2020高考文科数学二轮考前复习方略练习:专题八 第1讲 数学文化 Word版含解析
新课标2020版高考数学二轮复习专题八数学文化及数学思想 练习理 新人教A版

第1讲 数学文化一、选择题1.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B .法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B .法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B .2.北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86解析:选C .由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n6[(2a +c )b +(2c +a )d ]+n6(c -a )得s =85,故选C .3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A .根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝ ⎛⎭⎪⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A .4.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22 B .C 414C 510C 55A 22C 55A 33C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A .先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A .5.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B .设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B .6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A .π15B .2π5C .2π15D .4π15解析:选C .因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C .7.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( )A .33B .34C .36D .35解析:选B .由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B .8.《九章算术》中有如下问题:“今有卖牛二、羊五,以买一十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖六羊、八豕,以买五牛,钱不足六百,问牛、羊、豕价各几何?”依上文,设牛、羊、豕每头价格分别为x 元、y 元、z 元,设计如图所示的程序框图,则输出的x ,y ,z 的值分别是( )A .1 3009,600,1 1203B .1 200,500,300C .1 100,400,600D .300,500,1 200解析:选B .根据程序框图得:①y =300,z =4603,x =6 4009,i =1,满足i <3;②y =400,z =6803,x =8 6009,i =2,满足i <3;③y =500,z =300,x =1 200,i =3,不满足i <3; 故输出的x =1 200,y =500,z =300.故选B .9.(2019·洛阳市统考)如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:选B .设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×(1-32)≈27,故选B . 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A .依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A .11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B .设下底面的长为x ⎝ ⎛⎭⎪⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝ ⎛⎭⎪⎫922+92×172+392=752.故选B .12.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A .如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC=x3=PQ1,即PQ =x3,又QR 1=BQ BC =AP AC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,故选A .二、填空题13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ;正方形数 N (n ,4)=n 2; 五边形数 N (n ,5)=32n 2-12n ;六边形数 N (n ,6)=2n 2-n ; ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 解析:易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ).则N (n ,k )=12(k -2)n 2+12(4-k )n ,故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000.答案:1 00014. (2019·湖南师大附中模拟)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎪⎫1516,6364,则输入的n 的值为________.解析:框图中首先给累加变量S 赋值0,给循环变量k 赋值1, 输入n 的值后,执行循环体,S =12,k =1+1=2.若2>n 不成立,执行循环体,S =34,k =2+1=3.若3>n 不成立,执行循环体,S =78,k =3+1=4.若4>n 不成立,执行循环体,S =1516,k =4+1=5.若5>n 不成立,执行循环体,S =3132,k =5+1=6.若6>n 不成立,执行循环体,S =6364,k =6+1=7.…由输出的S ∈(1516,6364),可得当S =3132,k =6时,应该满足条件6>n ,所以5≤n <6,故输入的正整数n 的值为5.答案:515.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的长度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的长度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝ ⎛⎭⎪⎫1-12n 1-12,B n =2n-12-1,令3⎝ ⎛⎭⎪⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n=6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草长度相等.答案:316.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2∶1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为________.解析:由三视图得阳马是一个四棱锥,如图中四棱锥P ABCD ,其中底面是边长为1的正方形,侧棱PA ⊥底面ABCD 且PA =1,所以PC =3,PC 是四棱锥P ABCD 的外接球的直径,所以此阳马的外接球的体积为4π3⎝ ⎛⎭⎪⎫323=3π2.答案:3π2第1讲 数学文化函数中的数学文化题[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O 的周长和面积同时等分成两部分的函数称为圆O 的一个“太极函数”,给出下列命题:①对于任意一个圆O ,其“太极函数”有无数个;②函数f (x )=ln(x 2+x 2+1)可以是某个圆的“太极函数”; ③正弦函数y =sin x 可以同时是无数个圆的“太极函数”;④函数y =f (x )是“太极函数”的充要条件为函数y =f (x )的图象是中心对称图形. 其中正确的命题为( )A .①③B .①③④C .②③D .①④【解析】 过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O ,其“太极函数”有无数个,故①正确;函数f (x )=ln(x 2+x 2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故③正确;函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图2所示,故④错误.故选A .【答案】 A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练](2019·福建泉州两校联考)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为:“今有人持金出五关,第1关所收税金为持金的12,第2关所收税金为剩余持金的13,第3关所收税金为剩余持金的14,第4关所收税金为剩余持金的15,第5关所收税金为剩余持金的16,5关所收税金之和恰好重1斤.”则在此问题中,第5关所收税金为( )A .136斤 B .130斤 C .125斤 D .120斤解析:选C .设此人持金x 斤,根据题意知第1关所收税金为x2斤;第2关所收税金为x6斤;第3关所收税金为x 12斤;第4关所收税金为x 20斤;第5关所收税金为x30斤.易知x 2+x 6+x 12+x 20+x30=1,解得x =65.则第5关所收税金为125斤.故选C .数列中的数学文化题[典型例题](1)(2019·湖南长沙雅礼中学模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M ,现将该金箠截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =( )A .4B .5C .6D .7(2)(2019·河北辛集中学期中)中国古代数学著作《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里.”其意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里.”若该匹马按此规律继续行走7天,则它这14天内所走的总路程为( )A .17532里B .1 050里C .22 57532里D .2 100里【解析】 (1)由题意知,由细到粗每段的重量组成一个等差数列,记为{a n },设公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4⇒⎩⎪⎨⎪⎧2a 1+d =2,2a 1+17d =4⇒⎩⎪⎨⎪⎧a 1=1516,d =18.所以该金箠的总重量 M =10×1516+10×92×18=15.因为48a i =5M ,所以有48[1516+(i -1)×18]=75,解得i =6,故选C .(2)由题意可知,马每天行走的路程组成一个等比数列,设该数列为{a n },则该匹马首日行走的路程为a 1,公比为12,则有a 1[1-(12)7]1-12=700,则a 1=350×128127,则a 1[1-(12)14]1-12=22 57532(里).故选C .【答案】 (1)C(2)C(1)数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n 项和公式.(2)解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n 项和公式.[对点训练]1.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A .76钱 B .56钱 C .23钱 D .1钱解析:选D .因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D .2.(一题多解)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A .507斗粟B .107斗粟C .157斗粟D .207斗粟解:选C .法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5,解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C .法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C .三角函数中的数学文化题[典型例题]《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222,现有周长为22+5的△ABC 满足sin A ∶sin B ∶sin C =(2-1)∶5∶(2+1),用上面给出的公式求得△ABC 的面积为( )A .32 B .34 C .52D .54【解析】 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =(2-1)∶5∶(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S =14⎣⎢⎡⎦⎥⎤(2+1)2(2-1)2-⎝ ⎛⎭⎪⎫3+22+3-22-522=34,故选B . 【答案】 B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A 版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练](2019·济南市学习质量评估)我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m ,依据规定,该小区内住宅楼楼间距应不小于52 m .若该小区内某居民在距离楼底27 m 高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________m.解析:设两住宅楼楼间距实际为x m .如图,根据题意可得,tan ∠DCA =27x,tan ∠DCB =45-27x=18x,又∠DCA +∠DCB =45°,所以tan (∠DCA +∠DCB )=27x +18x1-27x ·18x=1,整理得x 2-45x -27×18=0,解得x =54或x =-9(舍去).所以该小区住宅楼楼间距实际为54 m.答案:54立体几何中的数学文化题[典型例题](1)(2019·高考浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A .158B .162C .182D .324(2) (2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.【解析】 (1)如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27.因此,该柱体的体积V =27×6=162. 故选B .(2)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A BCD 所示,其中AB =22,BC =CD =2,易知长方体的外接球即三棱锥A BCD 的外接球,设外接球的直径为2R ,所以4R 2=(22)2+(2)2+(2)2=8+2+2=12,则R 2=3,因此外接球的表面积S =4πR 2=12π.【答案】 (1)B (2)12π立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等.[对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V =112×底面圆的周长的平方×高,由此可推得圆周率π的取值为( )A .3B .3.1C .3.14D .3.2解析:选A .设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得体积为V =πr 2h .由题意知V =112×(2πr )2×h ,所以πr 2h =112×(2πr )2×h ,解得π=3.故选A .2.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水的深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A .由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸),则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸),所以这一天该地的平均降雨量约为342ππ×122≈2(寸),故选A .算法中的数学文化题[典型例题](1)公元三世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n为(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)()A.12 B.24C.36 D.48(2)我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.图中的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a=110011,k=2,n=7,则输出的b=( )A.19 B.31C.51 D.63【解析】(1)按照程序框图执行,n=6,S=3sin 60°=332,不满足条件S≥3.10,执行循环;n=12,S=6sin 30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin 15°≈12×0.258 8=3.105 6,满足条件S≥3.10,跳出循环,输出n的值为24,故选B.(2)按照程序框图执行,b依次为0,1,3,3,3,19,51,当b=51时,i=i+1=7,跳出循环,故输出b=51.故选C.【答案】(1)B (2)C辗转相除法、更相减损术、秦九韶算法、进位制和割圆术都是课本上出现的算法案例.其中,更相减损术和秦九韶算法是中国古代的优秀算法,课本上的进位制案例原本不渗透中国古代数学文化,但命题人巧妙地将烽火戍边的故事作为背景,强化了试题的“文化育人”功能.[对点训练]《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出“更相减损术”的程序框图如图所示,如果输入的a=114,b=30,则输出的n为( )A.3 B.6C.7 D.30解析:选C.a=114,b=30,k=1,n=0,a,b都是偶数,a=57,b=15,k=2,a,b 不满足都为偶数,a=b不成立,a>b成立,a=57-15=42,n=0+1=1;a=b不成立,a>b 成立,a=42-15=27,n=1+1=2;a=b不成立,a>b成立,a=27-15=12,n=2+1=3;a=b不成立,a>b不成立,a=15,b=12,a=15-12=3,n=3+1=4;a=b不成立,a>b 不成立,a=12,b=3,a=12-3=9,n=4+1=5;a=b不成立,a>b成立,a=9-3=6,n =5+1=6;a=b不成立,a>b成立,a=6-3=3,n=6+1=7;a=b成立,输出的kb=6,n=7.概率中的数学文化题[典型例题](1)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,田忌获胜的概率是( )A .13 B .14 C .15D .16(2)太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,如图所示,其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .19【解析】 (1)从双方的马匹中随机选一匹马进行一场比赛,对阵情况如下表:双方马的对阵中,有3种对抗情况田忌能赢,所以田忌获胜的概率P =9=3.故选A .(2)函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118.故选B .【答案】 (1)A (2)B(1)本例(1)选取田忌赛马这一为人熟知的故事作为背景,考查了古典概型,趣味性很强,利于缓解考生在考场的紧张心理,体现了对考生的人文关怀.(2)本例(2)以中国优秀传统文化太极图为背景,考查几何概型,角度新颖,所给图形有。
