【精编】2019高考数学文一轮分层演练:第9章平面解析几何第5讲第2课时

合集下载

2019年高考数学(文科)一轮分层演练:第9章平面解析几何章末总结(含答案解析)

2019年高考数学(文科)一轮分层演练:第9章平面解析几何章末总结(含答案解析)

章末总结双曲线了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.P42A组T7一、选择题1.(必修2 P110B组T5改编)已知A(1,2),B(3,4),点P在x轴的负半轴上,O为坐标原点,若△P AB的面积为10,则|OP|=()A.9B.10C.11 D.12解析:选C.设P(m,0)(m<0),P到直线AB的距离为d,因为|AB |=(3-1)2+(4-2)2=22, 由S △P AB =10得12×22×d =10.所以d =52. 又直线AB 的方程为x -y +1=0, 所以|m +1|2=52.解得m =-11或m =9(舍去), 所以|OP |=|m |=11.选C . 2.(必修2 P 133A 组T 8改编)Rt △ABC 中,|BC |=4,以BC 边的中点O 为圆心,半径为1 的圆分别交BC 于P ,Q ,则|AP |2+|AQ |2=( )A .4B .6C .8D .10解析:选D .法一:特殊法.当A 在BC 的中垂线上时, 由|BC |=4,得|OA |=2.所以|AP |2+|AQ |2=2|AP |2=2(12+22)=10.选D .法二:以O 为原点,BC 所在的直线为x 轴,建立直角坐标系,则B (-2,0),C (2,0),P (-1,0),Q (1,0) 设A (x 0,y 0),由AB ⊥AC 得 y 0x 0+2·y 0x 0-2=-1. 即x 20+y 20=4.所以|AP |2+|AQ |2=(x 0+1)2+y 20+(x 0-1)2+y 20 =2(x 20+y 20)+2=2×4+2=10.即|AP |2+|AQ |2=10.故选D . 3.(选修1-1 P 35例3改编)如图,AB 是椭圆C 长轴上的两个顶点,M 是C 上一点,∠MBA =45°,tan ∠MAB =13,则椭圆的离心率为( )A .22 B .32 C .33D .63解析:选D .以AB 所在的直线为x 轴,AB 的中点为原点建立平面直角坐标系(图略),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0). 则直线MA ,MB 的方程分别为y =13(x +a ),y =-x +a .联立解得M 的坐标为⎝⎛⎫a 2,a 2,所以⎝⎛⎭⎫a 22a 2+⎝⎛⎭⎫a 22b 2=1,化简得a 2=3b 2=3(a 2-c 2),所以c 2a 2=23,所以c a =63.故选D .4.(选修1-1 P 61例4改编)过抛物线y 2=8x 的焦点F 的直线l 与抛物线交于A ,B 两点,与抛物线准线交于C 点,若B 是AC 的中点,则|AB |=( )A .8B .9C .10D .12解析:选B .设A ,B 在准线上的射影分别为D ,E ,且设AB =BC =m ,直线l 的倾斜角为α. 则BE =m |cos α|,所以AD =AF =AB -BF =AB -BE =m (1-|cos α|), 所以|cos α|=AD AC=m (1-|cos α|)2m .解得|cos α|=13.由抛物线焦点弦长公式|AB |=2p sin 2α得|AB |=81-19=9.故选B .或:由|cos α|=13得tan α=±22.所以直线l 的方程为y =±22(x -2),代入y 2=8x 得 8(x 2-4x +4)=8x ,即x 2-5x +4=0.所以x A +x B =5,则|AB |=x A +x B +4=9.故选B . 二、填空题5.(选修1-1 P 54B 组T 1改编)与椭圆x 249+y 224=1有公共焦点,一条渐近线方程为4x +3y =0的双曲线方程为__________________.解析:由于椭圆x 249+y 224=1的焦点为(±5,0),所以可设双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0), 所以a 2+b 2=25.① 由渐近线方程4x +3y =0得 b a =43,② 联立①②解得a =3,b =4,故双曲线方程为x 29-y 216=1.答案:x 29-y 216=16.(选修1-1 P 68A 组T 5改编)已知α∈(0,π),若曲线C :x 2+y 2 cos α=1的离心率为22,则α=________. 解析:由题意知,曲线C 为椭圆, 所以cos α∈(0,1),且C 的焦点在y 轴上. 所以a 2=1cos α,b 2=1,c 2=a 2-b 2=1cos α-1.由e =22得c 2a 2=12,即1cos α-11cos α=12.所以cos α=12,所以α=π3.答案:π3三、解答题7.(选修1-1 P 36练习T 3改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为22,过F 1的直线交椭圆于E ,F 两点,且△EFF 2的周长为8.(1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,若直线l 经过点B 且垂直于x 轴,点Q 是椭圆上异于A ,B 的一个动点,直线AQ 交l 于点M ,过点M 垂直于QB 的直线为m ,求证:直线m 过定点,并求出定点的坐标.解:(1)由椭圆的定义知|EF 1|+|EF 2|=2a ,|FF 1|+|FF 2|=2a ,又已知△EFF 2的周长为8,所以4a =8,故a =2. 又e =c a =22,故c =2,所以b 2=2,故椭圆C 的方程为x 24+y 22=1.(2)由题意A (-2,0),B (2,0),直线l :x =2,显然直线AQ 的斜率存在且不为0,设为k ,则直线AQ 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),可得点Q ⎝ ⎛⎭⎪⎫2-4k 22k 2+1,4k 2k 2+1.联立方程组⎩⎪⎨⎪⎧y =k (x +2),x =2,可得点M (2,4k ).又B (2,0),则k BQ =4k2k 2+12-4k22k 2+1-2=-12k ,所以k m =2k , 故直线m 的方程为y -4k =2k (x -2),即y =2kx , 所以直线m 过定点(0,0).8.(选修1-1 P 64A 组T 2(1)、P 41练习T 3(1)改编)已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),过点F 作直线l 交抛物线C 于A ,B 两点.椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32. (1)分别求抛物线C 和椭圆E 的方程;(2)经过A ,B 两点分别作抛物线C 的切线l 1,l 2,切线l 1与l 2相交于点M .证明:AB ⊥MF . 解:(1)由已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),可得抛物线C 的方程为x 2=4y .