城市道路设计竖曲线计算例题

城市道路设计竖曲线计算例题
城市道路设计竖曲线计算例题

竖曲线高程计算

4.3 某条道路变坡点桩号为K25+460.00,高程为780.72.m,i1=0.8%,i2=5%,竖曲线半径为5000m。(1)判断凸、凹性;(2)计算竖曲线要素;(3)计算竖曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的设计高程。 解:ω=i2-i1=5%-0.8%=4.2%凹曲线 L=R?ω=5000×4.2%=210.00 m T=L/2=105.00 m E=T2/2R=1.10 m 竖曲线起点桩号:K25+460-T=K25+355.00 设计高程:780.72-105×0.8%=779.88 m K25+400: 横距:x=(K25+400)-(K25+355.00)=45m 竖距:h=x2/2R=0.20 m 切线高程:779.88+45×0.8%=780.2 m 设计高程:780.24+0.20=780.44 m K25+460:变坡点处 设计高程=变坡点高程+E=780.72+1.10=781.82 m 竖曲线终点桩号:K25+460+T=K25+565 设计高程:780.72+105×5%=785.97 m K25+500:两种方法 1、从竖曲线起点开始计算 横距:x=(K25+500)-(K25+355.00)=145m 竖距:h=x2/2R=2.10 m 切线高程(从竖曲线起点越过变坡点向前延伸):779.88+145×0.8%=781.04m 设计高程:781.04+2.10=783.14 m 2、从竖曲线终点开始计算 横距:x=(K25+565)-(K25+500)=65m 竖距:h=x2/2R=0.42 m 切线高程 (从竖曲线终点反向计算):785.97-65×5%=782.72m 或从变坡点计算:780.72+(105-65)×5%=782.72m 设计高程:782.72+0.42=783.14 m

公路竖曲线高程计算程序

fx-4800P计算器 公路竖曲线高程计算程序 (程序名:GAO CHENG-HP) Lb1 0︰{CDAB}︰C“K1=”︰D“H1=”︰A“PV-K0=”︰B “PV-H0=”↙ Lb1 1 ︰{REF }︰R“R=”︰E“K2=”︰F“H2=”↙Lb1 2︰U =(B-D)÷(A-C)︰V =(F-B)÷(E-A)︰U >V =>N = 0︰T = R ( U-V ) ÷2︰≠>N = 1︰T = R ( V-U ) ÷2 ︰⊿G = A -T ︰Q = A +T ︰W = T 2÷(2 R)↙ Lb1 3︰{K}︰K “I.T.E.ZY-K.YZ-K=0,1”︰ K =0 =>Goto 4 ︰⊿U “I 1”= U ▲V “I 2”= V ▲T = T ▲W “E”= W ▲G “ZY-K”= G ▲Q “YZ-K”= Q▲↙ Lb1 4︰{M}︰M“PK=”︰M ≤A =>Goto 5︰⊿Goto 6 ↙Lb1 5︰M ≤G =>H = B-U ( A-M ) ︰Goto 7 ︰≠>Prog “H1 ”︰N = 1 =>H = B+X-Y ︰Goto 7︰≠>N = 0 =>H = B-X -Y ︰Goto 7↙ Lb1 6︰M ≥Q =>H = B+V ( M-A ) ︰Goto 7 ︰≠>Prog “H2 ”︰N = 1 =>H = B+X+Y ︰Goto 7︰≠>N = 0 =>H = B-X +Y ↙ Lb1 7︰H “HP”= H ▲{L}︰L“BZ-T=0,L”︰L = 0 =>Goto 8 ︰⊿{S}︰S “IL=”︰H “HL”= H +S L ▲↙