新课标2020版高考数学二轮复习专题八数学文化及数学思想 练习 新人教A版

第1讲 数学文化一、选择题1.我国古代数学著作《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A .104人B .108人C .112人D .120人解析:选 B.由题设可知这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108.故选B.2.如图,半径为1的圆形古币内有一阴影区域,在圆内随机撒一大把豆子,共n 颗,其中,落在阴影区域内的豆子共m 颗,则阴影区域的面积约为( )A.m nB.n mC.m πn D.n πm解析:选C.设阴影区域的面积为S ,由几何概型概率计算公式可得S π×12=S π=mn, 所以S =m πn,故选C. 3.将元代著名数学家朱世杰的《四元玉鉴》中的一首诗改编如下:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表示如图,用x 表示壶中原有酒的量,可知最终输出的x =0,则一开始输入的x 的值为( )A.34B.1516C .4D.78解析:选D.这是一道函数与程序框图相结合的题,当i =1时,酒量为2x -1; 当i =2时,酒量为2(2x -1)-1=4x -3; 当i =3时,酒量为2(4x -3)-1=8x -7; 当i =4时,酒量为0, 即2(4x -3)-1=0, 解得x =78.故选D.4.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列第20项为( )A .180B .200C .128D .162解析:选B.根据前10项可得规律:每两个数增加相同的数,且增加的数构成首项为2,公差为2的等差数列.可得从第11项到20项为60,72,84,98,112,128,144,162,180,200.所以此数列第20项为200.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选 A.根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝ ⎛⎭⎪⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A.6.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A .336B .510C .1 326D .3 603解析:选B.由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510.7.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如图),四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边长为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在“黄实”区域的概率为( )A.14B.13C.125D.2573解析:选C.因为直角三角形中一条较长的直角边长为8,直角三角形的面积为24,所以可得另外一条直角边长为6,所以小正方形的边长为8-6=2,则“黄实”区域的面积为22=4,因为大正方形的面积为82+62=100,所以小球落在“黄实”区域的概率为4100=125,故选C.8.《九章算术》是我国古代数学成就的杰出代表,它的出现标志着中国古代数学形成了完整的体系.其中《方田》章有弧田面积计算问题,术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢).弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弧田弦AB 等于6米,其弧田弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则cos ∠AOB =( )A.125B.325C.15D.725解析:选D.如图,依题意AB =6,设CD =x (x >0),则12(6x +x 2)=72,解得x =1.设OA =y ,则(y -1)2+9=y 2,解得y =5.由余弦定理得cos ∠AOB =25+25-362×5×5=725,故选D.9.(2019·昆明市质量检测)数列{F n }:1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( )A .S 2 019=F 2 021-1B .S 2 019=F 2 021+2C .S 2 019=F 2 020-1D .S 2 019=F 2 020+2解析:选A.根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1,S 4=F 4+S 3=F 4+F 5-1=F 6-1, S 5=F 5+S 4=F 5+F 6-1=F 7-1,…,所以S 2 019=F 2 021-1.10.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A.392B.752 C .39D.6018解析:选B.设下底面的长为x ⎝ ⎛⎭⎪⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝ ⎛⎭⎪⎫922+92×172+392=752.故选B.11.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A.由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸),则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸),所以这一天该地的平均降雨量约为342ππ×122≈2(寸),故选A.12.(2019·江西玉山一中期中)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图.在鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A.如图,作PQ ⊥BC 于点Q ,作QR ⊥BD 于点R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,且PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC=x3=PQ1,即PQ =x3.又QR 1=BQ BC =AP AC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,故选A.13.杨辉三角又称“贾宪三角”,是因为贾宪约在公元11世纪首先使用“贾宪三角”进行高次开方运算,而1261年杨辉在《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于杨辉三角.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .2 017×22 016B .2 018×22 015C .2 017×22 015D .2 018×22 016解析:选B.由题意,最后一行为第2 017行,且第1行的最后一个数为2×2-1,第2行的最后一个数为3×20,第3行的最后一个数为4×21…第n 行的最后一个数为(n +1)×2n -2,则第2 017行仅有的一个数为2 018×22 015,故选B.14.(2019·蓉城名校第一次联考)高斯是德国著名的数学家,享有“数学王子”的美誉,以他的名字“高斯”命名的成果达110个,其中的一个成果是:设x ∈R ,则y =[x ]称为高斯函数,[x ]表示不超过x 的最大整数,如[1.7]=1,[-1.2]=-2,并用{x }表示x 的非负纯小数,即{x }=x -[x ],若方程{x }=1-kx 有且仅有4个实数根,则正实数k 的取值范围为( )A.⎣⎢⎡⎭⎪⎫15,14B.⎝ ⎛⎦⎥⎤15,14C.⎣⎢⎡⎭⎪⎫14,13 D.⎝ ⎛⎦⎥⎤14,13 解析:选D.根据题意可得函数y ={x }在x 轴正半轴的图象如图所示,函数y =1-kx 为过定点P (0,1)的直线,所以要使方程{x }=1-kx 有且仅有4个实数根且k 为正实数,则直线y =1-kx 应在PA ,PB 之间以及恰好在PA 处,所以-13≤-k <-14,即k ∈⎝ ⎛⎦⎥⎤14,13.故选D. 二、填空题15.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)解析:表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R ,(2R )2=62+22+12,解得R 2=414,所以该球形容器的表面积的最小值为4πR 2=41π.答案:41π16.《九章算术》是我国古代内容极为丰富的数学名著,其中“勾股”章讲述了“勾股定理”及一些应用.直角三角形的三条边分别称为“勾”“股”“弦”.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,若线段PF 2,PF 1分别是Rt △F 1PF 2的“勾”“股”,则点P 的横坐标为________.解析:由题意知半焦距c =3,又PF 1⊥PF 2,故点P 在圆x 2+y 2=3上,设P (x ,y ),联立,得⎩⎪⎨⎪⎧x 2+y 2=3,x 24+y 2=1,得P ⎝ ⎛⎭⎪⎫263,33.故点P 的横坐标为263. 答案:26317.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了黄金分割,其比值约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n2cos 227°-1=________. 解析:由题设n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,m n2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=2·(2sin 18°cos 18°)cos 54°=2sin 36°sin 36°=2. 答案:218.(2019·四川遂宁市模拟)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被合称为亚历山大时期的数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.如动点M 与两定点A ⎝ ⎛⎭⎪⎫95,0,B (5,0)的距离之比为35时的阿波罗尼斯圆为x 2+y 2=9.下面,我们来研究与此相关的一个问题.已知圆O :x2+y 2=1上的动点M 和定点A ⎝ ⎛⎭⎪⎫-12,0,B (1,1),则2|MA |+|MB |的最小值为________.解析:如图,取点K (-2,0),连接OM ,MK .因为|OM |=1,|OA |=12,|OK |=2,所以|OM ||OA |=|OK ||OM |=2.因为∠MOK =∠AOM ,所以△MOK ∽△AOM ,所以|MK ||MA |=|OM ||OA |=2,所以|MK |=2|MA |,所以|MB |+2|MA |=|MB |+|MK |,易知|MB |+|MK |≥|BK |,所以|MB |+2|MA |=|MB |+|MK |的最小值为|BK |的长.因为B (1,1),K (-2,0),所以|BK |=(-2-1)2+(0-1)2=10.答案:10第1讲 数学文化渗透数学的美[典型例题](1)(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm(2)(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有____________个面,其棱长为____________.【解析】 (1)不妨设此人咽喉至肚脐的长度为x cm ,则26x≈0.618,得x ≈42,故此人身高大约为26+42+105=173(cm),考虑误差,结合选项,可知选B.(2)依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体由18个正方形和8个正三角形围成,因此题中的半正多面体共有26个面.注意到该多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1.【答案】 (1)B (2)262-1数学文化的美学特征是构成数学文化的重要内容.数学美表现为一种抽象、严谨、含蓄的理性美,从表现形式上分为数学内容的和谐美、数学结构的形式美、几何图形的构造美、数学公式的简洁美.纵观数学领域的一切公式、公理和定理,无不是对客观世界存在的秩序、对称、和谐、统一的美的反映.[对点训练]太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案(如图),其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.112D.19解析:选B.函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118,故选B.渗透古代名家(学派)的研究[典型例题](1)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2 017项为a 2 017,则a 2 017-5=( )A .2 023×2 017B .2 023×2 016C .1 008×2 023D .2 017×1 008(2)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.【解析】 (1)观察梯形数的前几项,得 5=2+3=a 1, 9=2+3+4=a 2, 14=2+3+4+5=a 3, …a n =2+3+…+(n +2)=(n +1)(2+n +2)2=12(n +1)(n +4), 由此可得a 2 017=12×2 018×2 021=1 009×2 021.所以a 2 017-5=(1 008+1)(2 023-2)-5=1 008×2 023. (2)由题意,得S 6=6×12×1×1×sin 60°=332.【答案】 (1)C (2)332本例(1)以古希腊毕达哥拉斯学派的研究故事为背景,本例(2)以我国古代数学家刘徽创立的“割圆术”为命题背景,分别考查了数列问题和圆内接正六边形的面积问题.其中毕达哥拉斯学派的“形数”问题,备受命题者的青睐,已成为高考命题的热点问题.[对点训练]1.(2019·长沙市统一模拟考试)我国南北朝时期的数学家、天文学家——祖暅,提出了著名的祖暅原理:“幂势既同,则积不容异”.“幂”是面积,“势”是高,意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所载,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.已知某不规则几何体与如图所示三视图对应的几何体满足“幂势同”,则该不规则几何体的体积为( )A .8-4π3B .8-πC .8-2π3D .4-π2解析:选B.题中三视图对应的几何体是一个棱长为2的正方体挖去一个底面半径为1、高为2的半圆柱后剩余的部分,三视图对应的几何体的体积V =23-12×π×12×2=8-π,由祖暅原理得不规则几何体的体积为8-π,故选B.2.(2019·江西七校第一次联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,则a 2 017a 2 019-a 22 018等于( )A .1B .-1C .2 017D .-2 017解析:选A.因为a 1a 3-a 22=1×2-1=1,a 2a 4-a 23=1×3-22=-1,a 3a 5-a 24=2×5-32=1,a 4a 6-a 25=3×8-52=-1,…,由此可知a n a n +2-a 2n +1=(-1)n +1,所以a 2 017a 2 019-a 22 018=(-1)2017+1=1,故选A.渗透古代数学名著[典型例题](1)(2019·湖南省五市十校联考)《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该书完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示程序框图的算法思路源于该书中的“李白沽酒”问题,执行该程序框图,若输入a 的值为4,则输出的m 的值为( )A .19B .35C .67D .131(2)《数书九章》中对已知三角形三边长求三角形面积的求法填补了我国数学史中的一个空白,虽与著名的海伦公式形式上有所不同,但实质完全等价,由此可以看出我国古代已经具有很高的数学水平,其求法是“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.把以上这段文字用数学公式表示,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S ,a ,b ,c 分别表示三角形的面积、大斜、中斜、小斜).现有周长为42+25的△ABC 满足sin A ∶sin B ∶sin C =(2+1)∶5∶(2-1),试用上面给出的数学公式计算△ABC 的面积为( )A. 3 B .2 3 C. 5D .2 5【解析】 (1)由题意,执行程序框图,可得a =4,m =5,i =1,m =7, 满足条件i ≤4,执行循环体,i =2,m =11, 满足条件i ≤4,执行循环体,i =3,m =19, 满足条件i ≤4,执行循环体,i =4,m =35, 满足条件i ≤4,执行循环体,i =5,m =67,此时,不满足条件i≤4,退出循环体,输出m的值为67,故选C.(2)因为sin A∶sin B∶sin C=(2+1)∶5∶(2-1),则由正弦定理得a∶b∶c=(2+1)∶5∶(2-1).设a=(2+1)x,b=5x,c=(2-1)x,又周长为42+25,所以42+25=(2+1)x+5x+(2-1)x,解得x=2.所以S=1 4×⎩⎨⎧⎭⎬⎫42×(2-1)2×(2+1)2-⎣⎢⎡⎦⎥⎤22×(2+1)2+22×(2-1)2-2022= 3.故选A.【答案】(1)C (2)A中国古代数学取得了极其辉煌的成就,出现了刘徽、祖冲之等伟大的数学家,以及《九章算术》等经典的数学传世之作,这些中国古代数学名著是我们的丰富宝库,继新课程改革以来,高考题中出现了一些以古代名著为命题背景的试题,涉及的有《九章算术》、《数书九章》、《算法统宗》等.从某种意义上讲,这些试题的价值实际上已远远超出了试题本身.