信号波形合成实验电路设计

合集下载

信号波形合成实验电路的设计与制作

信号波形合成实验电路的设计与制作

摘要:任何电信号都是由不同频率、幅值、初相的正弦波叠加而成的。

本方案设计了一个信号波形的合成电路,通过方波振荡器产生的一定频率的方波,经分频,滤波后得到按傅里叶级数展开的基波和3次、5次谐波,经移相后将其中的基波与多次谐波相叠加后模拟合成方波。

本方案采用了大量TI 公司的芯片例如CD4046、CD4018、MSP430F149、OPA820等。

关键词:CD4046CD4018MSP430F149OPA820基波谐波方波1方案设计1.1系统分析系统设计框图如图1所示。

图1系统分析该系统主要由方波振荡电路、分频滤波电路、移相电路、加法电路及幅值测量显示电路组成。

由方波振荡电路产生150KHZ 方波,经分频分别得到10KHZ、30KHZ 和50KHZ 的方波,通过滤波得到10KHZ、30KHZ 和50KHZ正弦波。

正弦波经移相后由加法电路叠加生成合成信号,同时由幅值测量显示电路显示对应正弦波的幅值。

1.2系统设计与理论计算振荡电路振荡电路如图2所示。

该模块主要由锁相环CD4046构成的电路来实现。

要产生频率为10kHz 和30kHz,幅度为6V 和2V 的正弦波信号,则输入信号幅度必须大于6V,锁相环锁定在30KHZ附近。

图2振荡电路CD4046是通用的CMOS 锁相环集成电路,其锁相环采用的是RC 型压控振荡器。

当9脚输入端输入5V 电源时,电路即起基本方波振荡器的作用。

振荡器的充、放电电容C 1接在6脚与7脚之间,调节电阻R2的阻值即可调整振荡器振荡频率,振荡方波从4脚输出。

f 0=1/8*C 1*((V 1-V GS )R 1+(V DD -2*V TP )R 2)其中V 1是9脚的输入电压,V GS 是锁相环内部MOS 管的栅-源极压降,V TP 是栅极的开启阈值电压,V DD 是工作电压。

当C 1=103Pf,R 1=100k 时,振荡频率变化范围为80-150KH Z 。

分频电路CD4018是一个高电压型可预置1/N 计数分频器,固定可编程2,3,4,5,6,7,8,9,10分频。

信号波形合成实验电路+电路图

信号波形合成实验电路+电路图

信号波形合成实验电路+电路图信号波形合成实验电路+电路图第一章技术指标1 系统功能要求2 系统结构要求第二章整体方案设计1 方案设计2 整体方案第三章单元电路设计1 方波振荡器2 分频电路设计3 滤波电路设计4 移相电路设计5加法电路设计6整体电路图第四章测试与调整1 分频电路调测2 滤波电路调测3 移相电路调测4加法电路调测5整体指标测试第五章设计小结1 设计任务完成情况2 问题与改进3 心得体会第一章技术指标1 系统功能要求1.1 基本要求(1)方波振荡器的信号经分频滤波处理,同时产生频率为10kHz和30kHz 的正弦波信号,这两种信号应具有确定的相位关系;(2)产生的信号波形无明显失真,幅度峰峰值分别为6V和2V;(3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kH和 30kHz正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图1所示。

图1 利用基波和3次谐波合成的近似方波1.2 发挥部分再产生50kHz的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波。

2 系统结构要求2.1 方波振荡器:产生一个合适频率的方波,本实验中选择6MHz;2.2 分频器:将6MHz方波分频出10kHz、30kHz和50kHz的方波;2.3 滤波器:设计中心频率为10kHz、30kHz、50kHz三个滤波电路,产生相应频率的正弦波;2.4 移相器:调节三路正弦信号的相位;2.5 加法器:将10kHz、30kHz和50kHz三路波形通过加法电路合成,最终波形如图2。

