初等数论复习题题库及答案
初等数论期末试题及答案

初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。
解答:观察可知,1到100之间的奇数是等差数列,公差为2。
根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。
解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。
根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。
证明:设n是一个平方数,即n = m^2,其中m是一个正整数。
我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。
对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。
所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。
而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。
初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案复习题及参考答案一一、填空(40%)1 、求所有正约数的与等于15的最小正数为 考核知识点:约数,参见P14-19 2、若1211,,,b b b 是模11的一个完全剩余系,则121181,81,,81b b b +++也是模11的 剩余系.考核知识点:完全剩余系,参见P54-573.模13的互素剩余系为考核知识点:互素剩余系,参见P584.自176到545的整数中是13倍数的整数个数为 考核知识点:倍数,参见P11-13 5、如果p 是素数,a 是任意一个整数,则a 被p 整除或者考核知识点:整除,参见P1-4 6、b a ,的公倍数是它们最小公倍数的 .考核知识点:最小公倍数,参见P11-13 7、如果b a ,是两个正整数,则存在 整数r q ,,使r bq a +=,b r ≤0.考核知识点:整除,参见P1-4 8、如果n 3,n 5,则15( )n . 考核知识点:整除,参见P1-4二、(10%)试证:6|n(n+1)(2n+1),这里n 是任意整数。
考核知识点:整除的性质,参见P9-12 提示:i)若 则ii)若 则iii)若 则又三、(10%)假定a 是任意整数,求证a a (mod )++≡2103或a a (mod )+≡203考核知识点:二次同余式,参见P88提示:要证明原式成立,只须证明231a a ++,或者23a a +成立即可。
四、(10%)设p 是不小于5的素数,试证明21(mod24)p ≡ 考核知识点:同余的性质,参见P48-52 提示: 且是不小于5的素数.又且是不小于5的素数.只能是奇数且即即五、(15%)解同余式组 51(mod7)142(mod8)x x ≡⎧⎨≡⎩考核知识点:同余式,参见P74-75 提示∵ (14,8)=2 且 2 | 2 ∴ 14x ≡2(mod8) 有且仅有二个解解7x ≡1(mod4) ⇒ x ≡3 (mod4) ∴ 6x ≡10(mod8)的解为 x ≡3,3+4(mod8) 原同余式组等价于()()3mod 73mod8x x ≡⎧⎪⎨≡⎪⎩ 或()()3mod 77mod8x x ≡⎧⎪⎨≡⎪⎩ 分别解出两个解即可。
初等数论期末考试模拟试卷(含答案)

初等数论期末考试模拟试卷(含答案)一、填空题(每题5分,共25分)1. 若两个正整数a和b的最大公约数为1,则称a和b互质。
若a和b互质,则a+b与a-b也互质。
()2. 设m和n是正整数,且m、n互质。
若存在正整数k,使得km+1与kn+1互质,则k的最小值为()。
答案:13. 已知p和q是不同的质数,且p+q=17,则p^2+q^2的最小值为()。
答案:974. 设F(n)表示斐波那契数列的第n项,且F(n+1)=F(n)+F(n-1),F(1)=1,F(2)=1。
若F(n)能被3整除,则n的最小值为()。
答案:85. 已知正整数a、b、c满足a^2+b^2=c^2,则称a、b、c 为勾股数。
勾股数中,a、b、c都是奇数的三元组称为奇素勾股数。
已知最小的奇素勾股数是(3,4,5),则第二小的奇素勾股数是()。
