师加以矫正加减运算的两个步骤,新的问题的提出,目的是引导学生独立总结日历中数字的变化规律,发展有条理的思考及语言表达能力。
想一想:教师引导学生继续探索日历中数字的变化规律:(1)如图“十”字形框,你能发现哪些规律?解:这五个数之和是中间数的五倍(2)如果将方框改为十字形框,你能发现哪些规律?如果改为“H”形框呢?解:这七个数之和是中间数的七倍(3)你还能设计其他形状的包含数字规律的数框吗?解:这五个数之和是中间数的五倍师生共同总结出:日历中的数字规律:日历每行的规律n n+1n+2日历每列的规律nn +7n+143.出示课件试一试:重阳节快要到了,为了弘扬“孝敬父母、尊敬老人”的中华传统美德,某市文化局决定在重阳节这天在该市文化广场举办一个千人书法大赛活动。
若按下图方式摆放桌子和椅子,你能帮主办单位计算出需要的桌子和椅子吗?鼓励学生积极思考,自主解决问题,小组交流,总结发言,大胆提出自己的观点。
总结提高学生对规律题型的认知。
该题是根据由少到多探索规律,由特殊到一般解题。
训练学生探索规律的技能,帮助学生灵活运用从特殊到一般,从具体到抽象的认知能力。
教师要注意按下图方式摆放餐桌和椅子:(1)1张餐桌可坐6人,2张餐桌可坐_10____人。
北师大版数学七年级上册教案 3.5探索与表达规律(1)

课题:第三章第5节探索与表达规律第1课时课型:新授课学习目标:1、知识与技能(1)会用代数式表示简单问题中的数量关系,并能验证所探索的规律。
(2)培养学生的观察能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。
2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。
(2)在解决问题的过程中体验类比、转化等思维方法,培养学生良好的思维品质。
3、情感、态度与价值观(1)渗透辩证唯物主义思想中的从特殊到一般,从具体到抽象的认知观点,并通过小组讨论、合作交流等方式,体验在解决问题的过程中与他人合作的重要性。
(2)同时让学生体会数学就在身边,激发学生的探究热情,体验数学活动的探索性及创造性,培养学生实事求是的科学态度。
教学重点:探索实际问题中蕴涵的关系和规律.教学难点:用字母、运算符号表示一般规律.教法及学法指导:由学生充分动手实践与合作交流来完成对规律的探索和验证过程课前准备:教师制作课件. 学生准备11月份日历教学过程:一.创设情境引入课题师:请同学们伸出左手,一起做下面的游戏:从大拇指开始,像图中显示的这只手那样依次数数字1、2、3、4、5、……,请问数字20落在哪个手指上?让学生独自思考,然后可针对学生在数数字过程中出现的困惑给出适当提示大多数学生会选择数手指1…112 3456789生:数字20刚好落在无名指上后,师:回答得很正确,你们能很快地说出数字200落在哪个手指上吗?学生流露出困难的神色师:其实我们身边有很多需要我们探索规律来解决的,这节课我们就来学习§3.5探索与表达规律。
设计意图:通过游戏创设问题情境,目的是让学生在解决问题中形成认知冲突,激发学生的学习兴趣和探究欲望,为本节课作好情感、方法和思维铺垫。
当要学生数数字200时,学生一定会觉得麻烦,必然会把学生置于一种急于探究的氛围之中。
这样学生就不会再去数数了,而是想办法解决这一矛盾,学生因急于解决问题而进入了主动学习的状态,教学很自然地过渡到下一环节.二.小组合作探究新知师:老师这儿有一张11月份的日历,请同学们仔细观察分析,你都能发现些什么?和你的小组之间交流分享一下。
3.3探索与表达规律(教案)北师大版(2024)数学七年级上册

3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水.2只青蛙2张嘴,4只眼睛8条腿.扑通一声跳下水,3只青蛙3张嘴,6只眼睛12条腿,扑通1声跳下水……(2)联欢会上,小明按照4个红球、3个黄球、2个绿球、1个白球的顺序把气球串起来装饰会场,第52个气球是什么颜色?教师提出问题引导学生进行解决,初步感受探索规律.二、探究新知1.提出问题“低多边形风格”是一种数字艺术设计风格.它将整个区域分割为若干三角形,通过把相邻三角形涂上不同颜色,产生立体及光影的效果,随着三角形数量增加,效果更为斑斓绚丽.