2.6该系统整体结构如图3图2 基波、三次谐波和五次谐波合成的方波图3 电路示意图第二章整体方案设计1 方案设计1.1理论分析周期性函数的傅里叶分解就是将周期性函数展开成直流分量、基波和所有n阶谐波的迭加。

数学上可以证明方波可表示为:(1)其中A=4h/ ,h为方波信号峰值。

已知基波峰峰值要求为6V,故A=3 ,所以3次谐波对应的幅值为1V,5次谐波对应的幅值为0.6V。

信号波形合成实验电路

信号波形合成实验电路

信号波形合成实验电路摘要:本设计通过ICL8038产生300K方波信号,再通过计数器CD4518及74LS161与D 触发器分频成多个不同频率的方波信号,并将这些信号经过巴特沃斯低通滤波器、反相比例运放电路、 型滤波电路、跟随器,将其转换为10K、30K、50K正弦信号,再经RC移相电路之后,利用同相输入求和加法器将峰峰值分别为6V、2V、1.2V的正弦波合成为近似方波及其他信号。

Abstract:This design can produce 300KHz square-wave signals by ICL8038, then spilt frequency through CD4518 counter with D flip-flop 74LS161 , and will put these signals through butterworth low-pass filter, opposite proportion amp circuit, filter circuit and follower circuit,and will produce 10KHz,30KHz and 50KHz sine signals, then by using RC phase-shifting circuit with these signals and same-phase sum adder,it can compound 6V、2V、1.2V sine signals to produce approximate sine signals and other signals.一、系统方案与论证1.1高频方波产生电路的比较方案一:采用555定时器,555 定时器成本低,性能可靠,只需要外接几个电阻、电容就可以产生方波。

缺点是本电路需要产生高频方波,而用555定时器产生的高频方波不稳定。

方案二:采用ICL8038精密压控函数发生器,ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~1M Hz的正弦波、三角波、矩形波等脉冲信号。

信号波形合成实验电路

信号波形合成实验电路

信号波形合成实验电路(C 题)内容介绍:该项目基于多个正弦波合成方波与三角波等非正弦周期信号的电路。

使用555电路构成基准的方波振荡信号,以74LS161实现前置分频形成10KHz 、30kHz 、50kHz 的方波信号,利用TLC04滤波器芯片获得其正弦基波分量,以TLC084实现各个信号的放大、衰减和加法功能,同时使用RC 移相电路实现信号的相位同步;使用二极管峰值包络检波电路获得正弦信号的幅度,以MSP430作为微控制器对正弦信号进行采样,并且采用段式液晶实时显示测量信号的幅度值。

1方案 1.1题目分析考虑到本设计课题需要用多个具有确定相位和幅度关系的正弦波合成非正弦周期信号,首选使用同一个信号源产生基本的方波振荡,使得后级的多个正弦波之间保持确定的相位关系。

在滤波器环节,为了生成10kHz 、30kHz 和50kHz 的正弦波,我们需要使用三个独立的滤波器,由于输入滤波器的是10kHz 、30kHz 和50kHz 的方波信号,所以可以使用带通滤波器或者低通滤波器,并且尽量维持一致的相位偏移。

从Fourier 信号分析理论看,合成 数学上可以证明此方波可表示为:)7sin 715sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ三角波也可以表示为:)7sin 715sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ由以上的数学分析可知,保持各个正弦波之间的相位和幅度的准确关系是准确合成方波和三角波的关键,为此,需要为各个频率的正弦波设计移相电路和放大电路以调节大小和相位关系。