答案:(15,8,17)二、选择题(每题5分,共25分)6. 以下关于最大公约数和最小公倍数的说法,错误的是()。
A. 两个正整数的最大公约数是它们的公共因子中最大的一个B. 两个正整数的最大公约数等于它们的乘积除以最小公倍数C. 两个正整数的最大公约数和最小公倍数的乘积等于这两个数的乘积D. 两个正整数的最大公约数和最小公倍数一定互质答案:D7. 设p是质数,且p>2,则以下说法正确的是()。
A. p的平方能被3整除B. p的立方能被3整除C. p的平方加1能被3整除D. p的平方减1能被3整除答案:D8. 以下关于斐波那契数列的说法,错误的是()。
A. 斐波那契数列中的任意两个相邻项互质B. 斐波那契数列中的任意两个非相邻项互质C. 斐波那契数列中的任意三个连续项构成勾股数D. 斐波那契数列中的任意两个相邻项之比越来越接近黄金比例答案:C9. 设a、b、c是勾股数,且a是最小的质数。
以下说法正确的是()。
A. b和c一定互质B. b和c一定不互质C. b和c中至少有一个是质数D. b和c中至少有一个不是质数答案:D10. 以下关于同余的说法,错误的是()。
初等数论考试题及答案

初等数论考试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 23B. 45C. 68D. 89答案:A2. 两个连续的自然数的乘积一定是:A. 偶数B. 奇数C. 质数D. 合数答案:A3. 求下列哪个数的因数个数最多?A. 12B. 18C. 24D. 30答案:C4. 一个数如果被6整除,那么它一定能被:A. 2整除B. 3整除C. 2和3同时整除D. 以上都不是答案:C5. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A6. 一个数的最小素因子是2,那么这个数一定是:A. 偶数B. 奇数C. 质数D. 合数答案:A7. 求下列哪个数的各位数字之和最大?A. 123B. 456C. 789D. 135答案:C8. 一个数的各位数字之和是9,那么这个数除以9的余数是:A. 0B. 1C. 2D. 3答案:A9. 一个数的各位数字之和是3的倍数,那么这个数一定是:A. 3的倍数B. 9的倍数C. 27的倍数D. 不一定是3的倍数答案:A10. 一个数的各位数字之和是5的倍数,那么这个数一定是:A. 5的倍数B. 25的倍数C. 125的倍数D. 不一定是5的倍数答案:D二、填空题(每题4分,共20分)1. 一个数如果只有1和它本身两个因数,那么这个数叫做__质数__。
2. 如果两个数的最大公约数是1,那么这两个数叫做__互质数__。
3. 一个数如果除了1和它本身外,还有其他因数,那么这个数叫做__合数__。
4. 一个数如果能够被2整除,那么这个数叫做__偶数__。
5. 一个数如果能够被3整除,那么这个数的各位数字之和也一定能被3整除。
三、解答题(每题10分,共50分)1. 证明:如果一个数n能被4整除,那么2n也能被4整除。
证明:设n能被4整除,则存在整数k使得n=4k。
则2n=2×4k=8k,显然8k能被4整除,因此2n也能被4整除。
2. 证明:如果一个数n能被9整除,那么它的各位数字之和也能被9整除。
自考初等数论试题及答案

自考初等数论试题及答案一、选择题(每题2分,共10分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 一个数的最小素因子是3,那么这个数的最小公倍数是:A. 3B. 6C. 9D. 12答案:C3. 计算 \((2^3) \div 2^2\) 的结果是:A. 2B. 4C. 8D. 16答案:A4. 一个数的质因数分解是 \(2^2 \times 3^3\),那么这个数的约数个数是:A. 5B. 6C. 7D. 8答案:D5. 如果 \(p\) 是一个素数,那么 \(p^2 - 1\) 可以分解为:A. \((p-1)(p+1)\)B. \(p(p-1)\)C. \((p+1)(p-1)\)D. \(p^2 - 1\)答案:C二、填空题(每题3分,共15分)1. 如果一个数 \(n\) 能被3整除,那么 \(n\) 的各位数字之和也能被____整除。
答案:32. 一个数 \(a\) 与 \(b\) 的最大公约数(GCD)是 \(d\),那么\(a \times b\) 的最大公约数是______。