竖曲线习题

竖曲线练习题 1、设在桩号K2 +600 处设一竖曲线变坡点,高程m . i1 =1%, i2 = -2%,竖曲线半径3500 m试计算竖曲线个点高程(20m整桩即能被20整除的桩号) 解:ω= i2 -i1 = -2% -1% = -3% 为凸曲线。 曲线长L = Rω= 3500× = 105 m . 切线长T = L/2 = 105÷2 = m 竖曲线起点桩号= (K2 +600 ) -= K2 + 竖曲线终点桩号= ( K2 +600) += K2 + 竖曲线起点高程= -× = m 竖曲线终点高程= -× = m 各20 m整桩 K2+560 X1 = (K2 + 560)-( K2 + = m h1 =X2/2R = ÷7000 = m 切线高程: -[(K2 + 600) -(K2 + 560)] X = m 设计高程-= m K2+580 X1 = (K2 + 580)-( K2 + = m h1 =X2/2R = ÷7000 = m 切线高程: -((K2 + 600) -(K2 + 580)) X = m 设计高程-= m K2+600 X1 = T =(K2 + 6000)-( K2 + = m h1 =X2/2R = ÷7000 = m 切线高程: m 设计高程-= m K2+620 X1 = (K2 + )-( K2 +620) = m h1 =X2/2R = ÷7000 = m 切线高程: -((K2 + 620) -(K2 + 600)) X = 设计高程-= 9m K2+640 X1 = (K2 + )-( K2 +640) = m h1 =X2/2R = ÷7000 = m 切线高程: -[(K2 + 640 -(K2 + 600)] X = m 长度不小于500 m 。试确定竖曲线最小半径值并计算K1 +800 、K1 +840、K1 +860 设计高程。 解:ω= i2 -i1 = % -(-)% = 4% 为凹曲线。

工程测量竖曲线程序及公式

竖曲线程序要素 已知要素 ? 1. 变坡点里程桩号 2. 变坡点高程3. 竖曲线半径4. 变坡点前坡度(上坡为正,下坡 为负) 5. 变坡点后坡度(上坡为正,下坡为负)6.待求点里程 计算公式 ●凹凸型:当前坡度-后坡度为正,则为凸型,反之为凹型 ●转坡角(曲折角):前坡度–后坡度 ●竖曲线长:半径* 转坡角 ●切线长:竖曲线长/ 2 ●外矢距:切线长的平方/ 2倍半径 ●待求点到变坡点距离:待求点桩号–变坡点桩号(取绝对值) ●曲线起终点桩号: 起点:变坡点的桩号–切线长终点:变坡点的桩号+ 切线长 ●任意点切线标高:变坡点的标高±测点与变坡点里程距离*该里程对应坡度 ●任意点设计标高: 1. 凸型:该桩号在切线上的设计标高–修正值 2. 凹型:该桩号在切线上的设计标高+ 修正值 程序条件 ◆条件:如果待求点≦变坡点,则待求点–起点=间距,反之待求点>变坡点,则终点–待 求点=间距 ●曲线点间距:待求点–起点或终点–待求点 If K ≦Z:Then K - A→X:Else K > Z =>B - K→X : IfEnd ●竖曲线上点的高程修正值:曲线点间距的平方/ 2倍半径 ◆条件:凸型竖曲线(J>0) 如果待求点≦变坡点,则任意点设计标高=变坡点高程-(变坡点-待求点)* 前坡度(取绝对值)-修正值,反之待求点>变坡点,则变坡点任意点设计标高=变坡点高程-(待求点-变坡点)* 后坡度(取绝对值)-修正值 If K≦Z:Then H-Abs(U*I)-Y→G:Else K>Z=>H-Abs(U*L)-Y→G:IfEnd ◆条件:凹型竖曲线(J<0) 如果待求点≦变坡点,则任意点设计标高=变坡点高程+(待求点-变坡点)* 前坡度(取绝对值)+修正值,反之待求点>变坡点,则变坡点任意点设计标高=变坡点高程+(变坡点-待求点)* 后坡度(取绝对值)+修正值 If K≦Z:Then H+Abs(U*I)+Y→G:Else K>Z=>H+Abs(U*L)+Y→G:IfEnd

纵断面设计——竖曲线设计

纵断面设计——竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。 当i1- i2为正值时,则为凸形竖曲线。当i1 - i2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: 若取抛物线参数为竖曲线的半径,则有: (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距通过推导可得: 2、竖曲线曲线长:L = Rω 3、竖曲线切线长:T= TA =TB ≈ L/2 = 4、竖曲线的外距:E = ⑤竖曲线上任意点至相应切线的距离: 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R—为竖曲线的半径,m。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求