设椭圆E 的方程为x 2a 2+y2b 2=1(a >b >0),半焦距为c .由已知得:⎩⎪⎨⎪⎧b =1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,所以椭圆E 的方程为x 24+y 2=1. (2)证明:显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不符合题意. 故可设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y 并整理得x 2-4kx -4=0,所以x 1x 2=-4.因为抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以过抛物线C 上A ,B 两点的切线方程分别是y -y 1=12x 1(x -x 1),y -y 2=12x 2(x -x 2),即y =12x 1x -14x 21,y =12x 2x -14x 22,解得两条切线l 1,l 2的交点M 的坐标为⎝⎛⎭⎫x 1+x 22,x 1x 24,即M ⎝⎛⎭⎫x 1+x 22,-1, 所以FM →·AB →=⎝⎛⎭⎫x 1+x 22,-2·(x 2-x 1,y 2-y 1)=12(x 22-x 21)-2⎝⎛⎭⎫14x 22-14x 21=0. 所以AB ⊥MF .。

2019届江苏高考数学一轮复习学案:第9章 平面解析几何 word版全套打包

2019届江苏高考数学一轮复习学案:第9章 平面解析几何 word版全套打包

第九章平面解析几何§9.1直线的方程考情考向分析以考查直线方程的求法为主,直线的斜率、倾斜角也是考查的重点.题型主要在解答题中与圆、椭圆等知识交汇出现,有时也会在填空题中出现.1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:与x轴平行或重合的直线的倾斜角为0°.(2)范围:直线的倾斜角α的取值范围是[0°,180°).2.斜率公式(1)若直线l的倾斜角α≠90°,则斜率k=tan_α.(2)P1(x1,y1),P2(x2,y2)在直线l上且x1≠x2,则l的斜率k=y2-y1 x2-x1.3.直线方程的五种形式题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)若直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ ) 题组二 教材改编2.[P80练习T6]若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 答案 1解析 由题意得m -4-2-m=1,解得m =1.3.[P87习题T13]过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +ya =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0. 题组三 易错自纠4.直线x +(a 2+1)y +1=0的倾斜角的取值范围是________. 答案⎣⎡⎭⎫3π4,π 解析 由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0, 所以倾斜角的取值范围是⎣⎡⎭⎫3π4,π.5.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过第________象限. 答案 三解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限.6.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为____________. 答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0. 综上可知,直线m 的方程为x -2y +2=0或x =2.题型一 直线的倾斜角与斜率典例 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是________. 答案 ⎣⎡⎦⎤π4,π3解析 直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为__________________. 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎡⎦⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的取值范围. 解 如图,直线PA 的倾斜角为45°,直线PB 的倾斜角为135°,由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°).思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 跟踪训练 已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为________. 答案 150° 解析 由y =2-x 2,得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图象如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2),则圆心到此直线的距离d =|-2k |1+k2,弦长AB =22-⎝ ⎛⎭⎪⎫|-2k |1+k 22=22-2k 21+k 2, 所以S △AOB =12×|-2k |1+k2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1, 当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33⎝⎛⎭⎫k =33舍去, 故直线l 的倾斜角为150°.题型二 求直线的方程典例 (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程. 解 (1)设所求直线的斜率为k , 依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 跟踪训练 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过(0,0)及(4,1)两点, ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1),∴4a +1a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0.题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题典例 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA →|·|MB →|取得最小值时直线l 的方程. 解 设A (a,0),B (0,b ),则a >0,b >0, 直线l 的方程为x a +y b =1,所以2a +1b=1.