答案:d3. 一个数 \(n\) 能被9整除,那么 \(n\) 的各位数字之和也能被______整除。
答案:94. 一个数 \(n\) 能被11整除,那么 \(n\) 的奇数位数字之和与偶数位数字之和的差是______的倍数。
答案:115. 一个数 \(n\) 能被7整除,那么 \(2n + 4\) 能被______整除。
答案:7三、解答题(每题10分,共20分)1. 求 \(2^{16} - 1\) 的所有素因子。
答案:\(2^{16} - 1 = (2^8 + 1)(2^8 - 1) = (2^4 + 1)(2^4 -1)(2^8 + 1) = (2^2 + 1)(2^2 - 1)(2^4 + 1)(2^4 - 1)(2^8 + 1) = 3 \times 15 \times 17 \times 15 \times 255\),所以素因子为3, 5, 17, 255。
初等数论试题及答案高一

初等数论试题及答案高一一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 2B. 4C. 6D. 8答案:A2. 一个数的因数包括它自己吗?A. 是B. 否答案:A3. 一个数的倍数包括它自己吗?A. 是B. 否答案:A4. 两个连续整数的乘积一定是合数吗?A. 是B. 否答案:B5. 一个数的最小倍数是多少?A. 它自己B. 2C. 1D. 0答案:A6. 一个数的最大因数是多少?A. 它自己B. 2C. 1D. 0答案:A7. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A8. 一个数的质因数分解中,质因数的个数至少有几个?A. 1B. 2C. 3D. 0答案:A9. 以下哪个数是素数?A. 1B. 2C. 9D. 10答案:B10. 一个数的因数个数是奇数还是偶数?A. 奇数B. 偶数答案:B二、填空题(每题4分,共20分)1. 一个数的最小质因数是______。
答案:22. 一个数的最小非零因数是______。
答案:13. 一个数的最大因数是______。
答案:它自己4. 一个数的最小倍数是______。
答案:它自己5. 一个数的倍数个数是______。
答案:无限三、解答题(每题10分,共50分)1. 证明:对于任意的正整数n,2n总是偶数。
证明:假设n为任意正整数,那么2n = 2 * n。
因为2是偶数,所以2n也是偶数。
2. 证明:对于任意的正整数n,n^2 - 1是奇数。
证明:假设n为任意正整数,那么n^2 - 1 = (n - 1)(n + 1)。
因为n - 1和n + 1是连续的整数,所以它们中必有一个偶数和一个奇数。
因此,它们的乘积是奇数。
3. 找出100以内的所有质数。
答案:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 974. 证明:如果p是质数,那么p^2 - 1是合数。
初等数论测试(带答案)

,其中
563
是素数.
(8 分)
四、证明题(第 1 小题 10 分,第 2 小题 11 分,第 3 小题 11 分,共 32 分)
n n2 n3 17、证明对于任意整数 n ,数 3 2 6 是整数.
18、证明相邻两个整数的立方之差不能被 5 整除. 19、证明形如 4n 1 的整数不能写成两个平方数的和.
A ac bc(mod m) B a b C ac T bc(mod m) D a b
5、如果( ),则不定方程 ax by c 有解.
A (a, b) c B c (a, b) C a c D (a, b) a
6、整数 5874192 能被( )整除. A 3 B 3与9 C 9 D 3或9
证明 设 n 是正数,并且 n 1(mod 4) ,
----------(3 分)
如果
n x2 y2 , 则因为对于模 4, x, y 只与 0,1,2,-1 等同余, 所以 x2 , y 2 只能与 0,1 同余,
所以
x2 y 2 0,1,2(mod 4) ,
而这与 n 1(mod 4) 的假设不符,
C 7 不整除(12,15) D 7 不整除[12,15]
12、同余式
( ).
A 有解 B 无解 C 无法确定 D 有无限个解
二、填空题 1、有理数 ,
,能写成循环小数的条件是( ).
2、同余式
有解,而且解的个数为( ).
3、不大于 545 而为 13 的倍数的正整数的个数为( ).