在正弦波幅度测量与显示部分中,需要使用MCU 采集并处理信息,使用液晶显示数值。

1.2系统结构系统结构如图1所示,使用同一个方波发生器作为基准,以便实现相位同步;为补偿在分频器和滤波器中出现的相位偏移,需要后级进行相位和幅度校准。

信号波形合成实验电路的设计与制作

信号波形合成实验电路的设计与制作
r u me n t s . US A.
图 7 峰 值 检 波 电路
【 3 】 MSP 4 3 O x 1 x x F a m I v Us e r 。 s Gu i d e E r r a t a , T e x a s I n s t —
r u me n t s . US A.
幅值检 测显 示 电路
2 9 7
1所 示 。
表 ) 实际频 率( H )峰 峰值 ( V) 测量值( V) 测量误差
图 6 加 法 电路
参考文献 :
【 1 慷 华光. 《 电子技术基础——模 拟部分》 , 高等教育出版社 , 2 0 0 6
1.
【 2 ] SL AUO 4 9 D, MSP 4 3 0 x1 x x F a mj l v Us e r ‘ s Gu i d e , T e x a s I n s t —
图 5 移 相 电 路
移 相 电路如 图 5所 示 , 由两 级 运放 组 成 , 本 设计 中采 用L F 3 5 3, 第一 级运 放 与 C1 7 、 R 2 3构 成 有源微 分网络 , 第 图8 MS P 4 3 0 F 1 4 9幅 值测 量 显 示 电路 二级 运放 与 R 2 4 、 C 1 9组 成有 源积 分 网络。 当输 入正 弦 交 其 中 MS P 4 3 0 F 1 4 9是 T I 公司 1 6位 超 低 功 耗 单 片 流信 号 时 , 第 一 级 运放 输 出超 前 相 位信 号 , 第 二级 运 放输 机。由 2个 1 6位定 时器 、 8路 快速 1 2位 A / D 转换器 、 2个 出一 滞 后相 位信 号 ,通过 调 节 R 2 4可 使输 出信 号 与 输入 通用 串行 同步 / 异步 通信 信 号 接 口和 1 8个 I / O 引脚 等构 信 号相 位 发生 变化 。 成 的微 控 制器 。 其特 点是 电源 电压 范 围为 1 . 8 V 一 3 . 6 V , 超低 加 法 电路 功耗 , 内部 集成 看 门狗定 时器 。 加 法 电路 如 图 6所 示 ,本 设计 采 用 同相 输 入 加 法 电 通过 F 1 4 9单 片 机 的 P 1 . 0 、 P 1 . 1和 P 1 . 2口分 别进 行 路。输出 U 。 = ( 1 + R 2 5 , R 2 7 ) ( U1 + U 2 + U 3 】 。当 R 2 5 = R 2 7 时, U 。 = 2 AD采样 ,得 到 1 O K H Z 、 3 0 K H Z和 5 0 K H Z正 弦波 的幅值 , ( U + U 2 + U 。 ) , 此时 实现输 入信 号 叠加 。 通 过 按键 S W1 、 S W2 、 S W 3切 换 在 1 2 8 6 4液 晶 上 显 示 各 自峰值。 2 测试 结果 在 测试 阶段 , 我 们 对得 到 的正 弦波 进 行 了频 率 、 峰 峰 值 的测 量并计 算 了峰峰值 测 量误差 。 测试 得 到 的数 据如 表

方波信号合成电路

方波信号合成电路

摘要:信号波形合成实验电路主要由120KHz的方波发生电路、分频电路、滤波电路、调理电路、加法电路等模块组成。

120KHz的方波信号通过30分频、10分频、6分频产生4KHz、12KHz、20KHz的方波信号。

经滤波电路和调理电路得到正弦波信号,通过加法电路将信号合成近似方波信号。

关键词:信号波形合成;30分频;10分频;6分频一、方案比较与论证(一)、项目总体方案分析(二)1.方波信号产生电路方案一:用555定时器接成的多谐振荡器,能使产生的方波占空比可调,即高电平持续时间与低电平持续时间的比值可调;占空比10%~90%。