将长方形区域分割成三角形的过程是:在长方形内取一定数量的点,连同长方形的4个顶点,逐步连接这些点,保证所有连线不再相交产生新的点,直到长方形内所有区域都变成三角形.如图3-10,当长方形内有1个点时,可分得4个三角形;当长方形内有2个点时,可分得6个三角形(不计被分割的三角形).问题:当长方形内有35个点时,可分得多少个三角形?2.理解问题(1)先引导学生动手画一画,感受分割得到三角形的过程.(2)已知条件是什么?目标是什么?3.拟订计划(1)直接研究“长方形内有35个点”的情形,你遇到了什么困难?(2)哪些情形容易研究?从中你能发现什么规律?(3)你发现的规律正确吗?你能给出合理的解释吗?4.实施计划(1)先研究长方形内有三个点、四个点的情形,点数较少,易操作.(2)通过几种简单情形的数据,发现规律:长方形内点的个数每增加1,三角形的个数增加2.(3)得出结论:当长方形内有35个点的时候,分得的三角形个数是:4+2×34=725.回顾反思(1)从特殊到一般,当长方形内有n个点时,分得的三角形个数是多少?用含n的代数式来表示.归纳:4+2×(n-1)=2n+2(2)从一般再到特殊,当长方形内有100、1000、10000个点时,分得的三角形个数是多少?总结:在运用归纳策略寻找规律时,要先在若干简单情形中寻找相应的规律.初步发现规律后,可以通过更多的情形验证,再考虑一般情况.最后,试着给出合理的解释,并用数学语言简洁地表达规律.三、课堂练习教材P102~P103第1~4题.四、课堂小结本节课你有哪些收获呢?五、课后作业教材P107~P108第17,18,19题.本节课的教学过程中,教师通过设计不同的情景活动,引导学生去猜测,发现其中的规律,并尝试用代数式解释这个规律,让同学们体验从特殊到一般的教学思想.整个课堂同学们积极参与,合作交流,提高了他们探索、发现和归纳的能力.。
《探索与表达规律》优秀教学设计
第三章 整式及其加减 探索与表达规律(一)一、教学目的:(1)经历探索图形中数字关系,并能用代数式表示规律,验证规律得出结论。
(2)会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
(3)培养学生的观察能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。
二、教学重难点教学重点:用字母、运算符号表示一般规律。
教学难点:探索图形中数字蕴涵的关系和规律。
三、教学过程设计第一环节 见识经典,创设情景。
引例:中国古代数学家在数学的许多领域中处于遥遥领先的地位,中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
思考:你能发现其中的数字规律吗?第二环节 合作探究 探究1: 数的变化规律内容1:(1)请你在手中的日历上,横向圈出三个数字,将它们的和告诉老师(2)请你认真观察日历中的数字,横排相邻两数之间有什么关系?竖排相邻两数有什么关系?还能发现其他关系吗?1 111 11 13 3464杨辉三角1 1…2内容2:填数游戏:(1)下边的图表是某月日历的一部分,请你在空白处填上适当的数。
(注意不要填错哦!)(1)(2)(3)(4)(5)(2)在日历中任意圈出横排3个数字,它们的和是21,这三个数字分别是多少?(3)在日历中任意圈出横排3个数字,它们的和是13,这三个数字分别是多少?(4)在日历中任意圈出竖排3个数字,它们的和是33,这三个数字分别是多少?(5)在日历中任意圈出竖排3个数字,它们的和可能是75吗?内容3:(1)观察日历中方框中九个数的和与方框中正中间的数有什么关系?(2)将方框移到其他地方,另外圈出9个数,这个规律是否仍然成立?(3)如果推广到一般,设正中间数为a,你能表示出其他的数吗?这个关系还成立吗?得出结论:(4)思考:“M”形中的数字有何规律?你是如何验证的?(5)挑战:你还能设计其他形状的包含数字规律的数阵吗?第三环节归纳提炼1、探索规律的主要过程:问题——猜想——验证——应用2、探索规律的一般方法:(1)寻找数量关系;(2)用代数式表示规律;(3)验证规律。
3.3探索与表达规律(一)——图形变化类2024-2025学年北师大版(2024)数学七年级上册
探索与表达规律(一) ——图形变化类
·数学
1.(2022新课标)了解代数推理. 2.能用代数式表示并借助代数式运算验证所探索规律的一 般性,并对具体现象做出解释.