|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5=2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 命题点2 由直线方程解决参数问题典例 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小.思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.跟踪训练 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 方法一 设直线方程为x a +yb =1(a >0,b >0),把点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24, 从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线的方程为2x+3y -12=0.方法二 由题意知,直线l 的斜率k 存在且k <0, 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12, 当且仅当-9k =4-k,即k =-23时,等号成立.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.求与截距有关的直线方程典例设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求直线l的方程;(2)若l在两坐标轴上的截距互为相反数,求a.错解展示:现场纠错解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为0,∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距均存在且均不为0. 直线可变为x a -2a +1+y a -2=1, ∴a -2a +1=a -2,即a +1=1.∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0. (2)由a -2a +1=-(a -2),得a -2=0或a +1=-1,∴a =2或a =-2.纠错心得 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.1.直线3x -y +a =0(a 为常数)的倾斜角为________. 答案 60°解析 化直线方程为y =3x +a ,∴k =tan α= 3. ∵0°≤α<180°,∴α=60°.2.过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是________.答案 x =2解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4, 依题意,所求直线的倾斜角为3π4-π4=π2, ∴斜率不存在,∴过点(2,1)的直线方程为x =2.3.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________. 答案 -13解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎨⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.4.已知在平行四边形ABCD 中,A (1,2),B (5,0),C (3,4),则点D 的坐标为________. 答案 (-1,6)解析 设D (a ,b ),由平行四边形ABCD , 得k AB =k CD ,k AD =k BC ,即⎩⎨⎧0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎨⎧a =-1,b =6,所以D (-1,6).5.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为________.(用“<”连接)答案 k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.6.(2017·江苏江阴中学检测)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________. 答案 (-∞,-1)∪⎝⎛⎭⎫12,+∞解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C 时,直线l 在x 轴上的截距为-3,此时k =12,所以满足条件的直线l 的斜率的取值范围是(-∞,-1)∪⎝⎛⎭⎫12,+∞.7.已知直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点__________. 答案 (2,-2)解析 直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎨⎧x +y =0,-2x +y +6=0,解得x =2,y =-2,所以直线l 恒过定点(2,-2).8.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是______________. 答案 [)-3,0∪⎣⎡⎭⎫33,1解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1;当2π3≤α<π时,-3≤tan α<0,∴-3≤k <0. ∴k ∈[-3,0)∪⎣⎡⎭⎫33,1. 9.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为____________. 答案 x +13y +5=0解析 BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在的直线方程为y -0-12-0=x +532+5,即x +13y +5=0.10.直线l 过点(-2,2)且与x 轴、y 轴分别交于点(a,0),(0,b ),若|a |=|b |,则直线l 的方程为____________________________. 答案 x +y =0或x -y +4=0解析 若a =b =0,则直线l 过(0,0)与(-2,2)两点,直线l 的斜率k =-1,直线l 的方程为y =-x , 即x +y =0.若a ≠0,b ≠0,则直线l 的方程为x a +yb =1,由题意知⎩⎨⎧-2a+2b =1,|a |=|b |,解得⎩⎨⎧a =-4,b =4,此时,直线l 的方程为x -y +4=0.11.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.12.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解 (1)由题意,知直线l 存在斜率. 