产生频率约为1.5KHZ的矩形波,矩形的电压峰峰值为电源电压+5V。

该频率难达到150KHz。

方案二:用TLC083芯片,它是一种迟滞比较器,具有开环特性,压摆率可达到19V/us,带宽10MHz。

通过以上比较分析,我们选用方案二。

2.分频器:方案一:采用可编程逻辑控制器方案二:采用74LS161对120KHZ的方波信号进行分频可得占空比为50%的12K.20KHZ的信号,它的电路构成比较简单,成本较低3.滤波电路方案一:采用RC滤波电路,由于电阻R与频率变化无关,RC低通滤波器在器件选材方面要简单,但不适合大功率输出,仅可作为弱信号处理与微小功率应用。

方案二:采用TLC04芯片,四阶低通滤波器。

TLC04的截止频率的稳定性只与时钟频率稳定性相关,截止频率时钟可调,其时钟一截止频率比为50:1,因而设计截止频率为1/1.69×RF1×CF1×50=251.8Hz,满足了振动时效和振动焊接工艺的要求。

通过以上方案比较,我们选用方案二。

4.调整电路方案一:同相比例运算电路,它是深度电压串联负反馈电路,调节反馈电阻和反相输入电阻比值可调节比例系数,且比例系数大于或等于一方案二:反相比例运算电路,它是深度电压并联负反馈电路,可作为反相放大器,调节反馈电阻和反相输入电阻比值即可调节比例系数,比例系数既可大于一也可小于一,但它不可去处直流分量方案三:在反相比例运算电路的基础上将反相比例运算电路的正向输入端电阻改成可调电阻,并在可调电阻的另两端接上+、-5V 。

【原创】信号波形合成实验电路

【原创】信号波形合成实验电路

信号波形合成实验电路摘要:本文介绍了一个信号波形合成的电路方案。

该电路能产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和三角波。

该电路用运放构成的迟滞比较器并结合RC震荡电路产生了方波,产生的方波再经滤波电路进行分频产生出不同频率的正弦波,这些不同频率的正弦波经移相电路形成不同相位的正弦波,再经由运放构成的加法器电路最终产生合成信号。

此外,该电路还以LM3s811为主控制器对产生的信号的幅度和频率进行测量和数字显示。

所有指标都达到题目要求。

关键词:方波电路分频与滤波移相电路加法器电路Abstract:This article describes a signal waveform synthesis circuit scheme. The circuit can produce several different frequency sinusoidal signal, and these signals and then to an approximate square wave synthesis and other signals. The circuit amplifier consisting of comparator with hysteresis RC oscillation circuit produced a square wave, square wave generated by the filter circuit for frequency division produces different frequency sine wave, these different frequency sine wave and then via the formation phase-shift circuit different phase sine wave, then through the amplifier consisting of Adder the resulting composite signal. In addition, this circuit is also the main controller LM3s811 circuit on the amplitude of the signal measurement and digital display. All indicators have reached the required title.Key words::The shock wave circuit, frequency division and filtration, phase-shifting circuit, adder circuit一、作品简介根据题目要求,此波形发生器的设计主要包括四个部分:方波振荡电路、分频与滤波电路、移相电路、加法器电路。

信号波形发生与合成

信号波形发生与合成

信号波形发生与合成摘要本实验设计验证制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。

本实验使用了集成运放TL081A产生幅值为5V,频率为1kHz的方波,再利用有源低通滤波器电路进行滤波,得到幅度峰峰值为12V,频率为1kHz的正弦基波分量,同时,利用有源带通滤波器可得到幅度峰峰值为4V,频率为3kHz的正弦三次谐波分量。

再用移相电路对正弦基波分量进行相位调节,最后用加法器电路将移相后的基波和三次谐波相加合成近似方波信号,近似方波信号幅度为5V。

所有误差幅度要求小于等于5%。

关键词:方波发生电路、幅值、有源低通滤波电路、有源带通滤波电路、峰峰值、移相电路、加法器一、设计选题 1. 题目设计:设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。