[对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V=112×底面圆的周长的平方×高,由此可推得圆周率π的取值为( )A.3 B.3.1C.3.14 D.3.2解析:选A.设圆柱体的底面半径为r,高为h,由圆柱的体积公式得,体积为V=πr2h.由题意知V=112×(2πr)2×h,所以πr2h=112×(2πr)2×h,解得π=3.故选A.2.《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大的正方形,如图所示,若图中直角三角形两锐角分别为α,β,且小正方形与大正方形的面积之比为4∶9,则cos(α-β)的值为( )A.59B.49C.23D .0解析:选A.设大正方形的边长为1,由小正方形与大正方形的面积之比为4∶9,可得小正方形的边长为23,则cos α-sin α=23,①sin β-cos β=23.②由题意可得α+β=π2,所以cos α=sin β,sin α=cos β.①×②,可得49=cos αsin β+sin αcos β-cos αcos β-sin αsin β=sin 2β+cos 2β-cos(α-β)=1-cos(α-β),所以cos(α-β)=59.故选A.一、选择题1.我国古代数学著作《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A .104人B .108人C .112人D .120人解析:选 B.由题设可知这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108.故选B.2.如图,半径为1的圆形古币内有一阴影区域,在圆内随机撒一大把豆子,共n 颗,其中,落在阴影区域内的豆子共m 颗,则阴影区域的面积约为( )A.m nB.n mC.m πn D.n πm解析:选C.设阴影区域的面积为S ,由几何概型概率计算公式可得S π×12=S π=mn,所以S =m πn,故选C. 3.将元代著名数学家朱世杰的《四元玉鉴》中的一首诗改编如下:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表示如图,用x 表示壶中原有酒的量,可知最终输出的x =0,则一开始输入的x 的值为( )A.34B.1516C .4D.78解析:选D.这是一道函数与程序框图相结合的题,当i =1时,酒量为2x -1; 当i =2时,酒量为2(2x -1)-1=4x -3; 当i =3时,酒量为2(4x -3)-1=8x -7; 当i =4时,酒量为0, 即2(4x -3)-1=0, 解得x =78.故选D.4.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列第20项为( )A .180B .200C .128D .162解析:选B.根据前10项可得规律:每两个数增加相同的数,且增加的数构成首项为2,公差为2的等差数列.可得从第11项到20项为60,72,84,98,112,128,144,162,180,200.所以此数列第20项为200.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选 A.根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝ ⎛⎭⎪⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A.6.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A .336B .510C .1 326D .3 603解析:选B.由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510.7.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如图),四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边长为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在“黄实”区域的概率为( )A.14B.13C.125D.2573解析:选C.因为直角三角形中一条较长的直角边长为8,直角三角形的面积为24,所以可得另外一条直角边长为6,所以小正方形的边长为8-6=2,则“黄实”区域的面积为22=4,因为大正方形的面积为82+62=100,所以小球落在“黄实”区域的概率为4100=125,故选C.8.《九章算术》是我国古代数学成就的杰出代表,它的出现标志着中国古代数学形成了完整的体系.其中《方田》章有弧田面积计算问题,术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢).弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弧田弦AB 等于6米,其弧田弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则cos ∠AOB =( )A.125B.325C.15D.725解析:选D.如图,依题意AB =6,设CD =x (x >0),则12(6x +x 2)=72,解得x =1.设OA =y ,则(y -1)2+9=y 2,解得y =5.由余弦定理得cos ∠AOB =25+25-362×5×5=725,故选D.9.(2019·昆明市质量检测)数列{F n }:1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( )A .S 2 019=F 2 021-1B .S 2 019=F 2 021+2C .S 2 019=F 2 020-1D .S 2 019=F 2 020+2解析:选A.根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1,S 4=F 4+S 3=F 4+F 5-1=F 6-1, S 5=F 5+S 4=F 5+F 6-1=F 7-1,…,所以S 2 019=F 2 021-1.10.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A.392B.752 C .39D.6018解析:选B.设下底面的长为x ⎝ ⎛⎭⎪⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝ ⎛⎭⎪⎫922+92×172+392=752.故选B.11.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A.由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.。
2020高考文科数学二轮考前复习方略练习:第一部分 第1讲 选择、填空题的特殊解法 Word版含解析

第1讲选择、填空题的特殊解法方法一特值(例)排除法方法诠释使用前提使用技巧常见问题特例法是根据题设和各选项的具体情况和特点,选取满足条件的特殊的数值、特殊的点、特殊的例子、特殊的图形、特殊的位置、特殊的函数、特殊的方程、特殊的数列等,针对各选项进行代入对照,结合排除法,从而得到正确的答案.满足当一般性结论成立时,对符合条件的特殊化情况也一定成立.找到满足条件的合适的特殊化例子,或举反例排除,有时甚至需要两次或两次以上的特殊化例子才可以确定结论.求范围、比较大小、求值或取值范围、恒成立问题、任意性问题等.而对于函数图象的判别、不等式、空间线面位置关系等不宜直接求解的问题,常通过排除法解决.真题示例技法应用(2019·高考全国卷Ⅱ)若a>b,则()A.ln(a-b)>0 B.3a<3b C.a3-b3>0 D.|a|>|b| 取a=-1,b=-2,则a>b,可验证A,B,D错误,只有C正确.答案:C(2019·高考全国卷Ⅰ)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()取特殊值,x=π,结合函数的奇偶性进行排除,答案选D.答案:D(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②綈p ∨q ③p ∧綈q ④綈p ∧綈q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④取x =4,y =5,满足不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假.所以①③真,②④假. 答案:A真题示例技法应用(2018·高考全国卷Ⅰ)右图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( ) A .p 1=p 2 B .p 1=p 3 C .p 2=p 3 D .p 1=p 2+p 3不妨设三角形ABC 为等腰直角三角形,过A 作AO 垂直BC 于O ,则区域Ⅰ,Ⅱ的面积相等. 答案:A(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和.若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11取常数列a n =1代入计算. 答案:A【针对训练】1.计算tan ⎝⎛⎭⎫π4+αcos 2α2cos2⎝⎛⎭⎫π4-α=( )A .-2B .2C .-1D .1解析:选D.取α=π12,则原式=tan ⎝ ⎛⎭⎪⎫π4+π12cos π62cos 2⎝ ⎛⎭⎪⎫π4-π12=3×322×34=1.2.如图所示,两个不共线向量OA →,OB →的夹角为θ,M ,N 分别为OA 与OB 的中点,点C 在直线MN 上,且OC →=xOA →+yOB →(x ,y ∈R ),则x 2+y 2的最小值为( )A.24B.18C.22D.12解析:选B.特殊值法:当θ=90°,且|OA →|=|OB →|=1时,以O 为坐标原点,以OA →,OB →分别为x 轴、y 轴的正方向,建立平面直角坐标系,由OC →=xOA →+yOB →,得x +y =12,所以x 2+y 2的最小值为原点O 到直线x +y =12的距离的平方,易得x 2+y 2≥⎝⎛⎭⎫242=18.3.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,若过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D.13解析:选A.由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最后的结果必然是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n =3,故选A.法二:如图2,取直线BE 作为直线PQ ,显然,此时AP →=AB →,AQ →=12AC →,故m =1,n=12,所以1m +1n=3. 4.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+ax ,x ≤1,a 2x -7a +14,x >1.若存在x 1,x 2∈R ,且x 1≠x 2,使f (x 1)=f (x 2),则实数a 的取值范围为( )A .a <2B .3<a <5C .a <2或3<a <5D .2≤a ≤3或a ≥5解析:选C.当a =0时,f (x )=⎩⎨⎧-x 2,x ≤1,14,x >1,f (-1)=f (1)=-1,故a =0符合题意,排除B ,D 选项.当a =4时,若x ≤1,则f (x )≤3,若x >1,则f (x )>2,显然存在x 1≤1,x 2>1,满足f (x 1)=f (x 2),故a =4符合题意,排除A 选项.故选C.方法二 验证法【针对训练】1.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆方程为( )A.x 215+y 210=1 B.x 225+y 220=1 C.x 210+y 215=1 D.x 220+y 215=1 解析:选A.将点A (3,-2)代入选择支得A 正确. 2.函数f (x )=x e x +lg x -10的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选B.f (x )=x e x +lg x -10在(0,+∞)上单调递增,且f (1)<0,f (2)>0,所以函数f (x )=x e x +lg x -10的零点所在的区间为(1,2),故选B.3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6(其中ω>0)的图象的一条对称轴方程为x =π12,则ω的最小值为( )A .2B .4C .10D .16解析:选B.若ω=2,当x =π12时,有f ⎝ ⎛⎭⎪⎫π12=sin ⎝ ⎛⎭⎪⎫2×π12+π6=32,不符合题意;若ω=4,当x =π12时,有f ⎝ ⎛⎭⎪⎫π12=sin ⎝ ⎛⎭⎪⎫4×π12+π6=1,符合题意.所以ω的最小值为4.4.设函数f (x )=⎩⎪⎨⎪⎧2|x -a |,x ≤1,x +1,x >1,若f (1)是f (x )的最小值,则实数a 的取值范围是( )A.[-1,2) B.[-1,0]C.[1,2] D.[1,+∞)解析:选C.若a=2时,f(x)=2|x-2|在(-∞,1]上单调递减,f(x)≥f(1).当x>1时,f(x)=x+1>2,所以f(1)是f(x)的最小值,排除A、B.若a=3时,f(x)=2|x-3|在(-∞,1]上单调递减,f(x)≥f(1)=4.当x>1时,f(x)=x+1>2.不满足f(1)是f(x)的最小值,排除D.方法三估算法【针对训练】1.若双曲线x 2a 2-y2b 2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53解析:选D.因为双曲线的一条渐近线经过点(3,-4),所以b a =43.因为e =c a >b a ,所以e >43.故选D.2.若0<α<β<π4,sin α+cos α=a ,sin β+cos β=b ,则( )A .a <bB .a >bC .ab <1D .ab >2解析:选A.若α→0,则sin α+cos α=a →1;若β→π4,则sin β+cos β=b → 2.结合选项分析选A.3.某班设计了一个八边形的班徽(如图所示),它由四个腰长为1,顶角为α的等腰三角形和一个正方形组成,则该八边形的面积为()A.2sin α-2cos α+2B.sin α-3cos α+3C.3sin α-3cos α+1D.2sin α-cos α+1解析:选A.当顶角α→π时,八边形几乎是边长为2的正方形,面积接近于4,四个选项中,只有A符合,故选A.4.P为双曲线x2a2-y2b2=1(a>0,b>0)右支上的一点,F1,F2分别是双曲线的左、右焦点,则△PF1F2的内切圆圆心的横坐标为()A.a B.bC.a2+b2D.a+b-a2+b2解析:选A.如图,点P沿双曲线向右顶点无限接近时,△PF1F2的内切圆越来越小,直至“点圆”,此“点圆”应为右顶点,则内切圆圆心的横坐标为a,故选A.方法四构造法方法诠释使用前提使用技巧常见问题构造法是一种创造性的解题方法,它很好地体现了数学中的发散、类比、转化思想.利用已知条件和结论的特殊性构造函数、数列、方程或几何图形等,从而简化推理与计算过程,使较复杂或不易求解的数学问题得到简捷解答.构造法来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经类似的问题中找到构造的灵感.构造的函数、方程、图形等要合理,不能超越原题的条件限制.对于不等式、方程、函数问题常构造新函数,对于不规则的几何体常构造成规则的几何体处理.比较大小、函数导数问题、不规则的几何体问题等.【针对训练】1.已知数列{a n }的前n 项和为S n ,a 1=2,S n +1=2S n -1(n ∈N *),则a 10=( ) A .128 B .256 C .512D .1 024解析:选B.因为S n +1=2S n -1,所以S n +1-1=2(S n -1),所以{S n -1}是等比数列,且公比为2,又S 1-1=a 1-1=1,所以S n -1=2n -1,所以S n =2n -1+1,所以a 10=S 10-S 9=29-28=256.故选B.2.如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.答案:6π3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ⎝⎛⎭⎫1x -f (x )>0的解集为________.解析:设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,又因为f (x )>xf ′(x ),所以g ′(x )=xf ′(x )-f (x )x 2<0在(0,+∞)上恒成立,所以函数g (x )=f (x )x为(0,+∞)上的减函数,又因为x2f⎝⎛⎭⎫1x -f(x)>0⇔f⎝⎛⎭⎫1x1x>f(x)x⇔g⎝⎛⎭⎫1x>g(x),则有1x<x,解得x>1.答案:(1,+∞)。
2020届高考数学大二轮专题复习冲刺方案-文数(创新版)文档:仿真模拟卷一+Word版含解析