设直线l 的方程为y =k (x +3)+4,它在x 轴、y 轴上的截距分别为-4k-3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,则它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________________. 答案 4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x-1),即4x -3y -4=0.14.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值-2和最大值2.∴b 的取值范围是[-2,2].15.若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为________. 答案 -2解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin 2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0,∴sin θ-cos θ=355,② 由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2.16.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为________. 答案3π4解析 由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以a =-b ,则直线ax -by +c =0的斜率为k =ab =-1,又直线倾斜角的取值范围为[0,π),所以该直线的倾斜角为3π4. §9.2 两条直线的位置关系考情考向分析 以考查两条直线的位置关系、两点间的距离、点到直线的距离、两条直线的交点坐标为主,有时也会与圆、椭圆、双曲线、抛物线交汇考查.题型以填空题为主,要求相对较低,但内容很重要,特别是距离公式,是高考考查的重点.1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. (ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离 P 1P 2=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2.知识拓展 1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).2.两直线平行或重合的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2-A2B1=0. 3.两直线垂直的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.4.过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x +B2y+C2)=0(λ∈R),但不包括l2.5.点到直线、两平行线间的距离公式的使用条件(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2.(×)(2)如果两条直线l1与l2垂直,则它们的斜率之积一定为-1.(×)(3)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.(√)(4)点P(x0,y0)到直线y=kx+b的距离为|kx0+b|1+k2.(×)(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(6)若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于-1k,且线段AB的中点在直线l上.(√)题组二教材改编2.[P106习题T8]直线l到直线x-2y+4=0的距离和原点到直线l的距离相等,则直线l的方程是________.答案x-2y+2=0解析由题意设所求l的方程为x-2y+C=0.则|C-4|12+22=|C|12+22,解得C=2,故直线l的方程为x-2y+2=0.3.[P93练习T7]已知P(-2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m=________. 答案 1解析由题意知m-4-2-m=1,所以m-4=-2-m,所以m=1.题组三易错自纠4.直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=________. 答案2或-3解析直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则有2m=m+13≠4-2,故m=2或-3.5.直线2x+2y+1=0,x+y+2=0之间的距离是______.答案32 4解析先将2x+2y+1=0化为x+y+12=0,则两平行线间的距离为d=⎪⎪⎪⎪2-122=324.6.若直线(3a+2)x+(1-4a)y+8=0与(5a-2)x+(a+4)y-7=0垂直,则a=________.答案0或1解析由两直线垂直的充要条件,得(3a+2)(5a-2)+(1-4a)(a+4)=0,解得a=0或a=1.题型一两条直线的位置关系典例已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解(1)由已知可得l2的斜率存在,且k2=1-a.若k2=0,则1-a=0,a=1.∵l1⊥l2,直线l1的斜率k1必不存在,即b=0.又∵l1过点(-3,-1),∴-3a+4=0,即a=43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在且不为0. ∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab(1-a )=-1.(*)又∵l 1过点(-3,-1),∴-3a +b +4=0.(**) 由(*)(**)联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在, k 1=k 2,即ab=1-a ,①又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =b ,②联立①②,解得⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 跟踪训练 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)方法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎨⎧-a 2=11-a,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2.