4、设 是一正整数,Euler 函数
429 67
27 67
(1)
27 1. 67 1 22
67 27
67 27
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《初等数论》本科一 填空题(每空2分)1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 .2.,(,)(,)(,)a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by +=4.写出180的标准分解式是 22235⋅⋅ ,其正约数个数有 (2+1)(2+1)(1+1)=18个.5.,1,2,,a b a b L 设与是正整数则在中能被整除的整数恰有 []ab个.6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数.8.ϕ(3)= 2 ;ϕ(4)= 2 .9.当p 素数时,(1)()p ϕ= 1p - ;(2)()k p ϕ= 1k k p p -- . 10.(),(,)1,1m m a m a ϕ=-≡设是正整数则 0 (mod ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (mod ).p 12.已知235(mod7)x +≡,则x ≡ 1 (mod7).13.同余方程22(mod 7)x ≡的解是 4(mod7) . 14.同余方程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的二次剩余的充要条件是 -121(mod ).p n p ≡ . 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是 -121(mod ).p np ≡- .17.3()=5 -1 ; 4()=5 1 .18.,p 设是奇素数则2()p=218(1).p --.19.,p 设是奇素数则1()p = 1 ;-1()p= -12(-1).p .20. 5()=9 1 ; 2()=45-1 .二 判断题(判断下列结论是否成立,每题2分). 1. ||,|a b a c x y Z a bx cy ⇒∈+且对任意的有.成立 2. (,)(,),[,][,]a b a c a b a c ==若则.不成立3. 23|,|a b a b 若则.不成立4.(mod ),0,(mod ).a b m k k N ak bk mk ≡>∈⇒≡ 成立5.(mod )(mod ).ac bc m a b m ≡⇒≡ 不成立6. 22(mod ),(mod )(mod )a b m a b m a b m ≡≡≡-若则或至少有一个成立. 不成立 7. 222(mod ),(mod )a b m a b m ≡≡若则.不成立8. 若x 通过模m 的完全剩余系,则x b +(b 是整数)通过模m 的完全剩余系. 成立 9. 1212{,,,}{,,,}.m m a a a b b b L L 若与都是模m 的完全剩余系不成立1122{,,,}.m m a b a b a b m +++L 则也是模的完全剩余系不成立10.若(,)1a m =,x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系. 不成立 11.12121212,,(,)1,()()().m m N m m m m m m ϕϕϕ∈==若则 成立12. 同余方程24330(mod15)x x -+≡和同余方程2412120(mod15)x x +-≡是同解的. 成立13. (mod ).ax b m ax my b ≡+=同余方程等价于不定方程成立14. 2,(mod ),() 1.am x a m m≡=当是奇素数时若有解则成立15. 2,()1,(mod ).a m x a m m=≡当不是奇素数时若则方程一定有解不成立三 计算题1. (1859,1573)-求.(6分)解:1.(1859,1573)(1859,1573)(286,1573)(286,15732865)(286,143)(0,143)143-===-⨯===2.求 [-36,108,204].(8分)解:22232232.[36,108,204][36,108,204],3623,10823,2042317,[36,108,204]23171836.-==⨯=⨯=⨯⨯∴=⨯⨯=Q3. 求(125,17),以及x ,y ,使得125x +17y =(125,17).(10分)解:3.651,16-56-(17-26)36-173(125-177)-173125-2217.1253-17221,3,-22.x y =+==⨯=⨯=⨯⨯=⨯⨯∴⨯⨯===由等式起逐步回代得4. 求整数x ,y ,使得1387x -162y =(1387,162).(10分)解:4.9421,19-429-4(11-9)59-4115(20-11)-411520-911520-9(71320)322097132(91-71)97132914171329141(16291)73914116273(13878162)41162731387625162.1=⨯+=⨯=⨯=⨯⨯=⨯⨯=⨯⨯=⨯⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯-=⨯-⨯=⨯-⨯-⨯=⨯-⨯∴由等式起逐步回代得38773162625 1.⨯-⨯=5. 12!.分解为质因数乘积(8分)6. ,10|199!k k 求最大的正整数使.(8分)7. [1+L 求(10分) 8. 81743.x y +=求方程的整数解(6分)9. 19201909.x y +=求方程的正整数解(10分)10. 