仿真模拟卷一本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |3x <1},则( ) A .A ∪B ={x |x >1} B .A ∪B =R C .A ∩B ={x |x <0} D .A ∩B =∅答案 C解析 集合B ={x |3x <1},即B ={x |x <0},而A ={x |x <1},所以A ∪B ={x |x <1},A ∩B ={x |x <0}.2.记复数z 的共轭复数为z -,若z -(1-i)=2i(i 为虚数单位),则|z |=( ) A. 2 B .1 C .2 2 D .2答案 A解析 由z -(1-i)=2i ,可得z -=2i 1-i =2i (1+i )2=-1+i ,所以z =-1-i ,|z |= 2.3.设a =ln 13,b =20.3,c =⎝ ⎛⎭⎪⎫132,则( )A .a <c <bB .c <a <bC .a <b <cD .b <a <c答案 A解析 由对数函数的性质可知a =ln 13<0,由指数函数的性质可知b =20.3>1,又0<c =⎝ ⎛⎭⎪⎫132<1,故选A.4.设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π6<π6”是“sin θ<32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由⎪⎪⎪⎪⎪⎪θ-π6<π6可得0<θ<π3,所以由“⎪⎪⎪⎪⎪⎪θ-π6<π6”可得“sin θ<32”,但由“sin θ<32”推不出“⎪⎪⎪⎪⎪⎪θ-π6<π6”,所以“⎪⎪⎪⎪⎪⎪θ-π6<π6”是“sin θ<32”的充分不必要条件.5.在如图所示的计算1+5+9+…+2021的程序框图中,判断框内应填入的条件是( )A .i ≤2021?B .i <2021?C .i <2017?D .i ≤2025?答案 A解析 由题意结合流程图可知当i =2021时,程序应执行S =S +i ,i =i +4=2025,再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是i ≤2021?.6.已知函数f (x )=e |x |+cos x ,若f (2x -1)≥f (1),则x 的取值范围为( ) A .(-∞,0]∪[1,+∞) B .[0,1] C .(-∞,0] D .[1,+∞)答案 A解析 解法一:(直接法)因为f (-x )=f (x ),且x ≥0时f (x )=e x +cos x ⇒f ′(x )=e x -sin x >e 0-1=0,所以函数f (x )为偶函数,且在[0,+∞)上单调递增,因此f (2x -1)≥f (1)⇒f (|2x -1|)≥f (1)⇒|2x -1|≥1⇒2x -1≥1或2x -1≤-1⇒x ≥1或x ≤0.故选A.解法二:(排除法)由题知f (1)=e +cos1.取x =π,则f (2π-1)=e |2π-1|+cos(2π-1)=e 2π-1+cos1>f (1),排除B ,C ;取x =-π,则f (-2π-1)=e |-2π-1|+cos(-2π-1)=e 2π+1+cos1>f (1),排除D.故选A.7.在△ABC 中,AB →+AC →=2AD →,AE →+DE →=0,若EB →=xAB →+yAC →,则( )A .y =3xB .x =3yC .y =-3xD .x =-3y答案 D解析 因为AB→+AC →=2AD →,所以点D 是BC 的中点,又因为AE →+DE →=0,所以点E 是AD 的中点,所以有BE→=BA →+AE →=-AB →+12AD →=-AB →+12×12(AB →+AC →)=-34AB →+14AC →,因此EB →=34AB →-14AC →.所以x =34,y =-14,即x =-3y .8.已知函数f (x )=A sin(ωx +φ),A >0,ω>0,|φ|<π2的部分图象如图所示,则使f (a +x )-f (a -x )=0成立的a 的最小正值为( )A.π12B.π6C.π4D.π3答案 B解析 由图象易知,A =2,f (0)=1,即2sin φ=1,且|φ|<π2,即φ=π6,由图可知,f ⎝ ⎛⎭⎪⎫11π12=0,所以sin ⎝ ⎛⎭⎪⎫11π12·ω+π6=0,所以11π12·ω+π6=2k π,k ∈Z ,即ω=24k -211,k ∈Z ,又由图可知,周期T >11π12⇒2πω>11π12,得ω<2411,且ω>0,所以k =1,ω=2,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,因为f (a +x )-f (a -x )=0,所以函数f (x )的图象关于x=a 对称,即有2a +π6=k π+π2,k ∈Z ,所以可得a =k π2+π6,k ∈Z ,所以a 的最小正值为π6.9.若函数f (x )是定义在R 上的奇函数,f ⎝ ⎛⎭⎪⎫14=1,当x <0时,f (x )=log 2(-x )+m ,则实数m =( )A .-1B .0C .1D .2答案 C解析 ∵f (x )是定义在R 上的奇函数,f ⎝ ⎛⎭⎪⎫14=1,且x <0时,f (x )=log 2(-x )+m ,∴f ⎝ ⎛⎭⎪⎫-14=log 214+m =-2+m =-1,∴m =1. 10.在等差数列{a n }中,a 3,a 9是方程x 2+24x +12=0的两根,则数列{a n }的前11项和等于( )A .66B .132C .-66D .-132 答案 D解析 因为a 3,a 9是方程x 2+24x +12=0的两根, 所以a 3+a 9=-24,又a 3+a 9=-24=2a 6,所以a 6=-12, S 11=11×(a 1+a 11)2=11×2a 62=-132.11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点分别为A ,B ,P 为双曲线左支上一点,△ABP 为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A.155B.154C.153D.152 答案 C解析 由题意知等腰△ABP 中,|AB |=|AP |=2a ,设∠ABP =∠APB =θ,F 1为双曲线的左焦点,则∠F 1AP =2θ,其中θ必为锐角.∵△ABP 外接圆的半径为5a , ∴25a =2asin θ,∴sin θ=55,cos θ=255,∴sin2θ=2×55×255=45,cos2θ=2×⎝⎛⎭⎪⎫2552-1=35. 设点P 的坐标为(x ,y ),则x =-a -|AP |cos2θ=-11a 5,y =|AP |sin2θ=8a5,故点P 的坐标为⎝ ⎛⎭⎪⎫-11a 5,8a 5.由点P 在双曲线上,得⎝ ⎛⎭⎪⎫-11a 52a 2-⎝ ⎛⎭⎪⎫8a 52b 2=1,整理得b 2a 2=23,∴e =c a = 1+b 2a 2=153.12.德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”:y =f (x )=⎩⎨⎧1,x ∈Q ,0,x ∈∁R Q ,其中R 为实数集,Q 为有理数集.则关于函数f (x )有如下四个命题:①f [f (x )]=0;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x +T )=f (x )对任意的x ∈R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数是( )A .1B .2C .3D .4 答案 C解析 当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0.∴当x 为有理数时,f [f (x )]=f (1)=1;当x 为无理数时,f [f (x )]=f (0)=1,∴无论x 是有理数还是无理数,均有f [f (x )]=1,故①不正确;∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x ∈R ,都有f (-x )=f (x ),故②正确;当T ∈Q 时,若x 是有理数,则x +T 也是有理数;若x 是无理数,则x +T 也是无理数,∴根据函数的表达式,任取一个不为零的有理数T ,f (x +T )=f (x )对x ∈R 恒成立,故③正确;取x 1=33,x 2=0,x 3=-33,f (x 1)=0,f (x 2)=1,f (x 3)=0,∴A ⎝ ⎛⎭⎪⎫33,0,B (0,1),C ⎝ ⎛⎭⎪⎫-33,0,△ABC 恰好为等边三角形,故④正确,故选C.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知x ,y 满足约束条件⎩⎨⎧x -3y +4≥0,x -2≤0,x +y ≥0,x ,y ∈R ,则x 2+y 2的最大值为________.答案 8解析 画出不等式组表示的可行域如图阴影部分所示(含边界).x 2+y 2表示可行域内的点(x ,y )到原点距离的平方.由图形可得,可行域内的点A 或点B 到原点的距离最大,且A (2,-2),B (2,2),又|OA |=|OB |=22,∴(x 2+y 2)max =8.14.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是________.答案 2 2解析 设AB =AC =AA 1=x ,在△ABC 中,∠BAC =120°, 则由余弦定理可得BC =3x . 由正弦定理,可得△ABC 外接圆的半径为r =x , 又∵球的表面积是40π, ∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt △OBO ′中,有⎝ ⎛⎭⎪⎫12x 2+x 2=10,解得x =22,即AA 1=2 2.∴直三棱柱的高是2 2.15.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图,在一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是________.答案 316解析 由七巧板的构造可知,△BIC ≌△GOH ,故黑色部分的面积与梯形EFOH 的面积相等,而S 梯形EFOH =34S △DOF =34×14S 正方形ABDF = 316S 正方形ABDF ,∴所求的概率为P =S 梯形EFOH S 正方形ABDF =316. 16.在数列{a n }中,a 1=1,a n +1=S n +3n (n ∈N *,n ≥1),则数列{S n }的通项公式为________.答案 S n =3n -2n解析 ∵a n +1=S n +3n =S n +1-S n , ∴S n +1=2S n +3n , ∴S n +13n +1=23·S n 3n +13, ∴S n +13n +1-1=23⎝ ⎛⎭⎪⎫S n 3n -1,又S 13-1=13-1=-23,∴数列⎩⎨⎧⎭⎬⎫S n 3n -1是首项为-23,公比为23的等比数列, ∴S n 3n -1=-23×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n ,∴S n =3n -2n .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且3b cos A =sin A (a cos C +c cos A ).(1)求角A 的大小;(2)若a =23,△ABC 的面积为534,求△ABC 的周长. 解 (1)∵3b cos A =sin A (a cos C +c cos A ),∴由正弦定理可得,3sin B cos A =sin A (sin A cos C +sin C cos A )=sin A sin(A +C )=sin A sin B ,即3sin B cos A =sin A sin B , ∵sin B ≠0,∴tan A =3, ∵A ∈(0,π),∴A =π3.(2)∵A =π3,a =23,△ABC 的面积为534, ∴12bc sin A =34bc =534, ∴bc =5,∴由余弦定理可得,a2=b2+c2-2bc cos A,即12=b2+c2-bc=(b+c)2-3bc=(b+c)2-15,解得b+c=33,∴△ABC的周长为a+b+c=23+33=5 3.18.(本小题满分12分)如图,在三棱柱ABF-DCE中,∠ABC=120°,BC=2CD,AD=AF,AF⊥平面ABCD.(1)求证:BD⊥EC;(2)若AB=1,求四棱锥B-ADEF的体积.解(1)证明:已知ABF-DCE为三棱柱,且AF⊥平面ABCD,∴DE∥AF,ED⊥平面ABCD.∵BD⊂平面ABCD,∴ED⊥BD,又四边形ABCD为平行四边形,∠ABC=120°,故∠BCD=60°,又BC=2CD,故∠BDC=90°,故BD⊥CD,∵ED∩CD=D,ED,CD⊂平面ECD,∴BD⊥平面ECD,∵EC⊂平面ECD,故BD⊥EC.(2)由BC=2CD得AD=2AB,∵AB=1,故AD=2,作BH⊥AD于点H,∵AF ⊥平面ABCD ,BH ⊂平面ABCD ,∴AF ⊥BH ,又AD ∩AF =A ,AD ,AF ⊂平面ADEF , ∴BH ⊥平面ADEF ,又∠ABC =120°, ∴在△ABH 中,∠BAH =60°,又AB =1, ∴BH =32,∴V B -ADEF =13×(2×2)×32=233.19.(本小题满分12分)某工厂某产品近几年的产量统计如下表:年份 2014 2015 2016 2017 2018 2019 年份代码t 1 2 3 4 5 6 年产量y /万件 6.66.777.17.27.4(1)根据表中数据,求y 关于t 的线性回归方程y ^=b ^t +a ^;(2)若近几年该产品每件的价格v (单位:元)与年产量y 满足的函数关系式为v =4.5-0.3y ,且每年该产品都能售完.①根据(1)中所建立的回归方程预测该工厂2020(t =7)年该产品的年产量; ②当t (1≤t ≤7)为何值时,该产品的年销售额S (单位:元)最大?附:对于一组数据(t 1,y 1),(t 2,y 2),…,(t n ,y n ),其回归直线y ^=b ^t +a ^的斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t )(y i -y -)∑i =1n(t i -t )2,a ^=y --b ^t .解 (1)由题意,得t =1+2+3+4+5+66=3.5,y -=6.6+6.7+7+7.1+7.2+7.46=7,∑i =16(t i -t )(y i -y -)=(-2.5)×(-0.4)+(-1.5)×(-0.3)+0+0.5×0.1+1.5×0.2+2.5×0.4=2.8,∑i =16(t i -t )2=(-2.5)2+(-1.5)2+(-0.5)2+0.52+1.52+2.52=17.5.由b ^=∑i =16(t i -t )(y i -y -)∑i =16(t i -t )2,得b ^=2.817.5=0.16,由a ^=y --b ^ t ,得a ^=7-0.16×3.5=6.44, 所以y 关于t 的线性回归方程为y ^=0.16t +6.44.(2)①由(1)知y ^=0.16t +6.44,当t =7时,y ^=0.16×7+6.44=7.56, 所以预测该工厂2020年该产品的年产量为7.56万件. ②当年产量为y 时,年销售额S =(4.5-0.3y )y ×104 =(-0.3y 2+4.5y )×104=[-0.3(y -7.5)2+16.875]×104, 由题知y ∈{6.6,6.7,7,7.1,7.2,7.4,7.56},所以当y =7.56,即t =7时,年销售额最大,即2020年的销售额最大. 20.(本小题满分12分)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点,过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程;(2)求S 1S 2的最小值及此时点G 的坐标.解 (1)由题意得p2=1,即p =2. 所以抛物线的准线方程为x =-1. (2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ), 重心G (x G ,y G ). 令y A =2t,2t ≠0,则x A =t 2.由于直线AB 过F ,故直线AB 的方程为x =t 2-12t y +1,代入y 2=4x ,得y 2-2(t 2-1)ty -4=0, 故2ty B =-4,即y B =-2t ,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t -2t +y C =0,得C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0. 所以直线AC 的方程为y -2t =2t (x -t 2), 得Q (t 2-1,0).由于Q 在焦点F 的右侧,故t 2>2.从而S 1S 2=12|FG |·|y A |12|QG |·|y C |=⎪⎪⎪⎪⎪⎪2t 4-2t 2+23t 2-1·|2t |⎪⎪⎪⎪⎪⎪t 2-1-2t 4-2t 2+23t 2·⎪⎪⎪⎪⎪⎪2t -2t =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m =t 2-2,则m >0, S 1S 2=2-m m 2+4m +3=2-1m +3m +4≥2-12m ·3m +4=1+32.当m =3时,S 1S 2取得最小值1+32,此时G (2,0).21.(本小题满分12分)设函数f (x )=m e x -x 2+3,其中m ∈R . (1)当f (x )为偶函数时,求函数h (x )=xf (x )的极值;(2)若函数f (x )在区间[-2,4]上有两个零点,求m 的取值范围. 解 (1)由函数f (x )是偶函数,得f (-x )=f (x ),即m e -x -(-x )2+3=m e x -x 2+3对于任意实数x 都成立,所以m =0. 此时h (x )=xf (x )=-x 3+3x ,则h ′(x )=-3x 2+3. 由h ′(x )=0,解得x =±1.当x 变化时,h ′(x )与h (x )的变化情况如下表所示:所以h(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.所以h(x)有极小值h(-1)=-2,极大值h(1)=2.(2)由f(x)=m e x-x2+3=0,得m=x2-3 e x.所以“f(x)在区间[-2,4]上有两个零点”等价于“直线y=m与曲线g(x)=x2-3e x,x∈[-2,4]有且只有两个公共点”.对函数g(x)求导,得g′(x)=-x2+2x+3e x.由g′(x)=0,解得x1=-1,x2=3.当x变化时,g′(x)与g(x)的变化情况如下表所示:所以g(x)在(-2,-1),(3,4)上单调递减,在(-1,3)上单调递增.又因为g(-2)=e2,g(-1)=-2e,g(3)=6e3<g(-2),g(4)=13e4>g(-1),所以当-2e<m<13e4或m=6e3时,直线y=m与曲线g(x)=x2-3e x,x∈[-2,4]有且只有两个公共点.即当-2e<m<13e4或m=6e3时,函数f(x)在区间[-2,4]上有两个零点.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C1的方程为x2+y2=4,直线l的参数方程为⎩⎨⎧x =-2-t ,y =33+3t (t 为参数),若将曲线C 1上的点的横坐标不变,纵坐标变为原来的32,得曲线C 2.(1)写出曲线C 2的参数方程;(2)设点P (-2,33),直线l 与曲线C 2的两个交点分别为A ,B ,求1|P A |+1|PB |的值.解 (1)若将曲线C 1上的点的横坐标不变,纵坐标变为原来的32, 则得到曲线C 2的直角坐标方程为x 2+⎝ ⎛⎭⎪⎫23y 2=4,整理,得x 24+y 29=1,∴曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).(2)将直线l 的参数方程化为标准形式为 ⎩⎪⎨⎪⎧x =-2-12t ′,y =33+32t ′(t ′为参数),将参数方程代入x 24+y 29=1,得⎝ ⎛⎭⎪⎫-2-12t ′24+⎝ ⎛⎭⎪⎫33+32t ′29=1, 整理,得74(t ′)2+18t ′+36=0.∴|P A |+|PB |=|t 1′+t 2′|=727,|P A |·|PB |=t 1′t 2′=1447,∴1|P A |+1|PB |=|P A |+|PB ||P A |·|PB |=7271447=12.23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +3|+|x -1|的最小值为m .(1)求m的值以及此时x的取值范围;(2)若实数p,q,r满足:p2+2q2+r2=m,证明:q(p+r)≤2.解(1)依题意,得f(x)=|x+3|+|x-1|≥|x+3-x+1|=4,故m的值为4.当且仅当(x+3)(x-1)≤0,即-3≤x≤1时等号成立,即x的取值范围为[-3,1].(2)证明:因为p2+2q2+r2=m,故(p2+q2)+(q2+r2)=4.因为p2+q2≥2pq,当且仅当p=q时等号成立;q2+r2≥2qr,当且仅当q=r时等号成立,所以(p2+q2)+(q2+r2)=4≥2pq+2qr,故q(p+r)≤2,当且仅当p=q=r时等号成立.。
2020版高考理科数学突破二轮复习新课标通用讲义:专题八 第1讲 数学文化 Word版含答案