方法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0, 由A 1C 2-A 2C 1≠0, 得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎨⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0,⇔⎩⎨⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1,故当a =-1时,l 1∥l 2.(2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2, 故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23. 方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0, 可得a =23.题型二 两直线的交点与距离问题1.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________. 答案 ⎝⎛⎭⎫-16,12解析 方法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎨⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. 又∵交点位于第一象限,∴⎩⎨⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.方法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12.∴-16<k <12.2.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为_______________________.答案x+3y-5=0或x=-1解析方法一当直线l的斜率存在时,设直线l的方程为y-2=k(x+1),即kx-y+k+2=0.由题意知|2k-3+k+2|k2+1=|-4k-5+k+2|k2+1,即|3k-1|=|-3k-3|,∴k=-13.∴直线l的方程为y-2=-13(x+1),即x+3y-5=0.当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.方法二当AB∥l时,有k=k AB=-1 3,直线l的方程为y-2=-13(x+1),即x+3y-5=0.当l过AB的中点时,AB的中点为(-1,4).∴直线l的方程为x=-1.故所求直线l的方程为x+3y-5=0或x=-1.思维升华(1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.题型三对称问题命题点1点关于点中心对称典例过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为________________.答案x+4y-4=0解析设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x+4y-4=0.命题点2点关于直线对称典例如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是________.答案 210解析 直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为CD =62+22=210.命题点3 直线关于直线的对称问题典例 已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. 解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧a =613,b =3013,∴M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵直线m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 思维升华 解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎨⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决. 跟踪训练 已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程; (3)直线l 关于(1,2)的对称直线.解 (1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y2+3=0.② 由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95,③y ′=3x +4y +35. ④把x =4,y =5代入③④得x ′=-2,y ′=7, ∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7). (2)用③④分别代换x -y -2=0中的x ,y , 得关于l 对称的直线方程为 -4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.(3)在直线l:3x-y+3=0上取点M(0,3),关于(1,2)的对称点M′(x′,y′),∴x′+02=1,x′=2,y′+32=2,y′=1,∴M′(2,1).l关于(1,2)的对称直线平行于l,∴k=3,∴对称直线方程为y-1=3×(x-2),即3x-y-5=0.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例1 求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程.思想方法指导因为所求直线与3x+4y+1=0平行,因此,可设该直线方程为3x+4y+c=0(c≠1).规范解答解由题意,设所求直线方程为3x+4y+c=0(c≠1),又因为直线过点(1,2),所以3×1+4×2+c=0,解得c=-11.因此,所求直线方程为3x+4y-11=0.二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0.因此,当两直线垂直时,它们的一次项系数有必然的联系.可以考虑用直线系方程求解.典例2 求经过A(2,1),且与直线2x+y-10=0垂直的直线l的方程.思想方法指导依据两直线垂直的特征设出方程,再由待定系数法求解.规范解答解因为所求直线与直线2x+y-10=0垂直,所以设该直线方程为x-2y+C1=0,又直线过点A(2,1),所以有2-2×1+C1=0,解得C1=0,即所求直线方程为x-2y=0.三、过直线交点的直线系典例3 经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为____________.思想方法指导 可分别求出直线l 1与l 2的交点及直线l 的斜率k ,直接写出方程;也可以根据垂直关系设出所求方程,再把交点坐标代入求解;又可以利用过交点的直线系方程设直线方程,再用待定系数法求解.