系统框图如图1所示。

矩形波发生电路滤波分频移相器加法器正弦波产生实验方波合成实验矩形波测试点基波测试点三次谐波测试点移相后基波测试点合成信号测试点图1 系统框图2. 实验要求:(1)实验1—矩形波发生电路1、矩形波发生电路产生1kHz 的方波(50%占空比),频率误差小于5%,方波波形幅度为5V ,幅度误差小于5%。

2、矩形波发生电路输出阻抗o r =50 Ω。

3、使用示波器测量矩形波的上升时间和下降时间,用数学表达式表达输出的矩形波信号。

(2)实验2—滤波分频电路1、矩形波发生电路产生的信号经两路不同频率有源滤波处理,同时产生频率为1kHz 和3kHz 的正弦波信号。

2、其中基波产生采用低通滤波器,要求-3dB 带宽为1kHz ,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为12V ,幅度误差小于5%。

3、其中三次谐波产生采用带通滤波器,要求中心频率为3kHz ,-3dB 带宽小于500Hz ,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为4V ,幅度误差小于5%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_____________________________________________________________________________ 设计报告信号波形合成实验电路2016-1-17设计报告信号波形合成实验电路摘要:利用NE555产生10kHz的基准方波信号,用CPLD EPM1270对方波信号进行分频,分别产生10KHZ,30KHz,50KHz的方波信号,以及500KHz,1.5MHz的时钟信号(用于巴特沃斯低通滤波器的时钟信号),并完成数据转换控制及LCD显示驱动;用TI的TLC04ID四阶巴特沃斯低通滤波器对10KHz,30KHz方波进行低通滤波,产生相应的正弦波信号,而50KHz的正弦波信号,用二阶有源带通滤波器对50KHz的方波进行处理来获得;采用有源RC网络对正弦波进行移相,调整电阻R可实现对10KHZ,30KHz,50KHz的正弦波信号约101度范围的移相;采用运放求和电路对10KHZ,30KHz,50KHz的正弦波信号进行相加,实现近似方波、三角波的合成。

另外,用AD563将正弦交流电压转换成直流电压,用TI的ADC TLC549进行电压幅度检测,测量误差在5%以内。

完成了该题目的基本要求和发挥部分的全部内容。

共用TI公司五种IC。

关键词:波形合成滤波器移相网络电压测量一、系统方案论证根据题目要求,设计制作一个电路,将产生的频率为6MHz方波信号,经分频滤波后得到10KHz、30KHz、50KHz频率的正弦信号,然后将这些信号再合成为近似方波信号和近似三角波信号,并制作数字显示电表,检测并显示各正弦波信号的幅值。

1.方波振荡器方案比较方案1:555电路产生方波信号方案2:运放电路产生方波信号方案3:用门电路及石英晶体产生方波信号。

其中,方案1、2所产生的方波信号频率不高,频率稳定性较差,而方案3产生的方波信号频率稳定度高,也可产生较高频率(MHz以上)信号,故采用方案3产生方波信号。

2.分频电路方案比较方案1:采用选频电路提取方波的谐波信号,分别得到基波、三次谐波和五次谐波频率信号。

缺点:对选频电路的指标要求高,电路不易实现,得到的谐波信号也不稳定。

方案2:采用CPLD进行分频优点:电路实现简单,也易于得到各频率点的方波信号。

本设计选用方案2。

3.滤波电路方案比较方案1:用LC或有源方法,采用低通或带通方式,将方波的基频信号提取出来;方案2:采用TI专用芯片TLC04组成四阶巴特沃斯低通滤波器实现。

电路实现简单,但该芯片的最高截止频率只有30KHz,无法实现50KHz信号的滤波。

本设计,结合方案1、方案2,10KHz,30KHz的低通滤波采用TI专用芯片TLC04来实现,而50KHz的正弦波信号提取却采用二阶有源带通滤波来实现。

4.移相电路方案比较可采用无源或有源RC网络进行移相。

本设计采用有源移相方式。

理论上,可实现0—180度的相移。

另外,可结合实际的相移需要,在大相移范围要求时,用CPLD实现,小范围(0-90度)移相可用有源RC网络来调整。

5.电压检测及显示电路方案比较方案1:采用高速A/D进行交流电压检测,并用LCD显示;方案2:采用专用电路AD563进行交流电压变换为有效值直流电压,并用ADC 进行电压检测,最后LCD或用四位数码管进行电压显示。