第1讲数学文化函数中的数学文化题[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O的周长和面积同时等分成两部分的函数称为圆O的一个“太极函数”,给出下列命题:①对于任意一个圆O,其“太极函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“太极函数”;③正弦函数y=sin x可以同时是无数个圆的“太极函数”;④函数y=f(x)是“太极函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题为()A.①③B.①③④C.②③D.①④【解析】过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O,其“太极函数”有无数个,故①正确;函数f(x)=ln(x2+x2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故③正确;函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图2所示,故④错误.故选A .【答案】 A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练] (2019·福建泉州两校联考)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为:“今有人持金出五关,第1关所收税金为持金的12,第2关所收税金为剩余持金的13,第3关所收税金为剩余持金的14,第4关所收税金为剩余持金的15,第5关所收税金为剩余持金的16,5关所收税金之和恰好重1斤.”则在此问题中,第5关所收税金为( )A .136斤 B .130斤 C .125斤 D .120斤 解析:选C .设此人持金x 斤,根据题意知第1关所收税金为x 2斤; 第2关所收税金为x 6斤;第3关所收税金为x 12斤; 第4关所收税金为x 20斤; 第5关所收税金为x 30斤. 易知x 2+x 6+x 12+x 20+x 30=1, 解得x =65.则第5关所收税金为125斤.故选C .数列中的数学文化题[典型例题](1)(2019·湖南长沙雅礼中学模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M ,现将该金箠截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =( )A .4B .5C .6D .7(2)(2019·河北辛集中学期中)中国古代数学著作《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里.”其意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里.”若该匹马按此规律继续行走7天,则它这14天内所走的总路程为( )A .17532里 B .1 050里 C .22 57532里 D .2 100里【解析】 (1)由题意知,由细到粗每段的重量组成一个等差数列,记为{a n },设公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4⇒⎩⎪⎨⎪⎧2a 1+d =2,2a 1+17d =4⇒⎩⎨⎧a 1=1516,d =18. 所以该金箠的总重量 M =10×1516+10×92×18=15. 因为48a i =5M ,所以有48[1516+(i -1)×18]=75,解得i =6,故选C .(2)由题意可知,马每天行走的路程组成一个等比数列,设该数列为{a n },则该匹马首日行走的路程为a 1,公比为12,则有a 1[1-(12)7]1-12=700,则a 1=350×128127,则a 1[1-(12)14]1-12=22 57532(里).故选C .【答案】 (1)C (2)C(1)数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n 项和公式.(2)解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n 项和公式.[对点训练]1.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A .76钱 B .56钱 C .23钱 D .1钱解析:选D .因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D .2.(一题多解)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A .507斗粟 B .107斗粟 C .157斗粟 D .207斗粟 解:选C .法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5, 解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C . 法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C .三角函数中的数学文化题[典型例题]《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,现有周长为22+5的△ABC 满足sin A ∶sin B ∶sin C =(2-1)∶5∶(2+1),用上面给出的公式求得△ABC 的面积为( )A .32 B .34 C .52 D .54【解析】 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =(2-1)∶5∶(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S =14⎣⎢⎡⎦⎥⎤(2+1)2(2-1)2-⎝ ⎛⎭⎪⎫3+22+3-22-522=34,故选B . 【答案】 B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A 版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练](2019·济南市学习质量评估)我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m,依据规定,该小区内住宅楼楼间距应不小于52 m.若该小区内某居民在距离楼底27 m高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________m.解析:设两住宅楼楼间距实际为x m.如图,根据题意可得,tan∠DCA=27x,tan∠DCB=45-27x=18x,又∠DCA+∠DCB=45°,所以tan(∠DCA+∠DCB)=27x+18x1-27x·18x=1,整理得x2-45x-27×18=0,解得x=54或x=-9(舍去).所以该小区住宅楼楼间距实际为54 m.答案:54立体几何中的数学文化题[典型例题](1)(2019·高考浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2) (2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.【解析】 (1)如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27. 因此,该柱体的体积V =27×6=162.故选B .(2)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A -BCD 所示,其中AB =22,BC =CD =2,易知长方体的外接球即三棱锥A BCD 的外接球,设外接球的直径为2R ,所以4R 2=(22)2+(2)2+(2)2=8+2+2=12,则R 2=3,因此外接球的表面积S =4πR 2=12π.【答案】 (1)B (2)12π立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等. [对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V =112×底面圆的周长的平方×高,由此可推得圆周率π的取值为( )A .3B .3.1C .3.14D .3.2解析:选A .设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得体积为V =πr 2h .由题意知V =112×(2πr )2×h ,所以πr 2h =112×(2πr )2×h ,解得π=3.故选A . 2.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水的深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A .由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸), 则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸), 所以这一天该地的平均降雨量约为342ππ×122≈2(寸),故选A .算法中的数学文化题[典型例题](1)公元三世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后两位的近似值 3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n为(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)()A.12B.24C.36 D.48(2)我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.图中的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a=110011,k=2,n=7,则输出的b=()A.19 B.31C.51 D.63【解析】(1)按照程序框图执行,n=6,S=3sin 60°=332,不满足条件S≥3.10,执行循环;n=12,S=6sin 30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin 15°≈12×0.258 8=3.105 6,满足条件S≥3.10,跳出循环,输出n的值为24,故选B.(2)按照程序框图执行,b依次为0,1,3,3,3,19,51,当b=51时,i=i+1=7,跳出循环,故输出b=51.故选C.【答案】(1)B(2)C辗转相除法、更相减损术、秦九韶算法、进位制和割圆术都是课本上出现的算法案例.其中,更相减损术和秦九韶算法是中国古代的优秀算法,课本上的进位制案例原本不渗透中国古代数学文化,但命题人巧妙地将烽火戍边的故事作为背景,强化了试题的“文化育人”功能.[对点训练]《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出“更相减损术”的程序框图如图所示,如果输入的a=114,b=30,则输出的n为()A.3 B.6C.7 D.30解析:选C.a=114,b=30,k=1,n=0,a,b都是偶数,a=57,b=15,k=2,a,b 不满足都为偶数,a=b不成立,a>b成立,a=57-15=42,n=0+1=1;a=b不成立,a>b 成立,a=42-15=27,n=1+1=2;a=b不成立,a>b成立,a=27-15=12,n=2+1=3;a=b不成立,a>b不成立,a=15,b=12,a=15-12=3,n=3+1=4;a=b不成立,a>b不成立,a =12,b =3,a =12-3=9,n =4+1=5;a =b 不成立,a >b 成立,a =9-3=6,n =5+1=6;a =b 不成立,a >b 成立,a =6-3=3,n =6+1=7;a =b 成立,输出的kb =6,n =7.概率中的数学文化题[典型例题](1)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,田忌获胜的概率是( )A .13B .14C .15D .16(2)太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,如图所示,其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .19【解析】 (1)从双方的马匹中随机选一匹马进行一场比赛,对阵情况如下表:齐王的马 上 上 上 中 中 中 下 下 下 田忌的马上中下上中下上中下双方马的对阵中,有3种对抗情况田忌能赢,所以田忌获胜的概率P =39=13.故选A .(2)函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118.故选B .【答案】 (1)A (2)B(1)本例(1)选取田忌赛马这一为人熟知的故事作为背景,考查了古典概型,趣味性很强,利于缓解考生在考场的紧张心理,体现了对考生的人文关怀.(2)本例(2)以中国优秀传统文化太极图为背景,考查几何概型,角度新颖,所给图形有利于考生分析问题和解决问题,给出了如何将抽象的数学问题形象化的范例.[对点训练]1.我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献.哥德巴赫猜想是“任一大于2的偶数都可写成两个质数的和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率是( )A .111B .211C .355D .455解析:选C .不超过32的质数有2,3,5,7,11,13,17,19,23,29,31,共11个,随机选取两个不同的数,共有C 211=55种不同的选法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种选法,所以概率为355,故选C .2.(2019·广州市综合检测(一))刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.如图所示,圆内接正十二边形的中心为圆心O ,圆O 的半径为2,现随机向圆O 内投放a 粒豆子,其中有b 粒豆子落在正十二边形内(a ,b ∈N *,b <a ),则圆周率的近似值为( )A .b aB .a bC .3a bD .3b a解析:选C .依题意可得360°12=30°,则正十二边形的面积为12×12×2×2×sin 30°=12.又圆的半径为2,所以圆的面积为4π,现向圆内随机投放a 粒豆子,有b 粒豆子落在正十二边形内,根据几何概型可得124π=b a ,则π=3ab,选C .一、选择题1.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B .法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B .法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B .2.北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86解析:选C .由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n6[(2a +c )b +(2c+a )d ]+n6(c -a )得s =85,故选C .3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A .根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝⎛⎭⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A .4.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22B .C 414C 510C 55A 22C 55A 33 C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A .先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A . 5.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B .设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B .6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A .π15B .2π5C .2π15D .4π15解析:选C .因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C .7.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤 000 0 艮 001 1 坎 010 2 巽0113依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( )A .33B .34C .36D .35解析:选B .由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B .8.《九章算术》中有如下问题:“今有卖牛二、羊五,以买一十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖六羊、八豕,以买五牛,钱不足六百,问牛、羊、豕价各几何?”依上文,设牛、羊、豕每头价格分别为x 元、y 元、z 元,设计如图所示的程序框图,则输出的x ,y ,z 的值分别是( )A .1 3009,600,1 1203B .1 200,500,300C .1 100,400,600D .300,500,1 200解析:选B .根据程序框图得:①y =300,z =4603,x =6 4009,i =1,满足i <3;②y =400,z =6803,x =8 6009,i =2,满足i <3;③y =500,z =300,x =1 200,i =3,不满足i <3; 故输出的x =1 200,y =500,z =300.故选B .9.(2019·洛阳市统考)如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:选B .设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×(1-32)≈27,故选B . 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A .依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A .11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B .设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B .12.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A .如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A .二、填空题13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ;正方形数 N (n ,4)=n 2; 五边形数 N (n ,5)=32n 2-12n ;六边形数 N (n ,6)=2n 2-n ; ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 解析:易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ).则N (n ,k )=12(k -2)n 2+12(4-k )n ,故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000.答案:1 00014. (2019·湖南师大附中模拟)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎫1516,6364,则输入的n 的值为________.解析:框图中首先给累加变量S 赋值0,给循环变量k 赋值1, 输入n 的值后,执行循环体,S =12,k =1+1=2.若2>n 不成立,执行循环体,S =34,k =2+1=3.若3>n 不成立,执行循环体,S =78,k =3+1=4.。