解析 方法一 由方程组⎩⎨⎧2x +3y +1=0,x -3y +4=0,解得⎩⎨⎧x =-53,y =79,即交点为⎝⎛⎭⎫-53,79, ∵所求直线与直线3x +4y -7=0垂直, ∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝⎛⎭⎫x +53, 即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎨⎧2x +3y +1=0,x -3y +4=0,可解得交点为⎝⎛⎭⎫-53,79, 代入4x -3y +m =0,得m =9, 故所求直线方程为4x -3y +9=0.方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又∵所求直线与直线3x +4y -7=0垂直, ∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0. 答案 4x -3y +9=01.已知△ABC 的三个顶点的坐标分别为A (-1,0),B (0,2),C (a,0),若AB ⊥BC ,则a =________. 答案 4 解析 因为k AB =2-00-(-1)=2,所以直线BC 的斜率存在,且k BC =0-2a -0=-2a .由2·⎝⎛⎭⎫-2a =-1,得a =4. 2.“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 答案 充要解析 由题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎨⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1.3.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为____________. 答案 x +2y -4=0解析 由直线与向量a =(8,4)平行知,过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x-2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),即反射光线所在的直线方程为x +2y -4=0.4.一只虫子从点O (0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是________. 答案 2解析 点O (0,0)关于直线x -y +1=0的对称点为O ′(-1,1),则虫子爬行的最短路程为O ′A =(1+1)2+(1-1)2=2.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为________. 答案823解析 ∵l 1∥l 2,∴a ≠2且a ≠0, ∴1a -2=a 3≠62a,解得a =-1, ∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =⎪⎪⎪⎪6-232=823.6.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点________. 答案 (0,2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).7.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎨⎧ y =2x ,x +y =3,得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________. 答案345解析 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线, 于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎨⎧m =35,n =315,故m +n =345. 9.已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________.答案 1 (3,3)解析 ∵直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,且l 1⊥l 2,∴a ×1+1×(a -2)=0,即a =1,联立方程⎩⎨⎧x +y -6=0,x -y =0,易得x =3,y =3,∴P (3,3).10.已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为________. 答案 -1 1 2 2解析 若直线l 1的倾斜角为π4,则-a =k =tan π4=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1-(-3)|1+1=2 2.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于4 2.(1)解 显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线. ∵方程可变形为2x -y -6+λ(x -y -4)=0,∴⎩⎨⎧ 2x -y -6=0,x -y -4=0,解得⎩⎨⎧x =2,y =-2,故直线经过的定点为M (2,-2).(2)证明 过P 作直线的垂线段PQ ,由垂线段小于斜线段知PQ ≤PM ,当且仅当Q 与M 重合时,PQ =PM ,此时对应的直线方程是y +2=x -2,即x -y -4=0. 但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而PM =42,∴PQ <42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,请说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行直线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+(-1)2=7510,所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0). 若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪c +125,即c =132或116, 所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0, 解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718.所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为________. 答案 (2,4)解析 设A (-4,2)关于直线y =2x 的对称点为(x ,y ), 则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎨⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3), ∴AC 所在直线方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎨⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎨⎧x =2,y =4,则C (2,4).14.