施工图桥梁测量参数复核实例计算

施工图桥梁测量参数复核实例计算 (惠罗10标项目经理部张斌斌毛锦波) [摘要] 一些工程项目由于忽视施工图纸的审核工作,在施工过程中出现桩基、盖梁、支座垫石平面位置、标高偏差、梁长偏差等引发的质量问题,严重影响了项目的工程进度和质量,鉴于测量在图纸会审中的重要作用,下面本文就以惠罗10标公峨1#大桥右幅桥为例,重点阐述如何进行桥梁图纸中的竖曲线、平曲线、坐标、标高、横坡和梁长等测量参数的复核。 [关键词]:图纸会审;平曲线;竖曲线;纵断面;坐标;标高;横坡;梁长 1 、工程概况 1.1 桥梁工程地质概况 公峨1#大桥位于云贵高原与广西丘陵过渡的斜坡地带。桥区附近海拔516.5~650.0m,相对高差133.5m;轴线通过段地面高程为525.7~568.7m之间,相对高差为43.00m;桥位所处地面起伏变化较大。桥区位于罗甸县罗妥乡所管辖,有乡村公路通知桥 1.2 桥梁结构类型 ①. 通过两阶段施工的设计,对线性的优化以及调整,本阶段左幅1#桥采用7X30米预应力砼先简支 后连续的T型桥梁,左幅2#桥采用2X30米预应力砼先简支后连续的T型桥梁,左幅3#桥采用20X30预应力砼先简支后结构连续T型梁桥方案。 ②. 桥型结构上部结构:预应力砼先简支后连续T型梁; 下部结构:0#岸桥台采用重力式U型桥台,承台桩基础,20#台采用扩大基础施工。桥墩为钢筋砼圆形双柱式墩,基础为桩基础。 ③. 桥面采用分离式,桥面宽度为12.25m;具体布置为0.5m(护栏)+11.25(行车道)+0.5(护栏)。桥面 铺装为0.1(沥青)+防水层+0.08(混凝土)。 1.3 桥梁线性指标 1.3.1 平曲线 本桥平面分别位于圆曲线(起始桩号:YK106+538,终止桩号为YK106+686.872,半径:R=800m,左偏曲线)、缓和曲线(起始桩号:YK106+686.872,终止桩号:YK106+836.872,参数:A=346.410,左偏曲线)、直线(起始桩号:YK106+836.872,终止桩号:K107+006.007)、圆曲线(起始桩号:K107+006.007,终止桩号:107+156.889,半径R=2500m,右偏曲线),本初桥位17-20跨为整幅路基宽度,本桥处于断链上右幅YK107+000.122=整幅K107+006.007。桥墩径向布置,计算坐标以及桩基坐标是应该加以注意断链处坐标的处理。如下表1.3.1-1表所示

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

竖曲线计算方法

竖曲线计算书 一、 变坡点桩号为220k28+,变坡点标高为m 135.873,两相邻路段的纵坡为 %303.0%0.39921-=+=i i 和,m R 15000=凸。 1. 计算竖曲线的基本要素 竖曲线长度 )(105.3)00303.000399.0(15000m R L =+?==ω 切线长度 )(7.522 3.1052m L T === 外距 )(09.015000 27 .52*7..5222m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:3.167287.522202822028+=-+=-+K K T K 竖曲线起点高程:135.873-52.7 ?0.00399=135.663 (2) 竖曲线终点桩号:7.272287.522202822028+=++=++K K T K 竖曲线终点高程:135.873-52.7?0.00303=135.713 3. 求各桩号标高和竖曲线高程

二、 变坡点桩号为23029+K ,变坡点标高为m 809.132,两相邻路段的纵坡为 %401.0%303.021+=-=i i 和,m R 9000=凹。 1. 计算竖曲线的基本要素 竖曲线长度 )(36.63)]00303.0(00401.0[9000m R L =--?==ω 切线长度 )(68.312 36.632m L T === 外距 )(06.09000 268 .31*68.3122m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:32.1982968.312302923029+=-+=-+K K T K 竖曲线起点高程:132.809+31.68?0.00303=132.905 (2) 竖曲线终点桩号:68.2612968.312302923029+=++=++K K T K 竖曲线终点高程:132.809+31.68?0.00401=132.936 3. 求各桩号标高和竖曲线高程