2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:高考仿真模拟(三) Word版含解析

2020高考仿真模拟(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为实数集R,集合A={x|x2-3x<0},B={x|log2x>0},则(∁R A)∩B =()A.(-∞,0]∪(1,+∞) B.(0,1]C.[3,+∞) D.∅答案 C解析因为A=(0,3),所以∁R A=(-∞,0]∪[3,+∞).又B=(1,+∞),所以(∁R A)∩B=[3,+∞).2.复数z=2i1-i的共轭复数是()A.1+i B.1-i C.-1+i D.-1-i 答案 D解析∵z=2i1-i=2i(1+i)2=-1+i,∴z-=-1-i,故选D.3.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值答案 D解析A错误,并无周期变化;B错误,并不是不断减弱,中间有增强;C错误,10月份的波动大于11月份,所以方差要大;D正确,由图可知,12月份起到1月份有下降的趋势,所以12月份的平均值大于1月份.故选D.4.阅读下面的程序框图,运行相应的程序,若输入N的值为19,则输出N 的值为()A.0 B.1 C.2 D.3答案 C解析阅读流程图可得,程序执行过程如下:首先初始化数值为N=19,第一次循环:N=N-1=18,不满足N≤3;第二次循环:N=N3=6,不满足N≤3;第三次循环:N=N3=2,满足N≤3;此时跳出循环体,输出N=2.故选C.5.已知等差数列{a n}前9项的和为27,a10=8,则a100=() A.100 B.99 C.98 D.97答案 C解析 设{a n }的公差为d ,由等差数列前n 项和公式及通项公式,得⎩⎪⎨⎪⎧S 9=9a 1+9×82d =27,a 10=a 1+9d =8,解得⎩⎨⎧a 1=-1,d =1,a n =a 1+(n -1)d =n -2,∴a 100=100-2=98.故选C.6.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+2π3B.13+2π3C.13+2π6 D .1+2π6答案 C解析 由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径为正四棱锥底面正方形的外接圆的直径,所以球的直径2R =2,则R =22,所以半球的体积为2π3R 3=2π6,又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+2π6.故选C.7.已知数列{a n }是等差数列,且a 1+a 4+a 7=2π,则tan(a 3+a 5 )的值为( ) A. 3 B .- 3 C.33 D .-33 答案 A解析 a 1+a 4+a 7=2π,所以3a 4=2π,a 4=2π3,a 3+a 5=2a 4=4π3,tan(a 3+a 5)=tan 4π3= 3.8.如图,在圆O 中,已知弦AB =4,弦AC =6,那么A O →·B C →的值为( )A .10B .213 C.10 D .-10 答案 A9.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A .2号学生进入30秒跳绳决赛B .5号学生进入30秒跳绳决赛C .8号学生进入30秒跳绳决赛D .9号学生进入30秒跳绳决赛 答案 B解析 取a =b =20,即知A ,C ,D 错误;从而选B.事实上,假设5号学生不能进入30秒跳绳决赛,则1号和4号学生也都不能进入30秒跳绳决赛,于是至多只能有5人同时进入立定跳远决赛和30秒跳绳决赛,与“同时进入立定跳远决赛和30秒跳绳决赛的有6人”矛盾.故选B.10.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若|AB |=6,则△AOB 的面积为( )A. 6 B .2 2 C .2 3 D .4 答案 A解析 由题意,易知直线AB 的斜率存在且不为0,设直线AB 的方程为y =k (x-1),与抛物线方程联立可得y 2-4k y -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4,则|y 1-y 2|=(y 1+y 2)2-4y 1y 2=41+1k 2,由弦长公式可得 1+1k 2×|y 1-y 2|=4⎝ ⎛⎭⎪⎫1+1k 2=6,∴k 2=2,|y 1-y 2|=2 6.三角形的面积为S =12|OF |×|y 1-y 2|=12×1×26= 6.故选A.11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形(这个矩形的长不小于宽),上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A.392B.752 C .39 D.6018答案 B解析 设下底面的长为x ⎝ ⎛⎭⎪⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)·(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝ ⎛⎭⎪⎫922+172×92+392=752.故选B.12.已知函数f (x )=x 3-4x ,若f (x 1)=f (x 2)=f (x 3)=m ,其中x 1<x 2<x 3,m <0,则( )A .x 1>-2B .x 21+x 22<4C .x 22+x 23<6D .x 3>2答案 C解析 因为f (x )=x 3-4x ,所以f ′(x )=3x 2-4,令f ′(x )>0,得x <-233或x >233,令f ′(x )<0,得-233<x <233,所以f (x )在⎝ ⎛⎭⎪⎫-∞,-233,⎝ ⎛⎭⎪⎫233,+∞上单调递增,在⎝⎛⎭⎪⎫-233,233上单调递减,令f (x )=0,得x =0或x =-2或x =2,所以函数f (x )=x 3-4x 的大致图象如图所示,由f (x 1)=f (x 2)=f (x 3)=m ,m <0,知直线y =m 与函数f (x )=x 3-4x 的图象的三个交点的横坐标分别为x 1,x 2,x 3,结合图象知,x 1<-2,0<x 2<233,233<x 3<2,所以A ,D 不正确.又x 21>4,0<x 22<43,43<x 23<4,所以x 21+x 22>4,x 22+x 23<163<6,所以C 正确,B 不正确.故选C.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.若函数f (x )=e x -e -x ,则不等式f (2x +1)+f (x -2)>0的解集为________.答案 ⎝ ⎛⎭⎪⎫13,+∞解析 f (-x )=e -x -e x =-(e x -e -x )=-f (x ),则函数f (x )是奇函数,因为f ′(x )=e x +e -x >0,所以f (x )在定义域R 上是增函数,则不等式f (2x +1)+f (x -2)>0等价为f (2x +1)>-f (x -2)=f (-x +2), 则2x +1>-x +2,即x >13, 故不等式的解集为⎝ ⎛⎭⎪⎫13,+∞.14.若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =4x +3y 的最大值为________.答案 8解析由约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0作出可行域如图中阴影部分所示.又目标函数z =4x +3y 可化为y =-43x +z 3,因此,当直线y =-43x +z3在y 轴上截距最大时, z =4x +3y 取最大值,由图象可得,令直线y =-43x +z3过点A 时,截距最大,由x -2y -2=0,令y =0,易得A (2,0),此时z max =8.15. 如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.答案255解析 过P 点作底面ABCD 的垂线PQ ,垂足为Q .则“点P 到直线CC 1的距离”就转化为“两条平行线PQ 与直线CC 1之间的距离”,进而转化为“点Q 到直线CC 1的距离,即QC ”.当CQ ⊥DE 时,QC 有最小值为255,即点P 到直线CC 1的距离的最小值为255.16.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第________天,两马相逢.答案 16解析 设两匹马n 天之后相遇,则两匹马合计行走的路程为6000里.依题意,⎣⎢⎡⎦⎥⎤193n +12n (n -1)×13+⎣⎢⎡⎦⎥⎤97n +12n (n -1)×⎝ ⎛⎭⎪⎫-12=6000.经估算可知,15<n <16,故n 取16.即离开长安后的第16天,两马相逢.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)如图,ABCD 是边长为2的菱形,∠DAB =60°,EB ⊥平面ABCD ,FD ⊥平面ABCD ,EB =2FD =4.(1)求证:EF ⊥AC ;(2)求几何体EF ABCD 的体积.解 (1)证明:如图,连接BD , ∵FD ⊥平面ABCD ,EB ⊥平面ABCD , ∴EB ∥FD ,∴E ,F ,D ,B 四点共面, ∵AC ⊂平面ABCD ,∴AC ⊥EB .设DB ∩AC =O ,∵四边形ABCD 为菱形, ∴AC ⊥DB .∵DB ∩EB =B ,∴AC ⊥平面EFDB , ∵EF ⊂平面EFDB ,∴AC ⊥EF .(2)∵EB ∥FD ,EB ⊥BD .∴四边形EFDB 为直角梯形,在菱形ABCD 中,∠DAB =60°,AB =2,BD =2,AO =CO =3, ∴梯形EFDB 的面积S =(2+4)×22=6, ∵AC ⊥平面EFDB ,∴V 几何体EF ABCD =V 四棱锥C -EFDB +V 四棱锥A -EFDB =13S ·AO +13S ·CO =4 3.18.(本小题满分12分)已知△ABC的内角A,B,C所对边分别为a,b,c,且2a cos C=2b-c.(1)求角A的大小;(2)若AB=3,AC边上的中线BD的长为13,求△ABC的面积.解(1)∵2a cos C=2b-c,由正弦定理可得sin A cos C+12sin C=sin B,∴sin B=sin(A+C)=sin A cos C+cos A sinC.∴12sin C=cos A sin C,∵sin C≠0,∴cos A=12,∴由A∈(0,π),可得A=π3.(2)在△ABD中,AB=3,BD=13,cos A=1 2,由余弦定理可得13=9+AD2-3AD,解得AD=4(负值舍去),∵BD为AC边上的中线,∴D为AC的中点,∴AC=2AD=8,∴S△ABC =12AB·AC·sin A=12×3×8×32=6 3.19.(本小题满分12分)在某区“创文明城区”(简称“创城”)活动中,教委对本区A,B,C,D四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值假设每名高中学生是否参与“创城”活动是相互独立的.(1)若该区共2000名高中学生,估计A学校参与“创城”活动的人数;(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;(3)在上表中从B,C两校没有参与“创城”活动的同学中随机抽取2人,求恰好B,C两校各有1人没有参与“创城”活动的概率.解(1)A学校高中生的总人数为50÷1002000=1000,A 学校参与“创城”活动的人数为1000×4050=800. (2)设恰好该生没有参与“创城”活动这一事件为M , 则P (M )=100-40-10-9-15100=1350.(3)B 校没有参与“创城”活动的这5人分别记为B 1,B 2,B 3,B 4,B 5,C 校没有参与“创城”活动的这1人记为C 1,任取2人共15种情况,如下:B 1B 2,B 1B 3,B 1B 4,B 1B 5,B 1C 1,B 2B 3,B 2B 4,B 2B 5,B 2C 1,B 3B 4,B 3B 5,B 3C 1,B 4B 5,B 4C 1,B 5C 1,这15种情况发生的可能性是相等的.设事件N 为抽取2人中B ,C 两校各有1人没有参与“创城”活动,有B 1C 1,B 2C 1,B 3C 1,B 4C 1,B 5C 1,共5种情况.则P (N )=515=13.故恰好B ,C 两校各有1人没有参与“创城”活动的概率为13.20.(本小题满分12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,1),右焦点到直线x =a 2c 的距离为33.(1)求椭圆E 的标准方程;(2)过点A 作两条互相垂直的直线l 1 ,l 2分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P ⎝ ⎛⎭⎪⎫0,-35. 解 (1)由题意知,a 2c -c =33,b =1,a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆的标准方程为x 24+y 2=1. (2)证明:显然直线l 1,l 2的斜率存在. 设直线l 1的方程为y =kx +1, 联立方程组⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,得(4k 2+1)x 2+8kx =0, 解得x 1=-8k4k 2+1,x 2=0,所以x M =-8k4k 2+1,y M =1-4k 24k 2+1.由l 1,l 2垂直,可得直线l 2的方程为y =-1k x +1. 用-1k 替换前式中的k ,可得x N =8kk 2+4,y N =k 2-4k 2+4.则k MP =1-4k 24k 2+1+35-8k 4k 2+1=-8k 25+85-8k =k 2-15k , k NP =k 2-4k 2+4+358k k 2+4=8k 25-858k =k 2-15k ,所以k MP =k NP ,故直线MN 恒过定点P ⎝ ⎛⎭⎪⎫0,-35.21.(本小题满分12分)已知函数f (x )=ln x -1x -ax (a ∈R ).(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a <-1,求函数f (x )的单调区间; (3)若1<a <2,求证:f (x )<-1.解 (1)若a =0,则f (1)=-1,f ′(x )=2-ln xx 2, f ′(1)=2,所以f (x )在点(1,-1)处的切线方程为2x -y -3=0. (2)x ∈(0,+∞),f ′(x )=2-ax 2-ln xx 2.令g (x )=2-ax 2-ln x ,则g ′(x )=-2ax 2-1x.令g ′(x )=0,得x =± -12a ⎝ ⎛⎭⎪⎫依题意-12a >0.由g ′(x )>0,得x > -12a ;由g ′(x )<0,得0<x < -12a .所以,g (x )在区间⎝ ⎛⎭⎪⎫0, -12a 上单调递减,在区间⎝⎛⎭⎪⎫-12a ,+∞上单调递增,所以,g (x )min =g ⎝ ⎛⎭⎪⎫-12a =52-ln-12a . 因为a <-1,所以0<-12a <12,ln -12a <0. 所以g (x )>0,即f ′(x )>0.所以函数f (x )的单调递增区间为(0,+∞).(3)证明:由x >0,f (x )<-1,等价于ln x -1x -ax <-1,等价于ax 2-x +1-ln x >0. 设h (x )=ax 2-x +1-ln x ,只须证h (x )>0成立. 因为h ′(x )=2ax -1-1x =2ax 2-x -1x ,1<a <2,由h ′(x )=0,得2ax 2-x -1=0有异号两根. 令其正根为x 0,则2ax 20-x 0-1=0.在(0,x 0)上h ′(x )<0,在(x 0,+∞)上h ′(x )>0. 则h (x )的最小值为h (x 0)=ax 20-x 0+1-lnx 0=1+x 02-x 0+1-ln x 0=3-x 02-lnx 0.又h ′(1)=2a -2>0,h ′⎝ ⎛⎭⎪⎫12=2⎝ ⎛⎭⎪⎫a 2-32=a -3<0,所以12<x 0<1.则3-x 02>0,-ln x 0>0.因此3-x 02-ln x 0>0,即h (x 0)>0. 所以h (x )>0,所以f (x )<-1.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的极坐标方程是ρsin ⎝ ⎛⎭⎪⎫θ-π3=0,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,曲线C 的参数方程是⎩⎨⎧x =2cos α,y =2+2sin α(α为参数).(1)求直线l 被曲线C 截得的弦长;(2)从极点作曲线C 的弦,求各弦中点轨迹的极坐标方程.解 (1)直线l 的极坐标方程是ρsin ⎝ ⎛⎭⎪⎫θ-π3=0,展开可得ρ⎝ ⎛⎭⎪⎫12sin θ-32cos θ=0,化为直角坐标方程为y -3x =0.曲线C 的参数方程是⎩⎨⎧x =2cos α,y =2+2sin α(α为参数),消去参数α可得,x 2+(y -2)2=4, 圆心C (0,2),半径r =2. ∴圆心C 到直线l 的距离d =|2-0|12+(-3)2=1,∴直线l 被曲线C 截得的弦长为 2r 2-d 2=2×22-12=2 3.(2)设Q 是圆C 上的任意一点,P (x ,y )为线段OQ 的中点,则Q (2x,2y ),代入圆C 的方程可得,(2x )2+(2y -2)2=4,化为x 2+y 2-2y =0,可得ρ2-2ρsin θ=0,即ρ=2sin θ为各弦中点轨迹的极坐标方程. 23.(本小题满分10分)选修4-5:不等式选讲 设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1. 解 (1)因为[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x -1)2+(y +1)2+(z +1)2],所以由已知得(x -1)2+(y +1)2+(z +1)2≥43, 当且仅当x =53,y =-13,z =-13时等号成立. 所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:因为[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)·(z -a )+(z -a )(x -2)]≤3[(x -2)2+(y -1)2+(z -a )2],所以由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.所以(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.(2+a)23≥13,解得a≤-3或a≥-1.由题设知。
2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:基础保分强化训练(二)+Word版含解析