抽象能力 运算能力 推理能力 应用意识
·数学
探索规律的一般方法 (1)从具体的、实际的问题出发,观察各个数量的特点及相 互之间的变化规律; (2)由此及彼,合理联想,大胆猜想; (3)善于类比,从不同事物中发现其相似或相同点; (4)总结规律,作出结论,并验证结论正确与否; (5)在探索规律的过程中,要善于变换思维方式,达到事半 功倍的效果.
以采用横着看、竖着看、斜对角看等方法,有时题目的问题
也是找规律的方向.
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
·数学
2.(北师7上P96)观察如左图所示的日历图. (1)日历图中的数有什么规律? 横着看:每横行中相邻两数相差 1 ; 竖着看:每竖行中相邻两数相差 7 ; (2)日历图的套色方框中的9个数之和与该方框正中间的数有 什么关系?
·数学
(1)框中的四个数的关系是 对角两数的和相等 ; (2)在图中任意画一个类似(1)中的框,设左上角的一个数为x, 那么其他三个数怎样表示?你能求出这四个数的和吗?
解:(2)其他三个数分别为x+2,x+8,x+10,四个数的和 为x+(x+2)+(x+8)+(x+10)=4x+20.
探索与表达规律教案
探索与表达规律 (第一课时)宜昌市第九中学程雪琼一、教学目标知识与技能目标:会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律,培养学生通过观察已知数据或图形,探索数量之间的关系得到规律的能力.过程与方法目标:通过动手操作、观察、思考,经历探索数量关系、运用符号表示规律、通过运算验证规律的过程,体验数学活动是充满着探索性和创造性的过程.情感与态度目标:渗透辩证唯物主义思想中的从特殊到一般,从具体到抽象的认知观点;通过小组讨论、合作交流等方式,体验在解决问题的过程中与他人合作的重要性.二、教学重难点重点:探索发现规律,并会用代数式表示规律.难点:用代数式表示规律.三、教学方法采用引导探究式的教学方法.四、教具学具课前准备好CAI课件,另外主要教具、学具有直尺、铅笔、彩色粉笔、日历、白纸等.五、教学过程本节课教学过程遵循探究式教学原则,渗透“探索——猜想——验证”的数学学习方法,共设计了五大环节,即见识经典、合作探究、归纳提炼、拓展延伸、布置作业.(一)见识经典分层依次闪现杨辉三角的数列,提问:1.你们能尝试写出下一层的数字吗?2.你是如何得到的?并向学生介绍这个有规律的数列就是著名的的杨辉三角.这节课我们将一起探究数学中的规律,从而引出课题:探索规律(二)合作探究探究:数的变化规律1.请同学们快速记住日历中的数字并能准确的说出它们的位置.2.请同学填空,并说说是以什么方法记忆日历的?学生通过观察,找到每一行、每一列、每一条对角线上相邻两数之间的关系.3.探究方框中九个数的和与正中间数的关系.(所给的是今年十月份的日历)(1)请思考方框中九个数的和与正中间的数有什么关系?(2)请同学们拿出日历,任意用方框框住这份日历中其它的九个数,这个关系是否成立?(3)这个关系对十月份的日历成立,那对其他月份的日历成立吗?从而得到猜想:蓝色方框中九个数之和=9×正中间的数(4)我们应该如何进行验证?学生根据方框中数的不确定性,引导他们想到用字母表示数,学生可能设任意一个方格的数为字母(任意),表示出其余的八个数,通过代数和运算发现,设正中间的数为字母的计算较为简单,得到“问什么设什么”,根据代数和的运算验证了猜想的正确性.从而得到规律:蓝色方框中九个数之和=9×正中间的数挑战:给出几个图形,如“十”字形、“H”形,“M”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,分小组展示.探究:图形的变化规律按下图方式用火柴棒搭三角形:…1.照这样的规律搭下去,搭8个三角形需要多少根火柴棒?2.探究:搭n个这样的三角形需要多少根火柴棒?学生可以通过摆放的多种方式得到规律,同时经过去括号、合并同类项等化简运算得到结果相同,也可以引导学生将图形的规律转化为数来研究.挑战:将一张长方形纸按如图方式连续对折,每一次的折痕都与第一次的折痕平行,对折1次后,纸为几层?对折2次后,纸为几层? 对折n次呢?先研究层数,再研究折痕的条数,并让学生认识到有时仅从图形是不容易发现规律的,需要借助于数来猜想得到规律,并用具体图形来验证.(三)归纳提炼让学生对本节课所学的基本方法和数学思想进行归纳.(四)拓展延伸设置游戏,拓展有关整除的规律.(五)布置作业请学生自己设置包含数字规律的数阵,并写出探究的过程.。
探索与表达规律教案
(2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?