第三节道路工程纵断面设计实例讲解

3.道路工程纵断面设计实例讲解 3.1道路的最大纵坡和最小纵坡 首先分析汽车运动基本规律,汽车运动基本规律是公路纵断面线形设计的理论基础,指导公路纵断面设计。 汽车的驱动力的来源顺序:汽油燃烧→热能→机械能P →曲轴扭矩M →驱动轮Mk →驱动车轮运动。 发动机功率N 及曲轴扭矩M 与发动机转速n 的关系:n N 9549M =(N ·m );车速V 与发动机转速关系:γ γπR 377.0100060R 2V n n ==,γ为总变速比,R 汽车车轮半径,n 转速。 汽车的驱动力ηηγηV N M V n M k 3600377.0R R M T ==== (N ),传动效率为η。从式中可得知汽车的高速度和大驱动力不可兼得。 发动机的转速特性经验公式:(已知N max 和n N ) 功率N=)()()(N N 33221max KW n n n n n n N N N ??? ???++=ααα N max —发动机的最大功率(kW);n N —发动机的最大功率所对应的转速(r /min )。 发动机的转速特性经验公式:(已知M max 和n M ) 扭矩 22 N max max )() (M -M -M M n n n n M M N --=(N ·m ) M max —最大扭矩(N ·m );M N —最大功率所对应的扭矩;n N —最大功率所对应的转速(r/min );n M —最大扭矩所对应的转速(r /min)。 汽车的行驶阻力:

a).空气阻力Rw=KA ρV 2/2 式中:K —空气阻力系数,它与汽车的流线型有关; ρ—空气密度,一般ρ=1.2258(N ?s 2/m 4); A —汽车迎风面积(或称正投影面积)(m 2); v —汽车与空气的相对速度(m /s ),可近似地取汽车的行驶速度。 b).道路阻力 道路阻力由弹性轮胎变形和道路的不同路面类型及纵坡度而产生的阻力。主要包括滚动阻力和坡度阻力,滚动阻力和坡度阻力均与道路状况有关,且都与汽车的总重力成正比,将它们统称为道路阻力,以R R 表示R R =G (f+i ) G —车辆总重力(N );f —滚动阻力系数;i —道路纵坡度,上坡为正;下坡为负。 克服质量变速运动时产生的惯性力和惯性力矩称为惯性阻力,用 R Ⅰ表示。a g G δ =I R ,δ—惯性力系数(或旋转质量换算系数)。 C) .汽车的总行驶阻力R 为:R=Rw 十R R 十R I 汽车的运动方程式为:T=R= Rw 十R R 十R I a g G i f G KAV R δγη+++=)(15.21M U 2 U -负荷率(节流阀部分开启),一般U =80-90% 汽车的动力因数 a g i f w δ ++== )(G R -T D D 称为动力因数,它表征某型汽车在海平面高程上,满载情况下,每

5800计算器竖曲线程序

CASIO fx5800p全线高程计算程序 GAOCHEN 主程序 Lbl 1 “KM=,<0,Stop”:?K:K<0=>Stop:“PY=”?L:Prog”GK” C-D→E:Abs(RE/2)→T:R(Abs(E)/E)→R If K≤B-T:Then 0→H:Else:If K≥B+T Then 0→H:D→C:Else K-B+T→H:Ifend:Ifend A-(B-K)C-H2/(2R)-0.000→G:Cls “KM=”:Locate 4,1,K:Locate 10,1,“PY=”:Locate 13,1,L:Fix 3 “H=”:Locate 4,2,G Prog “PODU”:(E-B)/(D-A)(K-A)+B→I:(F-C)/(D-A)(K-A)+C→J “HL=”:G+I(L-1)→X:Locate 4,3,X:Locate 11,3,“I=”:Locate 13,3,I*100 “HR=”:G+J(L-1)→Y:Locate 4,4,Y:Locate 11,4,“I=”:Locate 13,4,J*100◢显示中边桩高程 Cls:Norm 2:“BM+HS≤0,Goto 1”?Z:Z≤0=> Goto 1:Cls (输入视线高) “KM=”:Locate 4,1,K:Locate 10,1,“PY=”:Locate 13,1,L:Fix 3 “QSM=”: Locate 6,2,Z-G (显示中桩读数) “QSL=”: Locate 6,3,Z-X (显示左桩读数) “QSR=”: Locate 6,4,Z-Y◢(显示右桩读数) Norm 2:Cls:Goto1 (后面可加已知视线高计算读数部分,不想计算读数则视线高输入0或负数如不想显示麻烦,可将Locate语句去掉) 以下两个子程序不需运行,只是两个独立的数据库赋值程序,字母重复不影响计算结果 GK 数据库子程序 If K≤第二曲线起点桩号:Then 第一曲线交点高程→A:第一曲线交点桩号→B:第