基础保分强化训练(二)1.已知集合A =[1,+∞),B ={|x ∈R 12a ≤x ≤2a -1},若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞) B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A解析因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.2.若复数z =1+m i1+i在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)答案 A解析 因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.3.设S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,则a 7a 4等于( )A .1B .3C .7D .13 答案 C解析 因为S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,所以13(a 1+a 13)2=13×7(a 1+a 7)2,即a 7=7a 4,所以a 7a 4=7.故选C.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3 答案 A解析 由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.5.已知i 与j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12 B.⎝ ⎛⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫-∞,12 答案 A解析 因为i 与j 为互相垂直的单位向量,所以i 2=j 2=1,i ·j =0.又因为a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,所以a ·b =1-2λ>0,λ<12.但当λ=-2时,a =b ,不满足要求,故满足条件的实数λ的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12.故选A.6.若函数f (x )=sin2x +cos2x ,则下列结论正确的是( ) A .函数f (x )的最小正周期为2πB .对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=0C .函数f (x )在⎝ ⎛⎭⎪⎫π2,3π4上是减函数D .函数f (x )的图象关于直线x =-π8对称 答案 B解析 函数f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,则函数f (x )的最小正周期为T=2π2=π,故A 错误;f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+2sin ⎝ ⎛⎭⎪⎫-2x +π4=0,故B 正确;令π2+2k π≤2x +π4≤2k π+3π2(k ∈Z ),解得π8+k π≤x ≤k π+5π8(k ∈Z ),当k =0时,函数的单调递减区间为⎣⎢⎡⎦⎥⎤π8,5π8,故C 错误;当x =-π8时,f ⎝ ⎛⎭⎪⎫-π8=0.故D 错误,故选B.7.已知长方体ABCD -A 1B 1C 1D 1中,B 1C ,C 1D 与底面ABCD 所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A.64B.14C.26D.36 答案 A解析 ∵B 1C 和C 1D 与底面ABCD 所成的角分别为60°和45°,∴∠B 1CB =60°,∠C 1DC =45°.由图可知,B 1C 与C 1D 所成的角,即为A 1D 与C 1D 所成的角,即∠A 1DC 1.令BC =1,则B 1B =AB =3,∴A 1D =2,A 1C 1=2,C 1D = 6.由余弦定理,得cos ∠A 1DC 1=22+(6)2-222×2×6=64.故选A.8.如图,在矩形区域ABCD 中,AB =2,AD =1,且在A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机选一地点,则该地点无信号的概率是( )A .2-π2 B.π2-1 C .1-π4 D.π4 答案 C解析 由条件得扇形区域ADE 和扇形区域CBF 的面积均为π4,又矩形区域ABCD 的面积为2×1=2,根据几何概型概率公式可得所求概率为P =2-2×π42=1-π4,即在该矩形区域内随机选一地点,则该地点无信号的概率是1-π4.9.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是双曲线C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .2x ±y =0 D .x ±2y =0答案 A解析 不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,即|PF 2|为最小边,所以∠PF 1F 2=30°,则△PF 1F 2为直角三角形,所以2c =23a ,所以b =2a ,即渐近线方程为y =±2x ,故选A.10.若x ,y 满足⎩⎨⎧x +y -3≥0,kx -y +3≥0,y ≥0,且z =y -x 的最小值为-12,则k 的值为( )A.12 B .-12 C.14 D .-14 答案 D解析 依题意,易知k ≤-1和k ≥0不符合题意.由⎩⎪⎨⎪⎧kx -y +3=0,y =0得A ⎝ ⎛⎭⎪⎫-3k ,0,结合图形可知,当直线z =y -x 过点A ⎝ ⎛⎭⎪⎫-3k ,0时,z 有最小值,于是有0+3k =-12,k =-14,选D.11.椭圆x 24+y 2=1上存在两点A ,B 关于直线4x -2y -3=0对称,若O 为坐标原点,则|OA →+OB →|=( )A .1 B. 3 C. 5 D.7 答案 C解析 由题意,直线AB 与直线4x -2y -3=0垂直,设直线AB 的方程为y =-12x +m .由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 2=1消去y 整理得x 2-2mx +2m 2-2=0,∵直线AB 与椭圆交于两点,∴Δ=(-2m )2-4(2m 2-2)=-4m 2+8>0,解得-2<m < 2.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 1+x 2=2m ,∴x 0=x 1+x 22=m ,y 0=-12x 0+m =m 2,∴点M 的坐标为⎝ ⎛⎭⎪⎫m ,m 2.由题意得点M 在直线4x -2y -3=0上,∴4m-2×m 2-3=3m -3=0,解得m =1.∴x 1+x 2=2,y 1+y 2=-12(x 1+x 2)+2m =1,∴OA →+OB →=(2,1),∴|OA →+OB →|= 5.故选C.12.已知角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点P(-1,2),则cos2α=________.答案-35解析设点P到原点的距离是r,由三角函数的定义,得r=5,sinα=2r=25,可得cos2α=1-2sin2α=1-2×⎝⎛⎭⎪⎫252=-35.13.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为________.答案91解析由三角形数组可推断出,第n行共有2n-1项,且最后一项为n2,所以第10行共19项,最后一项为100,左数第10个数是91.14.已知在△ABC中,B=2A,∠ACB的平分线CD把三角形分成△BCD和△ACD,且S△BCD∶S△ACD=4∶3,则cos A=________.答案38解析在△ADC中,由正弦定理,得ACsin∠ADC=37ABsin∠ACD⇒AC37AB=sin∠ADCsin∠ACD.同理,在△BCD中,得BCsin∠BDC=47ABsin∠BCD⇒BC47AB=sin∠BDCsin∠BCD,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以AC 37AB =BC 47AB ⇒AC =34BC ,由正弦定理,得sin B =34sin A ,又B =2A ,即sin B =2sin A cos A ,求得cos A =38.。
37、2020版高考数学大二轮专题突破文科通用版考前强化练8 解答题综合练A Word版含解析

考前强化练8解答题综合练A1.(2019安徽黄山高三质检,文17)已知在△ABC中,角A,B,C的对边分别为a,b,c,且满足bc=1,a2-bc=(b-c)2.(1)求sin B+sin C的最大值;(2)若cos B cos C=,求b+c.2.某校组织的古典诗词大赛中,高一一班、二班各有9名学生参加,得分情况如茎叶图所示:成绩[70,79][80,89][90,100]奖次三二一加分123该活动规定:学生成绩、获奖等次与班级量化管理加分情况如上表.(1)在一班获奖的学生中随机抽取2人,求能够为班级量化管理加4分的概率;(2)已知一班和二班学生的平均成绩相同,求x的值,并比较哪个班的成绩更稳定.3.(2019安徽定远中学高三预测卷,文18)如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现将△DEF沿EF翻折成如图2所示的五棱锥P-ABCFE.(1)求证:AC∥平面PEF;(2)求五棱锥P-ABCFE的体积最大时△PAC的面积.4.(2019广东东莞高三冲刺模拟,文19)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y进行检测,一共抽取了48件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y有关,具体见下表.(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y的平均值(保留两位小数);(2)用分层抽样的方法从上述样本中先抽取6件产品,再从6件产品中随机抽取2件产品,求这2件产品的指标Y都在[9.8,10.2]内的概率;(3)已知该厂产品的维护费用为300元/次,工厂现推出一项服务:若消费者在购买该厂产品时每件多加100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?5.已知动圆C与圆C1:(x-2)2+y2=1外切,又与直线l:x=-1相切.(1)求动圆C的圆心的轨迹方程E;(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交于A,B两点,求证:k MA+k MB=2k MP.6.(2019河北邢台二中高三二模,文21)已知函数f(x)=[x2+(a+1)x+1]e x.(1)若曲线y=f(x)在点(0,f(0))处的切线与x轴平行,求a的值;(2)若f(x)在x=-1处取得极大值,求a的取值范围;(3)当a=2时,若函数g(x)=mf(x)-1有3个零点,求m的取值范围.(只需写出结论)7.已知直线l的参数方程为(t为参数,0≤φ<2π),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=,且l与C交于不同的两点P1,P2.(1)求φ的取值范围;(2)若φ=,求线段P1P2中点P0的极坐标(ρ≥0,0≤θ<2π).8.已知函数f(x)=|2x-a|-|x+3|,a∈R.(1)当a=1时,求f(x)的最小值;(2)当x∈[0,3]时,f(x)≤4恒成立,求a的取值范围.参考答案考前强化练8解答题综合练A 1.解(1)∵a2-bc=b2+c2-2bc,∴b2+c2-a2=bc.∴cos A=.∴A=,∴B+C=.∴sin B+sin C=sin B+sin -B=sin B+sin cos B-cos sin B=cos B+sin B=cos B+sin B=sin B+.所以当B=时,sin B+sin C取得最大值.(2)由(1)可得,cos A=-cos(B+C)=sin B sin C-cos B cos C=,因为cos B cos C=,所以sin B sin C=.因为bc=1,由正弦定理知=k(k>0),∴a=k sin A,b=k sin B,c=k sin C,∴bc=k2sin B sin C.∴k=.∴a=sin =1.所以由b2+c2-a2=2bc cos A,得(b+c)2-2bc-1=bc,∴(b+c)2=4.∴b+c=2.2.解(1)一班获奖的学生共6位,随机抽取2人的情况有(77,82),(77,83),(77,86),(77,93),(77,9x),(82,83),(82,86),(82,93),(82,9x),(83,86),(83,93),(83,9x) ,(86,93),(86,9x),(93,9x),共15种情况.能够为班级量化管理加4分的情况有(77,93),(77,9x),(82,83),(82,86),(83,86),共5种情况.∴能够为班级量化管理加4分的概率为.(2)由已知(93+9x+82+83+86+77+67+68+69)=(90+94+97+84+72+76+76+63+68),解得x=5,一班成绩的方差(132+152+22+32+62+32+132+122+112)=,二班成绩的方差(102+142+172+42+82+42+42+172+122)=,故一班更稳定.3.(1)证明在图1中,连接AC.又E,F分别为AD,CD中点,所以EF∥AC.即图2中有EF∥AC.又EF⊂平面PEF,AC⊄平面PEF,所以AC∥平面PEF.(2)解在翻折的过程中,当平面PEF⊥平面ABCFE时,五棱锥P-ABCFE的体积最大.在图1中,取EF的中点M,DE的中点N.由正方形ABCD的性质知,MN∥DF,MN⊥AD,MN=NE=1,AE=DF=2,AM=.在图2中,取EF的中点H,分别连接PH,AH,取AC中点O,连接PO.由正方形ABCD的性质知,PH⊥EF.又平面PEF⊥平面ABCFE,所以PH⊥平面ABCFE,则PH⊥AH.由AB=4,有PF=AE=PE=2,EH=PH=HF=,AC=4,PA==2.同理可知PC=2.又O为AC中点,所以OP⊥AC.所以OP===2.所以S=×OP×AC=×2×4=4.△PAC4.解(1)指标Y的平均值=9.6×+10×+10.4×≈10.07.(2)由分层抽样法知,先抽取的6件产品中,指标Y在[9.8,10.2)内的有3件,记为A1、A2、A3;指标Y在(10.2,10.6]内的有2件,记为B1、B2;指标Y在[9.4,9.8)内的有1件,记为C.从6件产品中随机抽取2件产品,共有基本事件15个,分别为:(A1,A2)、(A1,A3)、(A1,B1)、(A1,B2)、(A1,C)、(A2,A3)、(A2,B1)、(A2,B2)、(A2,C)、(A3,B1)、(A3,B2)、(A3,C)、(B1,B2)、(B1,C)、(B2,C).其中,指标Y都在[9.8,10.2]内的基本事件有3个:(A1,A2)、(A1,A3)、(A2,A3).所以由古典概型可知,2件产品的指标Y都在[9.8,10.2]内的概率为P=.(3)不妨设每件产品的售价为x元,假设这48件样品每件都不购买该服务,则购买支出为48x元.其中有16件产品一年内的维护费用为300元/件,有8件产品一年内的维护费用为600元/件,此时平均每件产品的消费费用为η=×(48x+16×300+8×600)=x+200元.假设这48件产品每件产品都购买该项服务,则购买支出为48(x+100)元,一年内只有8件产品要花费维护,需支出8×300=2 400元,平均每件产品的消费费用ξ=×[48(x+100)+8×300]=x+150(元).所以该服务值得消费者购买.5.(1)解令C点坐标为(x,y),C1(2,0),动圆的半径为r,则根据两圆相外切及直线与圆相切的性质可得,|CC1|=1+r,d=r,C在直线的右侧,故C到定直线的距离是x+1,所以|CC1|-d=1,即-(x+1)=1,化简得y2=8x.(2)证明由题意,设直线AB的方程为x=my+1,代入抛物线方程,消去x可得y2-8my-8=0,设A(x1,y1),B(x2,y2),M(-1,t),则y1+y2=8m,y1y2=-8,x1+x2=8m2+2,x1x2=1,∴k MA+k MB===-t,2k MP=2·=-t,∴k MA+k MB=2k MP.6.解(1)函数f(x)的定义域为(-∞,+∞).f'(x)=[x2+(a+3)x+a+2]e x.因为曲线y=f(x)在点(0,f(0))处的切线与x轴平行,所以f'(0)=(a+2)e x=0,解得a=-2.此时f(0)=1≠0,所以a的值为-2.(2)因为f'(x)=[x2+(a+3)x+a+2]e x=(x+1)[x+(a+2)]e x.①若a<-1,-(a+2)>-1,则当x∈(-∞,-1)时,x+1<0,x+(a+2)<x+1<0,所以f'(x)>0;当x∈(-1,-(a+2))时,x+1>0,x+(a+2)<0,所以f'(x)<0.所以f(x)在x=-1处取得极大值.②若a≥-1,-(a+2)≤-1,则当x∈(-1,0)时,x+1>0,x+(a+2)≥x+1>0,所以f'(x)>0.所以-1不是f(x)的极大值点.综上可知,a的取值范围为(-∞,-1).(3)当a=2时,g(x)=mf(x)-1=m(x2+3x+1)e x-1(x∈R),∴g'(x)=m(2x+3)e x+m(x2+3x+1)e x=m(x2+5x+4)e x=m(x+1)(x+4)e x.当m=0时,函数g(x)=mf(x)-1=-1,不可能有3个零点;①当m<0时,令g'(x)=m(x+1)(x+4)e x=0,解得x1=-4,x2=-1.令g'(x)>0,得-4<x<-1,则g(x)在区间(-4,-1)上单调递增;令g'(x)<0,解得x<-4或x>-1,则g(x)在区间(-∞,-4)和(-1,+∞)上单调递减; 由于当x<-4时,x2+3x+1<0恒成立,m<0,e x>0,则当x<-4时,g(x)=m(x2+3x+1)e x-1<0恒成立,所以函数g(x)=mf(x)-1最多只有两个零点,即m<0不满足题意;②当m>0时,令g'(x)=m(x+1)(x+4)e x=0,解得x1=-4,x2=-1.令g'(x)>0,得x<-4或x>-1,则g(x)在区间(-∞,-4)和(-1,+∞)上单调递增; 令g'(x)<0,解得-4<x<-1,则g(x)在区间(-4,-1)上单调递减;要使函数g(x)=mf(x)-1有3个零点,则解得:m>.综上所述,m的取值范围为,+∞.7.解(1)∵曲线C的极坐标方程为ρ=,∴曲线C的直角坐标方程为x2+y2=2,将代入x2+y2=2,得t2-4t sin φ+2=0,由Δ=16sin2φ-8>0,得|sin φ|>,又0≤φ<2π,∴φ的取值范围为∪.(2)当φ=时,直线l的参数方程为消去参数t,得直线l的普通方程为x-y-2=0,设P0(ρ0,θ0),则ρ0==1,把x=ρcos θ,y=ρsin θ代入l的普通方程,得l的极坐标方程为ρcos θ-ρsin θ-2=0,当ρ0=1时,得cos θ0-sin θ0-2=0,即得sinθ0-=-1.由0≤θ<2π,得θ0-,∴θ0=,即P0的极坐标为1,.8.解(1)当a=1时,函数f(x)=|2x-1|-|x+3|,当x≤-3时,f(x)=1-2x+(x+3)=4-x,此时f(x)min=f(-3)=7,当-3<x<时,f(x)=1-2x-(x+3)=-3x-2,此时f(x)>f=-3×-2=-,当x≥时,f(x)=2x-1-(x+3)=x-4,此时f(x)min=f=-4=-,综上,f(x)的最小值为-.(2)当x∈[0,3]时,f(x)≤4恒成立,可化为|2x-a|≤x+7,即-x-7≤2x-a≤x+7恒成立,得x-7≤a≤3x+7恒成立,由x∈[0,3],得3x+7≥7,x-7≤-4, ∴-4≤a≤7,即a的取值范围为[-4,7].