求方程111x -321y =75的整数解.(10分) 11. 12310661.x x x ++=求方程15的整数解(8分) 12. 361215.x y z ++=求不定方程的整数解(8分)13. 237.x y z ++=求不定方程的所有正整数解(8分)14. 19,2,3 5.30将写成三个分数之和它们的分母分别是和(10分) 15. 222370.x y x y +--=求方程的整数解(6分) 16. 331072.x y +=求方程的整数解(8分)17. 5()4.xy yz zx xyz ++=求方程的正整数解(10分)18. 4063().求的个位数字与最后两位数字十进制(10分) 19. 67(mod 23).x ≡解同余方程(8分) 20. 12150(mod 45).x +≡解同余方程(8分)21. 2(mod 3)3(mod 5).2(mod 7)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(6分)22. 43()0(mod35),()289.f x f x x x x ≡=+++解同余式(10分)23. 765:2720(mod5).x x x x --++≡解同余方程(6分)24. .求出模23的所有二次剩余和二次非剩余(8分)25. 25(mod11).x ≡判断方程有没有解(6分)26. 2563,429(mod563).x ≡已知是素数判定方程是否有解(8分) 27. 3求以为其二次剩余的全体素数.(8分)28. 10173:(1)();(2)().1521计算(8分) 29. (300).ϕ计算(6分)30. 3(mod8)11(mod 20).1(mod15)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(10分)四 证明题1、,,,, 1.:|,|,|.a b x y ax by a n b n ab n +=设是两个给定的非零整数且有整数使得求证若则(6分)证明:1.()|,|.n n ax by nax nbyab na ab nb ab n =+=+∴Q 又2.121212,,,,0,.4|.n n n a a a a a a a a a n n +++==L L L 设是整数且则(8分)证明:1212121231122.,,,,,,0,2.,,,.,,2(2).-,(-1),,.,,,,4.n n n i n n n n a a a a a a n a a a a a i n a a a a n a a a n +++=∴≤≤+++=∴L L L L L 若是奇数则都是奇数则不可能即在中至少有一个偶数如果只有一个偶数不妨设为则不整除由知左边是个奇数的和右边是偶数这是不可能的在中至少有两个偶数即3. 任给的五个整数中,必有三个数之和被3整除.(8分)证明:1231231231231231233.3,03,1,2,3,4,5.(1)0,1,2,0,1,2,3()3.(2)0,1,2,,(0,12),3()3.i i i i i i i a q r r i r r r r a a a q q q r r r r r r r a a a q q q r =+≤<====++=+++====++=+++设若在中数都出现不妨设则成立若在中数至少有一个不出现则至少有三个取相同的值令或则成立4. 22,,9|,3|(,).a b a ab b a b ++设是整数且则(8分)证明:2222224.9,9()3,3()3,3(),3,9(),93,3,33.3,3,3.3.3,3.3(,).a ab b a b ab a b ab a b a b a b ab ab a b a a b b b a b a a b ++∴-+∴-+∴-∴-∴-∴∴∴-∴-∴Q Q Q 或若若故5. 设,a b 是正整数,证明()[,][,]a b a b a b a b +=+.(8分)证明:()5.()[,](),(,)(,)()[,](,),(,)(,),()[,](,),()[,],(,)ab b a b a b a b a b a a b a b b a b b a b b a b b a b a b b a b b a b a b b a b b a b a b ++=+⋅=⋅+=+++=∴+=++=+∴Q 而即结论成立6. (mod ),0,,(mod ).nna b m n n N a b m ≡>∈≡当时又则(6分)证明:123216.(mod ),,()(),,(mod ).n n n n n n n n n n a b m m a b a b a b a a b a b b m a b a b m ----≡∴--=-++++∴-≡Q L 又即7. 12{,,,},{}.m A x x x m x x =L 设是模的一个完全剩余系以表示的小数部分11:(,)1,{}(-1).2mi i ax b a m m m =+==∑证明若则(10分) 证明:1211111117.2,{,,,},(1),1(1)1{}{}{}{}.22m i mm mm m i i j j j j ax b ax b ax b m ax b km j j m ax b j j j j m m m k m m m m m m --=====++++=+≤≤+--=+====⋅=∑∑∑∑∑L 由定理知也是模的一个完全剩余系可设从而8. ,:n N ∈设证明1()2,2k n n n k N ϕ==∈的充要条件是.(10分) 证明:-1-118.2,(2)2(1-)2.22(),2,2|,21()()()(2)(2)()2()2,222(),1,.