纬地计算实例,你肯定用的着

首先,我是一个软件菜鸟,对于纬地道路也是听说了很久却不会用,待到真要使用的时候按照网上搜来的步骤总是运行不下去,苦苦钻研几天,也询问了一些同学,好在最终可以完成路线的平、纵、横断面布置及相关图表的输出。先将成果分析给有需求的人,赠人玫瑰,手留余香~ 纬地道路详细步骤: 1、首先在目的硬盘新建一个文件夹,按喜好为文件夹命名,比如说abc。 2、打开纬地系统,点击左上角“项目”→新建项目,在弹出的对话框填写新建项目名称abc,点击浏览为项目文件指定存放路径,找到所建文件夹abc的位置,并为新建项目文件命名,这里为abc.prj,点击确定,完成项目新建。 3、打开电子图(CAD .dwg文件类型)。 4、搞清楚各个图层的状态需要进行什么约束{(等高线╱约束线)、(地形点╱地形点的)}。 5、然后关闭图形,不进行修改 6、数模→数模组管理→新建数模→确定→关闭。 7、数模→三维数据读入→DWG 或 DXF 格式→找到刚打开的电子图读入将等高线设为约束线→地形点设为地形点→点击开始读入。 8、①数模→三角构网②数模→网格显示→显示所有网格→确定。 9、数模→数模组管理,弹出的对话框中选中显示的数模文件,点击保存数模,指定路径并命名为abc,文件后缀为(.dtm)→再次选中对话框中的文件,点击保存数模组,生成并保存.gtm文件,路径保持默认,即为文件夹abc,最后一次选中对话框中的文件,点击打开数模→关闭

10、打开地形图,设计→主线平面设计→找到自己要设计的路线起点→点击后→点插入→是→对除起终点之外的其他交点进行“拖动R”来设置平曲线→计算绘图→点存盘→是,得到“.jd”文件,并根据提示将交点文件自动转化为“.pm”文件。 11、项目→设计向导→下一步(多次重复下一步)自动计算超高加宽→完成(根据提示自动建立:路幅宽度变化数据文件(*.wid)、超高过渡数据文件(*.sup)、设计参数控制文件(*.ctr)、桩号序列文件(*.sta)等数据文件。 12、数模-→数模应用→纵断面插值,弹出对话框,勾选插值控制选项,点击开始插值,生成纵断面地面线文件(*.dmx)以及地面高程文件(*.zmx)。 13、数模-→数模应用→横断面插值,弹出对话框,选取绘制三维地面线及输出组数(其他默认),点击开始插值,生成横断面地面线文件(*.hdm)。) 14、CAD 新建→选择最后一个文件夹→打开→打开acadiso. 文件(样板文件)。 15、设计→纵断面设计→计算显示→确定。 16、设计→纵断面设计→选点(此时可以打开cad的栅格显示,在最下边)→在图上选第一个高程点点(左边端点起),再接着点击插入,插入几个变坡点,最后一个右边端点→点击实时修改对纵坡顶修改(将竖曲线调整到合理)→存盘→计算显示→删除纵断面图。 17、设计→路基设计计算→点击“... ”→保存→搜索全线→确定→计算 18、设计→横断面设绘图→选中土方数据文件→点击“... ”→保存→绘图控制→(选中记录三维数据、插入图框、绘出路槽图)→计算绘图→保存,在CAD合适位置完成横断面设计图的输出。 19、点击“表格“按需要输出各种表格。