相比之下,方案1要求ADC的转换速率要求较高,数据处理量较大,一般要结合MCU才能实现。

本设计,结合以上两方案的优点,先用AD563进行交流电压变换为直流电压,再用TI的ADC TLC549进行电压检测,并用CPLD完成测量数据转换、控制及LCD显示驱动,由1602 LCD进行电压显示,得到所测正弦波电压的峰值。

1所示。

图1 信号波形合成实验电路组成框图二、 理论分析与计算1. 方波、三角波信号的傅里叶级数表达式方波、三角波的傅里叶级数展开式分别为: 方波:U(t)=4Um π(sin ωt+13 sin3ωt+15 sin5ωt+17 sin7ωt+…) 三角波:U(t)=8Um π2(sin ωt - 19sin3ωt+125sin5ωt-…)若基波为10KHz ,幅度为6Vpp 的正弦波信号,则合成近似方波所需的30KHz,50KHz 的正弦波信号幅度分别应为2Vpp ,1.2Vpp ;同理,合成近似三角波所需的各信号幅度分别应为0.67Vpp ,0.24Vpp ,且各信号均为同相信号。

2. 有源二阶带通滤波器参数分析与计算常用的巴特沃斯有源滤波器的形式主要有压控电压源二阶带通滤波器和无限增益多路负反馈二阶带通滤波器,其组成原理图分别如图2、图3所示。

其中,压控电压源二阶带通滤波器的带宽与 中心频率点的电压增益有关,带宽越窄,电压增益越大。

如若带宽为中心频率的10%,则中心点的电压增益为29。

本设计中,带通滤波器的输入电压约1.2Vpp ,为防止输出饱和,放大量不宜过大;再则,压控电压源二阶带通滤波器的控干扰能力也不如无限增益多路负反馈二阶带通滤波器,故本设计采用无限增益多路负反馈二阶带通滤波器。

u o u o 图 2 压控电压源二阶带通滤波器 图3 无限增益多路负反馈有源二阶带通滤波器在图3中,电路的传输函数:⎪⎪⎭⎫⎝⎛+++-=213232111121)(R R R C s C R s s CR s A u 22ooouos Qs sQA ωωω++= (1)上式中:21ωωω⋅=o 为带通滤波器的中心角频率。

1ω、2ω分别为带通滤波器的高、低截止角频率。

中心角频率: ⎪⎪⎭⎫ ⎝⎛+=2123111R R C R o ω (2) 通带中心角频率o ω处的电压放大倍数: 132R R A uo -= (3)32CR Q=ω (4) 品质因数: ff BWQ ∆==ω 时)0(ω<<BW (5) 设计指标:Q=7,f 0=30KHz ,取pF F F f C 200)(3000010)(100===μμ,则 R 1=55.73K Ω≈56 K Ω,R 3=222.92 K Ω≈220 K Ω,R 2=1.16K Ω≈1.1K Ω 3. 移相电路分析与计算图4是移相电路的原理图。