(()112)k k k k k k k k k nn nn n t t n t n t n t t t t t t t t t n n ϕϕϕϕϕϕϕϕϕϕϕ⇐====⇒==/=====⨯⋅=⋅=∴==⇔=若则若设则即从而得证注或 9. ,5|12344.n n n n n N n ∈+++⇔/设则(10分)证明:444449.(5)4,,1(mod5)(14).4,03,1234(1)1(2)2(3)3(4)41234(mod5).5|1234,5|1234,0,1,2,30,4;4,0,5|1234,n n n n q r q r q r q rr r r r n n n n r r r r r r r r k k n q r r r r n n r ϕ=≡≤≤=+≤≤+++≡⋅+⋅+⋅+⋅≡+++⇒++++++==∴//⇐=+++/Q Q 由定理知令则若即得把代入检验可知若则易知5|1234.n n n n ∴+++/10. ()1,(,)1,:(mod )(mod ).m m a m x bam ax b m ϕ-=≡≡设是正整数证明是同余方程的解证明:()()()-110.(,)1,,1(mod ).(mod ),(,)1,(mod ).m m m a m Euler a m ax b a b m a m x a b m ϕϕϕ=≡∴≡≡=∴≡Q Q 由定理则11. -121(mod ).p n p n p ≡-是模的二次非剩余的充要条件是(10分)证明:-111221122-121211.(,)1,,1(mod ),(1)(1)0(mod ),,10(mod )10(mod ),1(mod ),1(mod ).p p p p p p p n p Euler n p nnp p n p np n p n p np -----=≡∴+-≡+≡-≡≡∴≡-Q Q 若则由定理是素数则或中必有一个成立是模的二次剩余的充要条件是 12. 12(mod ),(mod ),y a p y a p p ≡≡设都是模的平方剩余12(mod ),(mod ).y b p y b p p ≡≡都是模的平方非剩余121211:(mod ),(mod ),(mod ).y a a p y b b p p y a b p p ≡≡≡求证都是模的平方剩余是模的平方非剩余(10分)证明:11112222121211122212121112.1,1(mod ),1(mod ),()()1(mod ),()1(mod ),.p p p p p p p a a p b b p a a b b p a b p -------≡≡≡≡-∴≡≡≡-∴由定理知得证13. 22,43,:(mod ),(mod ).p q n x p q x q p +≡≡设为两个形如的奇质数求证若无解则有两个解(10分)1-122222221-113.:,43,,,22(mod ),()1,()(-1)()() 1.(mod ),,-(mod ),(-)(mod ),-,,(mod ).p q p q p q n p q p p x p q q p q qx q p c c c p c c q p c x q p c -⋅-+∴≡∴=-==-=∴≡≡=≡/∴≡±Q Q 证明均为形如的数均为奇数又无解则有解设是其一解则因为且也是其一解又因为二次同余方程至多有两个解故恰有两个解为14. 1(mod 4),(mod ).p p y a p p ≡≡设是适合的素数是模的平方剩余:(mod ).y a p p ≡-证明也是模的平方剩余(8分)121214.:41,1,1(mod ),(-)1(mod ).p p p k a p a p --=+≡≡证明令由定理知则15. 2,:141.n n m ++设是整数证明的任何奇因数都是的形式(10分)22215.:,4141.:1,41.|1,1(mod ),-1(),,4 1.m m p n p m p n n p QR p p m +++++≡-∈=+证明由于奇数都可表示成奇素数之积而且任意多个形如的整数之积也具有的形式我们只需证明若素数是的因数则具有的形式若则即由以上推论知 16. -1,1(mod )-1.p p x p p ≡若是素数则同余方程有个解(8分)16.:(),.,-1,1,2,3,,-1(mod ).Fermat p p x p p ≡L 证明由费马定理定理可知任意与互质的数都是它的解因此这个同余方程恰好有个不同的解即17. -1-1100101010,:9|9|.nnn n n i i N a a a a N a ==+++⋅+⇔∑L 设求证(8分)23111011017.101,101,101,,101(mod9),101010(mod9);n nn n n n n N a a a a a a a a ---≡≡≡≡∴=++++≡++++Q L L L18. 52:641|2 1.+求证(8分)5248163232218.24,216,2256,2154,21(mod 641),210(mod 641),6412 1.≡≡≡≡≡-∴+≡∴+Q19. :,,()(,)([,]).m n N mn m n m n ϕϕ∈=证明若则(10分)12121219.:[,],(1).111()(1-)(1-)(1-),111([,])[,](1-)(1-)(1-),(,)[,],111()(,)[,](1-)(1-)(1-)(,)([,]).i kkkmn m n p i k mn mn p p p m n m n p p p mn m n m n mn m n m n m n m n p p p ϕϕϕϕ≤≤===∴==L L Q L 证明易知与有相同的素因数设它们是则20. ,,(mod ).p p a a a p ≡设是素数则对于任意的整数有(8分)120.:(,)1,,1(mod ),(()1),(mod ).(,)1,,0(mod ),p p pa p Euler a p p p a a p a p p a a a p ϕ-=≡=-∴≡>∴≡≡∴Q 证明若由定理若则结论成立。