竖曲线自动计算表格

竖曲线自动计算表格 篇一:Excel竖曲线计算 利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进<0 = J=0; M-P=0 = J=1 B: K<=D =B=-M ; KD = B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段;

3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型);(4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用);如图1所示: 图1 2、进行计算准备: (1)、根据输入里程判断该里程所处的曲线编号: 需要使用lookup函数,函数公式为“LOOKUP(A2,参数库!H3:H25,参数库!A3:A25)”。如图2所示: 里程为K15+631的桩号位于第11个编号的竖曲线处,可以参照图1 进行对照 (2)、在工作表“程序计算”中对应“参数库”相应的格式建立表格

道路勘测设计课程设计范例

道路勘测设计课程设计 《道路勘测设计》课程设计指导书 一、目的 本课程设计是在学生学完《道路勘测设计》及其相关专业后进行的一次综合性训练,既有助于巩固所学的专业知识,培养独立设计的能力,提高综合运用知识的能力,也为以后的毕业设计打好基础。 二、基本资料 本段公路为平原微丘三级新建公路。 起点坐标:X=79380.000,Y=91030.000;终点坐标:X=79150.000,Y=91980.000;起、终点设计高程均同地面高程。 提供的地形图比例尺为:1:2000。 三、设计步骤和方法 1、认真阅读地形图,查清路线带的地形、地物特征, 并定出起点、终点和中间控制点; 2、根据起终点和中间控制点,在地形图上进行选线, 通过比选,最终确定公路具体走向,必须选出两条路线

进行比选(选线时注意各个段落土石方的平衡,尽可能 少占农田,少拆房屋); 3、根据选定的公路具体走向,确定交点位置,量出交 点坐标,计算交点间距、偏角,并根据地形、地物和《规 范》的要求确定平曲线半径、缓和曲线长度,计算出平 曲线各要素、公路总里程; 4、按照20的间距在地形图上定出各个中桩的位置,读 出其他地面高程,依此点绘出纵断面(若地形变化大,则要考虑加桩); 5、断面图设计; 6、编制《路基设计表》; 7、点绘横断面地面线,进行横断面设计; 8、路基土石方数量计算与调配; 9、在地形图上点绘公路用地界限,并调查征地和拆迁 情况; 10、整理装订成册。 四、要求 1、所有设计必须独立完成,不得抄袭。 2、图表格式要求:所有图纸、汉字均要按照规范要求 采用工程字体;每张图表必须有设计人、复核人、审核 人及其签名,并标上图号、日期;采用3号图纸;图框

【造价必备】工程用卡西欧计算器常用命令格式与编程示例

计算器常用命令格式 1.SHIFT→Defm→N(变量个数)→EXE:扩充变量存储器(显示方式为Z[1] Z[2]......Z[n];2.Fix:指定小数位数;Sci:指定有效位数; 3.Eng:用工学记法显示计算结果; 4.Scl:清除统计存储器内容; 5.Norm:为转换成指数形式指定范围; 6.Mcl:清除所有变量; 7.Int:选此项并输入一个数值可得到其整数部分(取整); 8.Abs:选此项并输入一个数值可得到其绝对值; 9.Frac:选此项并输入一个数值可得到其分数部分; 10.Intg:选此项并输入一个数值可得小于此数值的最大整数; 11.Pol(:直角坐标─极坐标转换; 12.Rec(:极坐标─直角坐标转换; 13.?:条件转移成立码; 14.≠>:条件转移失败码; 15.⊿:条件转移结束码; 16.Goto:无条件转移命令; 17.◢:结果显示命令 18.: ……多重语句命令,用于连接两个算式或命令 19.Lbl:标识符命令; 20.Dsz: 减量命令; 21.Isz:增量命令 22,Fixm:变量锁定命令; 23.Pause:暂停命令(Pause 3 显示1.5秒); 24.Cls:清屏命令; 25.{ }:变量输入命令; 26.→DMS:将计算结果换算为六十进制格式; 27.Abs:复数的模; 28.Arg:复数的辐角; 29.Conjg:共轭复数;