(3)在(2)中,若改成每8张桌子拼成1张大桌子,则共可坐多少人?
三、课堂小结
板书设计
反馈升华(检测内容设计说明)
反思
重建
审核认定
审核认定
意见:审核人:月日
课题
回顾与思考1
主备人
于金凤
案序
教学目标
(知识能力
德育渗透)
1、理解单项式,多项式,整式及同类项的概念
2、会进行整式的加减计算
教学重点
整式的加减计算
教学难点
整式的化简求值
有效预习(预习内容设计及引导方法)
1.复习回顾什么是单项式及单项式的系数和次数,什么是多项式及整式。
2.复习回顾什么是同类项,怎样合并同类项。
二、题组训练
1、在代数式 中,单项式有____个,多项式有________个。
2、单项式 的系数是,次数是。
3.多 项式a3―a2b―2ab4+b3―1的次数是____.最高次项系数是___,常数项是______。
4、 与 是同类项,则 =____________。
5.化简 的结果是_________________。
3.复习回顾整式的加减计算步骤及注意事项。
展示互动
自主、合作学习及展示交流
精讲点拨
一、自主探究:(课前完成,组内小展示5分钟)
1.在代数式(1) ,(2)4xy,(3) ,(4) ,(5)x2+x+ ,(6)0,(7) ,(8)m,(9)―2.01×105中,单项式有,多项式有,整式有(只填序号)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《探索与表达规律》
教学目标
知识与能力目标:经历探索数量关系,运用符号表示规律,通过运算验证规律的过程,拥有一定的问题解决,和社会调查的经验。
过程与方法目标:会用代数式表示简单问题中的数量关系,能合并同类项,去括号等法则验证所探索的规律。
情感态度与价值观要求:培养学生面对挑战困难的勇气,鼓励学生大胆尝试,从中获得体验,激发学生的学习热情。
教学重点
用字母、运算符号表示简单图形规律问题,并能验证所探索的规律。
教学难点
经历探索数量关系,运用符号表示规律。
教学方法讲授法、情景讨论法
教学准备多媒体课件、火柴棒或牙签
课时安排
1课时
教学过程
一、导课
1.播放ppt出示几组有规律的数列,并回顾本章第一节的摆火柴问题。
2.引出课题
二、新授
(一)联系拓广——知识渗透
1.完成教材第107页议一议。
在学生完成问题解答以后,适时提出反思性要求,尤
其是对解决问题方法的反思,以帮助学生归纳出具有一般意义的基本方法:“特殊—一般—特殊”的方法;“观察、分析、比较、归纳、猜想、验证”的过程。
2.完成教材第107页想一想。
收集学生典型成果,并展台展示。
(二)自主学习:
联体长方形的摆法:
1. 如图,摆N 个这样联体图形需 根火柴棒
如图,摆N 个这样联体图形需 根火柴棒
(二)合作交流:
1. 标准问题。
餐桌的摆法:
若按照上图的摆法摆放餐桌和椅子,完成下表:
若按照上图的摆法摆放餐桌和椅子,完成下表:
2. 变式问题:
在桌数相同时,哪一种摆法容纳的人数更多?
3.归纳总结:
尝试从以下方面进行总结:
在探索规律中遇到挫折,你会怎么样?
3.对自己本节课的学习情况进行评价。
(包括所学习到的探索规律的一般方法;探索规律过程中哪些量是重要的;探索规律的一般过程等)。
(三)当堂训练:
1.有人说一张普通的报纸连续对折最多不会超过8次。
利用今天在折纸问题中对折次 N … 3 2 1 可坐人数
椅子张数
… 3 2 1 可坐人数 椅子张数
数与单层面积以及所折层数的关系的探索,对这一论点进行论证或反驳。
(四)折纸问题:
1.对折次数与所得单层面积的变化关系表:
2.对折次数与所得层数的变化关系表:
3.对折次数与所得折痕数的变化关系表:
三、练习
随堂练习 p108 1、2
四、总结
由学生从以下方面进行总结:
在探索规律中遇到挫折,你会怎么办?
对自己本节课的学习情况进行评价。
(包括所学习到的探索规律的一般方法;探索规律过程中哪些量是重要的;探索规律的一般过程等。
)
五、作业
习题3.11 1、2、3
六、板书
探索规律。