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲数学文化[研考点考向·破重点难点]考点1 渗透数学的美[典型例题](1)(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-1 2(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是() A.165 cm B.175 cmC.185 cm D.190 cm(2)(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共有____________个面,其棱长为____________.【解析】 (1)不妨设此人咽喉至肚脐的长度为x cm ,则26x ≈0.618,得x ≈42,故此人身高大约为26+42+105=173(cm),考虑误差,结合选项,可知选B.(2)依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体由18个正方形和8个正三角形围成,因此题中的半正多面体共有26个面.注意到该多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1. 【答案】 (1)B (2)26 2-1■ 规律方法数学文化的美学特征是构成数学文化的重要内容.数学美表现为一种抽象、严谨、含蓄的理性美,从表现形式上分为数学内容的和谐美、数学结构的形式美、几何图形的构造美、数学公式的简洁美.纵观数学领域的一切公式、公理和定理,无不是对客观世界存在的秩序、对称、和谐、统一的美的反映.[对点训练]太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案(如图),其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.112D.19解析:选B.函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118,故选B. 考点2 渗透古代名家(学派)的研究[典型例题](1)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2 017项为a 2 017,则a 2 017-5=( )A .2 023×2 017B .2 023×2 016C .1 008×2 023D .2 017×1 008(2)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.【解析】 (1)观察梯形数的前几项,得 5=2+3=a 1, 9=2+3+4=a 2, 14=2+3+4+5=a 3, …a n =2+3+…+(n +2)=(n +1)(2+n +2)2=12(n +1)(n +4), 由此可得a 2 017=12×2 018×2 021=1 009×2 021.所以a 2 017-5=(1 008+1)(2 023-2)-5=1 008×2 023. (2)由题意,得S 6=6×12×1×1×sin 60°=332.【答案】 (1)C (2)332■ 规律方法本例(1)以古希腊毕达哥拉斯学派的研究故事为背景,本例(2)以我国古代数学家刘徽创立的“割圆术”为命题背景,分别考查了数列问题和圆内接正六边形的面积问题.其中毕达哥拉斯学派的“形数”问题,备受命题者的青睐,已成为高考命题的热点问题.[对点训练]1.(2019·长沙市统一模拟考试)我国南北朝时期的数学家、天文学家——祖暅,提出了著名的祖暅原理:“幂势既同,则积不容异”.“幂”是面积,“势”是高,意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所载,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.已知某不规则几何体与如图所示三视图对应的几何体满足“幂势同”,则该不规则几何体的体积为( )A .8-4π3B .8-πC .8-2π3D .4-π2解析:选B.题中三视图对应的几何体是一个棱长为2的正方体挖去一个底面半径为1、高为2的半圆柱后剩余的部分,三视图对应的几何体的体积V =23-12×π×12×2=8-π,由祖暅原理得不规则几何体的体积为8-π,故选B.2.(2019·江西七校第一次联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,则a 2 017a 2 019-a 22 018等于( )A .1B .-1C .2 017D .-2 017解析:选A.因为a 1a 3-a 22=1×2-1=1,a 2a 4-a 23=1×3-22=-1,a 3a 5-a 24=2×5-32=1,a4a6-a25=3×8-52=-1,…,由此可知a n a n+2-a2n+1=(-1)n+1,所以a2 017a2 019-a22 018=(-1)2 017+1=1,故选A.考点3 渗透古代数学名著[典型例题](1)(2019·湖南省五市十校联考)《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该书完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示程序框图的算法思路源于该书中的“李白沽酒”问题,执行该程序框图,若输入a的值为4,则输出的m的值为()A.19B.35C.67 D.131(2)《数书九章》中对已知三角形三边长求三角形面积的求法填补了我国数学史中的一个空白,虽与著名的海伦公式形式上有所不同,但实质完全等价,由此可以看出我国古代已经具有很高的数学水平,其求法是“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.把以上这段文字用数学公式表示,即S=14⎣⎡⎦⎤c2a2-⎝⎛⎭⎫c2+a2-b222(S,a,b,c分别表示三角形的面积、大斜、中斜、小斜).现有周长为42+25的△ABC满足sin A∶sin B∶sin C=(2+1)∶5∶(2-1),试用上面给出的数学公式计算△ABC的面积为()A. 3 B.2 3C. 5 D.2 5【解析】(1)由题意,执行程序框图,可得a=4,m=5,i=1,m=7,满足条件i≤4,执行循环体,i=2,m=11,满足条件i≤4,执行循环体,i=3,m=19,满足条件i≤4,执行循环体,i=4,m=35,满足条件i ≤4,执行循环体,i =5,m =67,此时,不满足条件i ≤4,退出循环体,输出m 的值为67,故选C. (2)因为sin A ∶sin B ∶sin C =(2+1)∶5∶(2-1), 则由正弦定理得a ∶b ∶c =(2+1)∶5∶(2-1). 设a =(2+1)x ,b =5x ,c =(2-1)x , 又周长为42+25,所以42+25=(2+1)x +5x +(2-1)x , 解得x =2. 所以S =14×⎩⎨⎧⎭⎬⎫42×(2-1)2×(2+1)2-⎣⎢⎡⎦⎥⎤22×(2+1)2+22×(2-1)2-2022 = 3.故选A. 【答案】 (1)C (2)A ■ 规律方法中国古代数学取得了极其辉煌的成就,出现了刘徽、祖冲之等伟大的数学家,以及《九章算术》等经典的数学传世之作,这些中国古代数学名著是我们的丰富宝库,继新课程改革以来,高考题中出现了一些以古代名著为命题背景的试题,涉及的有《九章算术》、《数书九章》、《算法统宗》等.从某种意义上讲,这些试题的价值实际上已远远超出了试题本身.[对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V =112×底面圆的周长的平方×高,由此可推得圆周率π的取值为( )A .3B .3.1C .3.14D .3.2解析:选A.设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得,体积为V =πr 2h .由题意知V =112×(2πr )2×h ,所以πr 2h =112×(2πr )2×h ,解得π=3.故选A.2.《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大的正方形,如图所示,若图中直角三角形两锐角分别为α,β,且小正方形与大正方形的面积之比为4∶9,则cos(α-β)的值为( )A.59B.49C.23D .0解析:选A.设大正方形的边长为1,由小正方形与大正方形的面积之比为4∶9,可得小正方形的边长为23,则cos α-sin α=23,①sin β-cos β=23.②由题意可得α+β=π2,所以cos α=sin β,sin α=cos β.①×②,可得49=cos αsin β+sin αcos β-cos αcos β-sin αsin β=sin 2β+cos 2β-cos(α-β)=1-cos(α-β),所以cos(α-β)=59.故选A.[练典型习题·提数学素养] 一、选择题1.我国古代数学著作《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A .104人B .108人C .112人D .120人解析:选 B.由题设可知这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108.故选B.2.如图,半径为1的圆形古币内有一阴影区域,在圆内随机撒一大把豆子,共n 颗,其中,落在阴影区域内的豆子共m 颗,则阴影区域的面积约为( )A.m nB.n mC.m πnD.n πm解析:选C.设阴影区域的面积为S ,由几何概型概率计算公式可得S π×12=S π=mn ,所以S =m πn,故选C.3.将元代著名数学家朱世杰的《四元玉鉴》中的一首诗改编如下:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表示如图,用x 表示壶中原有酒的量,可知最终输出的x =0,则一开始输入的x 的值为( )A.34 B.1516 C .4D.78解析:选D.这是一道函数与程序框图相结合的题,当i =1时,酒量为2x -1; 当i =2时,酒量为2(2x -1)-1=4x -3; 当i =3时,酒量为2(4x -3)-1=8x -7; 当i =4时,酒量为0, 即2(4x -3)-1=0, 解得x =78.故选D.4.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列第20项为( )A .180B .200C .128D .162解析:选B.根据前10项可得规律:每两个数增加相同的数,且增加的数构成首项为2,公差为2的等差数列.可得从第11项到20项为60,72,84,98,112,128,144,162,180,200.所以此数列第20项为200.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A.根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝⎛⎭⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A.6.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是( )A .336B .510C .1 326D .3 603解析:选B.由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510.7.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如图),四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边长为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在“黄实”区域的概率为( )A.14B.13C.125D.2573解析:选C.因为直角三角形中一条较长的直角边长为8,直角三角形的面积为24,所以可得另外一条直角边长为6,所以小正方形的边长为8-6=2,则“黄实”区域的面积为22=4,因为大正方形的面积为82+62=100,所以小球落在“黄实”区域的概率为4100=125,故选C.8.《九章算术》是我国古代数学成就的杰出代表,它的出现标志着中国古代数学形成了完整的体系.其中《方田》章有弧田面积计算问题,术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢).弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弧田弦AB 等于6米,其弧田弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则cos ∠AOB =( ) A.125 B.325 C.15D.725解析:选D.如图,依题意AB =6,设CD =x (x >0),则12(6x +x 2)=72,解得x =1.设OA=y ,则(y -1)2+9=y 2,解得y =5.由余弦定理得cos ∠AOB =25+25-362×5×5=725,故选D.9.(2019·昆明市质量检测)数列{F n }:1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( )A .S 2 019=F 2 021-1B .S 2 019=F 2 021+2C .S 2 019=F 2 020-1D .S 2 019=F 2 020+2解析:选A.根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1, S 4=F 4+S 3=F 4+F 5-1=F 6-1, S 5=F 5+S 4=F 5+F 6-1=F 7-1, …,所以S 2 019=F 2 021-1.10.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A.392 B.752 C .39D.6018解析:选B.设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B.11.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A.由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸),则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸),所以这一天该地的平均降雨量约为342ππ×122≈2(寸),故选A.12.(2019·江西玉山一中期中)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图.在鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A.如图,作PQ ⊥BC 于点Q ,作QR ⊥BD 于点R ,连接PR ,则PQ ∥AB ,QR ∥CD . 因为PQ ⊥BD ,且PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x3.又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A.13.杨辉三角又称“贾宪三角”,是因为贾宪约在公元11世纪首先使用“贾宪三角”进行高次开方运算,而1261年杨辉在《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于杨辉三角.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .2 017×22 016B .2 018×22 015C .2 017×22 015D .2 018×22 016解析:选B.由题意,最后一行为第2 017行,且第1行的最后一个数为2×2-1,第2行的最后一个数为3×20,第3行的最后一个数为4×21…第n 行的最后一个数为(n +1)×2n-2,则第2 017行仅有的一个数为2 018×22 015,故选B.14.(2019·蓉城名校第一次联考)高斯是德国著名的数学家,享有“数学王子”的美誉,以他的名字“高斯”命名的成果达110个,其中的一个成果是:设x ∈R ,则y =[x ]称为高斯函数,[x ]表示不超过x 的最大整数,如[1.7]=1,[-1.2]=-2,并用{x }表示x 的非负纯小数,即{x }=x -[x ],若方程{x }=1-kx 有且仅有4个实数根,则正实数k 的取值范围为( )A.⎣⎡⎭⎫15,14B.⎝⎛⎦⎤15,14 C.⎣⎡⎭⎫14,13 D.⎝⎛⎦⎤14,13解析:选D.根据题意可得函数y ={x }在x 轴正半轴的图象如图所示,函数y =1-kx 为过定点P (0,1)的直线,所以要使方程{x }=1-kx 有且仅有4个实数根且k 为正实数,则直线y =1-kx 应在P A ,PB 之间以及恰好在P A 处,所以-13≤-k <-14,即k ∈⎝⎛⎦⎤14,13.故选D. 二、填空题 15.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)解析:表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R ,(2R )2=62+22+12,解得R 2=414,所以该球形容器的表面积的最小值为4πR 2=41π.答案:41π16.《九章算术》是我国古代内容极为丰富的数学名著,其中“勾股”章讲述了“勾股定理”及一些应用.直角三角形的三条边分别称为“勾”“股”“弦”.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,若线段PF 2,PF 1分别是Rt △F 1PF 2的“勾”“股”,则点P 的横坐标为________.解析:由题意知半焦距c =3,又PF 1⊥PF 2,故点P 在圆x 2+y 2=3上,设P (x ,y ),联立,得⎩⎪⎨⎪⎧x 2+y 2=3,x 24+y 2=1,得P ⎝⎛⎭⎫263,33.故点P 的横坐标为263. 答案:26317.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了黄金分割,其比值约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n2cos 227°-1=________.解析:由题设n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°, m n2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=2·(2sin 18°cos 18°)cos 54°=2sin 36°sin 36°=2.答案:218.(2019·四川遂宁市模拟)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被合称为亚历山大时期的数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.如动点M 与两定点A ⎝⎛⎭⎫95,0,B (5,0)的距离之比为35时的阿波罗尼斯圆为x 2+y 2=9.下面,我们来研究与此相关的一个问题.已知圆O :x 2+y 2=1上的动点M 和定点A ⎝⎛⎭⎫-12,0,B (1,1),则2|MA |+|MB |的最小值为________. 解析:如图,取点K (-2,0),连接OM ,MK .因为|OM |=1,|OA |=12,|OK |=2,所以|OM ||OA |=|OK ||OM |=2.因为∠MOK =∠AOM ,所以△MOK ∽△AOM ,所以|MK ||MA |=|OM ||OA |=2,所以|MK |=2|MA |,所以|MB |+2|MA |=|MB |+|MK |,易知|MB |+|MK |≥|BK |,所以|MB |+2|MA |=|MB |+|MK |的最小值为|BK |的长.因为B (1,1),K (-2,0),所以|BK |=(-2-1)2+(0-1)2=10.答案:10。