30.Rep: 复数的实部; 31.Imp: 复数的虚部 直线上里程偏距反算 X:Y:A0= :C“X0”= :D“Y0”= : Pol(X-X0,Y-Y0):J<0?J=J+360:≠>J=J:N=J-A0:I=I:F=IsinN :K=S+IcosN:"K=":K◢"F=":F◢A0:起始方位角、S:起算点里程、(X0,Y0):起算点里程坐标、 F:偏距(左偏为-,右偏为+)、K:计算点里程、 园曲线上里程偏距反算 X:Y:Z=1:R= :S= :C= :Y= :V= :W= :O= : 起始方位角计算:A=tanˉ1((W-D)/(V-C) 交点至圆心方位角计算: B=A+Z(O+(180-O)/2) 圆心坐标计算: T=V(X1)+(R+E)cosB: U=W(Y1)+(R+E)sinB 圆心至圆曲线起点方位角计算:N=180+B-(90L/(лR)) Pol(X-T,Y-U):F=R-I: K=S+((360+J)-N)×лR/180:"F=":F◢"K=":K◢ C,D(X,Y):圆曲线起点坐标、W,V(X1,Y1):交点坐标、L:圆曲线长度 A:起始方位角、E:外矢距、R:圆半径、O:转向角、F:偏距 Z:曲线左偏Z=-1,曲线右偏Z=1、圆心坐标: T,U(X0,Y0) N:圆心至园曲线起点方位角、S:园曲线点里程、 竖曲线路线中桩高程 《SQX》主程序 {K}:Prog"B":W=A-B:W>0?U=-1:≠>U=1⊿ R:"T":T=Abs(RW/2) ◢"E":E=T2÷2R◢C=K-J:K≦J?I=A:≠>I=B⊿ H:AbsC≦T?H=H+CI+U(T- Abs C) 2÷2R:"H=":H◢⊿≠>H=G+CI:"H=":H◢⊿

高等级道路竖曲线的计算方法

高速公路竖曲线计算方法 【摘要】本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高 程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果, 建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用 近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。 但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进 行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I,里程为D I,两侧的纵坡度分别为i1、i2,竖曲线设计半径为R,竖曲线各元素的近似计算公式如下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的dOH′直角坐标系,A点的坐标为(d A,0),Z点的坐标为(0,H Z′),竖曲线各元素的精确计算公式如下: α1=arctani 1 (1) α2=arctani 2 (2) ω=α1-α2(3) T=Rtan(4) E=R(sec-1) (5) d I=Tcosα1 (6) d A=Rsinα1 (7) H Z′=Rcosα1 (8) 竖曲线在直角坐标系中的方程为: (d-d A)2+H′2=R2 (9)

由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤dY (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11) D=D Z+d (D Z=D I-d I) (12) 式中,α1,α2分别为纵坡线与水平线的夹角;ω为变坡角;Τ为切线长;Ε为外矢距;d I为纵坡变坡点I与Z点的里程差;d A为竖圆曲线圆心A与Z点的里程差;H′为竖圆曲线上任一点的纵坐标值;d为竖圆曲线上任一点与Z点的里程差;H为竖圆曲线上任一点的设计高程;ΔH=H′Z-H Z为Z点纵坐标值与Z 点设计高程之差(H Z=H I-d I.i1);D为竖曲线上任一点的里程。 由式(10)可知,当d=d A时,则里程D N=D Z+d A的N点为竖圆曲线的变坡点, 其高程H N=H N′-ΔH=R-ΔH=max,N点在现场施工中具有很重要的指导意义。 三、计算实例 某山岭重丘的二级公路的纵坡变坡点I,其设计高程H I=68.410 m,里程D I