类似于差分放大电路,在f0=12πR0Co的频率点,低于f 0的频率超前相移,高于f 0的频率作滞后相移。

若将R0作∞~0Ω的连续变化,理论上可获得0°~180°的相移效果。

在设计时,取f0为10KHz, C=1nF,可求得 R0=15.92K Ω。

在实际电路中,用24K Ω电位器进行调节。

具体看电路设计部分的仿真结果。

图4 移相电路原理图三、 电路与软件设计1. 方波产生电路设计石英晶体的选频特性非常好,可用其与反相器一起产生方波信号。

如图5,反相器为TTL 门电路,则R1、R2常选取0.7~2K Ω; C1和C2用作反相器间的信号耦合;最后一级反相器用作提高输出驱动能力。

2. 巴特沃斯低通滤波器设计 以TI 的TLC04巴特沃斯低通滤波器芯片来实现。

其中,该四阶低通滤波输出截止频率f out 为输入时钟频率的1/50,且其最大截止频率为30KHz 。

为此, 可用其来实现10KHz,30KHz 方波信号提取其基波,从而分别得到10KHz 、30KHz 的正弦波信号。

其中,设计的截止频率分别为10KHz 、30KHz ,所需的500KHz 、1.5MH 时钟信号由CPLD 分频得到。

3.50KHz 带通滤波器设计图7 50KHz 带通滤波器电路 图8 50KHz 带通滤波器仿真结果 根据前面的参数计算结果,设计的50KHz 带通滤波器如图7,图8是仿真结果。

可看出,R 2 220kR3 56kV3 12V4 12R 5 220+VG2C1 200pC2 200p-++U2 TLC081-++U1 TLC081R1 10kR4 10kV1 12V2 12R 6 5kVF250KHz 滤波器输出调整图5方波产生电路图6 巴特沃斯低通滤波器设计较好达到设计要求。

在滤波器输出端接一级反相放大器,以调整输出信号幅度为:对方波合成为:1.2Vpp,对于三角波合成为:0.24Vpp 。

4. 移相电路设计表1 移相电路仿真结果10KHz 30KHz 50kHz Rw=0 165.73 138.15 113.98Rw=24K Ω 61.53 21.88 12.65 相差(度)104.2116.27101.33从仿真结果可看出,通过调整电位器Rw1的电阻,较好地实现对输入信号的移相,移相范围可达 101度。

在调整Rw1时,输出信号幅度略有变化,可通过调整Rw2来使输出幅度,达到合成前的各谐波电压要求。

设计六路移相器,分别对方波、三角波合成时的三个正弦波信号的移相。

5.加法器设计图10 合成近似方波的求和电路 图11 合成近似方波电路仿真结果 根据前述的方波、三角波分解的表达式,合成方近似方波的电路及其仿真分别如图10、图11所示。

其中,后级用于调整输出信号幅度。

同理,合成方近似三角波的电路及其仿真分别如图12、图13所示。

-++U1 TLC081V1 12V2 12R1 10k+VG1VF1R 0 2kC1 1nRW2 24kVF2R W 1 24kR2 12kR3 12kV3 12V4 12R 6 12k+VG10k-++U1 TLC081R1 12kR4 12k-++U2 TLC081V1 12R5 10kR 7 5k+VG30k+VG50kR9 5kV2 12VF1加法器输出幅度调整近似方波输出R2 12kR3 12kV3 12V4 12R 6 12k+VG10k-++U1 TLC081R1 12kR4 12k-++U2 TLC081V1 12R5 10kR 7 5k+VG30k+VG50kR9 5kV2 12VF1图9 移相电路图12 合成近似三角波的求和电路图13 合成近似三角波电路仿真结果6.电压检测及显示电路设计CPLD交直流变换AD563LCD1602 ADCTLV549图14 电压检测及显示电路框图如图14。

其中,AD563的测量误差为0.2%,AD虽为8位,但选取参考电压为2.5V,只要被测电压为200mv以上,即可满足5%的测试精度要求。

有效值转化为峰值,由CPLD来完成。

7.电源电路设计根据电路功能要求,需提供±12V、±5V、+3.3V的直流电压。

设计的电源电路由变压、滤波、稳压等部分组成,其中,以LM317、LM337为核心,实现±12V、±5V的输出电压可调的电源;3.3V采用BB1117芯片来实现,确保电路的正常稳定工作。

电路部分请参看附录。

8.CPLD软件设计CPLD部分要完成对6MHz方波信号的分频,电压检测控制、有效值与峰值的转换及LCD显示驱动功能。

相关文档
最新文档