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

串级控制原理与实例分析

自动化学报 AGTA AUTOMATICA SINICA 1999年 第25卷 第2期 Vol.25 No.2 1999 磁浮列车悬浮系统的串级控制1) 李云钢 常文森 摘 要 为了消除磁浮列车的轨道共振,必须设计鲁棒性较强的悬浮控制系统.将悬浮控制系统分解为电流环和悬浮子控制系统两个串行、解耦的子系统来考虑,并应用H∞控制理论设计了电流环控制器,用时域法设计了悬浮子系统的控制器,给出了所设计的控制器在一个单转向架磁浮列车上的悬浮试验结果. 关键词 磁浮列车,串级,电流环,H∞控制. CASCADE CONTROL OF AN EMS MAGLEV VEHICLE'S LEVITATION CONTROL SYSTEM LI Yungang CHANG Wensen (Depart. of Automatic Control, Changsha Institute of Technology, Changsha 410073) Abstract To eliminate guideway resonance vibration in an EMS maglev vehicle system, a robust levitation controller should be designed. This paper divides a maglev control system into two serial-connected de-coupled sub-systems:current loop sub-system and levitation subsystem. H∞control theory is applied to the design of current loop controller while the time-domain method is applied to the design of the levitation controller. Testing results of the designed controllers for a whole size single bogie EMS maglev vehicle is given. Key words EMS maglev vehicle, cascade control, current loop, H∞ control. 1 引言 常导吸力型磁浮列车的悬浮控制技术已相当成熟,特别是在结构上采用磁轮或模块等控制概念,十分巧妙地实现了多个电磁铁的悬浮控制之间的解耦,以致于由多个电磁铁共同悬浮的磁浮列车特性,主要取决于单个电磁铁(简称单铁)的控制特性.因此单铁控制系统的设计就变得十分关键了.如何使单铁控制系统有较满意的特性及较好的鲁棒性,至今仍是磁浮列车控制界比较关心的热点.特别是在我国这一工作还刚刚起步,这个问题的顺利解决将会十分有力地促进磁浮列车技术在我国的发展. 目前进行单铁的悬浮控制系统设计主要采用状态反馈法[1].用这种方法,电磁铁的电流作为状态变量之一引入系统,和悬浮间隙以及电磁铁的加速度信号等一起起作用;因此,电流信号和其它信号之间会产生耦合,对电流的控制也不灵活、不方便.对电流信号的处理还有另一种方法,就是首先通过强电流反馈改善电磁铁的响应时间,

公路竖曲线计算

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。

铁路选线设计范例

《铁路选线设计》课程设计任务书 一、设计内容 (一)向阳镇至东方镇地段客货共线铁路新线设计。包括: 1、定线(包括部分路段的方案比选); 2、铁路线路平面、纵断面设计; 3、个体工程建筑物的布置; (二)编写说明书:说明书按下列内容编写,并按此顺序装订成册。 1 说明书封面 2设计任务书 3 平面设计:概述及计算资料 平面设计概述包括:①沿线地形概况简述;②线路走向方案比选;③选定方案平面定线概述。 4 纵断面设计概述及计算资料 5平纵面设计图纸整饰:按照附录中的图例,绘制线路平纵面图,并将设计图加深修整。将平纵面图折叠后与设计说明书一起装订成册。 二、设计资料 1.设计线为Ⅲ级单线铁路,路段设计速度为80km/h 。 2.地形图比例尺1:25000,等高距5m。 3.始点向阳镇车站,中心里程K000+000,中心设计高程35 m,该站为会让站;终点东风镇车站,为中间站,站场位置及标高自行选定。 4.限制坡度12 ‰。 5.牵引种类:近期:电力牵引;远期:电力牵引。 6.机车类型:近期:SSⅢ;远期:SSⅦ。 7.最小曲线半径600m 。 8.信联闭设备为半自动闭塞,tB +tH =6min。 9.近期货物列车长度计算确定。 10.车辆组成:每辆货车平均数据为:货车自重t,总重,净载量t,车辆长度13.914 m,净载系数,每延米质量t/m,守车质量16t,守车长度8.8m。 11.制动装置资料:空气制动,换算制动率。 12 运量设计年度直通货运量(万吨/年)客车 (对/天) 摘挂 (对/天) 零担 (对/天)上行下行 近期1000 1000 2 0 1 远期1500 1500 3 1 1 牵引计算资料 一. 牵引质量计算 1. 查表2-1得SSⅢ型电力机车的牵引性能参数如下: =h,=,=, =138t,=100km/h,=。 2. 计算机车单位基本阻力:

相关文档
最新文档