(2017·南京、盐城二模)在平面直角坐标系xOy 中,直线l 1:kx -y +2=0与直线l 2:x +ky -2=0相交于点P ,则当实数k 变化时,点P 到直线x -y -4=0的距离的最大值为________. 答案 3 2解析 当k =0时,点P (2,2)到直线x -y -4=0的距离为22;当k ≠0时,解方程组⎩⎨⎧kx -y +2=0,x +ky -2=0,得两直线交点P 的坐标为⎝ ⎛⎭⎪⎫2-2k 1+k 2,2+2k 1+k 2, 所以点P 到直线x -y -4=0的距离为⎪⎪⎪⎪⎪⎪2-2k 1+k 2-2+2k 1+k 2-42=4⎪⎪⎪⎪⎪⎪k 1+k 2+12,为求得最大值,考虑正数k ,则有k 1+k 2=11k+k ≤12,当且仅当k =1时取等号, 所以4⎪⎪⎪⎪⎪⎪k 1+k 2+12≤4×322=3 2.15.如图,已知直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2之间的距离分别为3和2,点B 是l 2上的一动点,作AC ⊥AB ,且AC 与l 1交于点C ,则△ABC 的面积的最小值为________.答案 6解析 以A 为坐标原点,平行于l 1的直线为x 轴,建立如图所示的直角坐标系,设B (a ,-2),C (b,3).∵AC ⊥AB ,∴ab -6=0,ab =6,b =6a .Rt △ABC 的面积S =12a 2+4·b 2+9=12a 2+4·36a 2+9=1272+9a 2+144a 2≥1272+72=6(当且仅当a 2=4时取等号).16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是______________. 答案 6x -8y +1=0解析 由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正。

2019高考数学文一轮分层演练:第9章平面解析几何第5讲第2课时

2019高考数学文一轮分层演练:第9章平面解析几何第5讲第2课时

[学生用书P266(单独成册)]一、选择题1.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y2=1上的点,则|PM |+|PN |的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,12解析:选C .如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA |+|PB |=2a =10,连接PA ,PB 分别与圆相交于M ,N 两点,此时|PM |+|PN |最小,最小值为|PA |+|PB |-2R =8;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时|PM |+|PN |最大,最大值为|PA |+|PB |+2R =12,即最小值和最大值分别为8,12.2.设A 1、A 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,若在椭圆上存在点P ,使得kPA 1·kPA 2>-12,则该椭圆的离心率的取值范围是( )A .(0,12)B .(0,22) C .(22,1) D .(12,1)解析:选C .椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1(-a ,0)、A 2(a ,0),设P (x 0,y 0),根据题意,kPA 1·kPA 2=y 20x 20-a 2>-12,而x 20a 2+y 20b 2=1,所以a 2-x 20=a 2y 20b 2,于是b 2a 2<12,即a 2-c 2a 2<12,1-e 2<12,所以e >22,又e <1,故22<e <1,选C .3.(2016·高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .34解析:选A .设E (0,m ),则直线AE 的方程为-x a +ym=1,由题意可知M ⎝⎛⎭⎪⎫-c ,m -mc a ,⎝ ⎛⎭⎪⎫0,m 2和B (a ,0)三点共线,则m -mc a -m 2-c =m 2-a ,化简得a =3c ,则C 的离心率e =c a =13. 4.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )A .32B .332C .94D .154解析:选B .设向量F 1P →,F 2A →的夹角为θ.由条件知|AF 2|=b 2a =32,则F 1P →·F 2A →=32|F 1P→|cos θ,于是F 1P →·F 2A →要取得最大值,只需F 1P →在向量F 2A →上的投影值最大,易知此时点P 在椭圆短轴的上顶点,所以F 1P →·F 2A →=32|F 1P →|cos θ≤332,即F 1P →·F 2A →的最大值为332.二、填空题5.已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),A ,B 分别是椭圆长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2,若|k 1·k 2|=14,则椭圆的离心率为________.解析:设M (x 0,y 0),则N (x 0,-y 0),|k 1·k 2|=⎪⎪⎪⎪⎪⎪y 0x 0+a ·y 0a -x 0=y 20a 2-x 20=b 2⎝ ⎛⎭⎪⎫1-x 20a 2a 2-x 20=b 2a 2=14, 从而e =1-b 2a 2=32. 答案:326.已知椭圆C :x 24+y 2=1,过椭圆C 的右顶点A 的两条斜率之积为-14的直线分别与椭圆交于点M ,N ,则直线MN 恒过的定点为________.解析:直线MN 过定点D .当直线MN 的斜率存在时, 设MN :y =kx +m ,代入椭圆方程得(1+4k 2)x 2+8kmx +4m 2-4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.根据已知可知y 1x 1-2·y 2x 2-2=-14, 即4y 1y 2+(x 1-2)(x 2-2)=0,即(1+4k 2)x 1x 2+(4km -2)(x 1+x 2)+4m 2+4=0,所以(1+4k 2)·4m 2-41+4k 2+(4km -2)⎝ ⎛⎭⎪⎫-8km 1+4k 2+4m 2+4=0,即(4km -2)(-8km )+8m 2(1+4k 2)=0, 即m 2+2km =0,得m =0或m =-2k . 当m =0时,直线y =kx 经过定点D (0,0).由于AM ,AN 的斜率之积为负值,故点M ,N 在椭圆上位于x 轴两侧,直线MN 与x 轴的交点一定在椭圆内部,而当m =-2k 时,直线y =kx -2k 过定点(2,0),故不可能.当MN 的斜率不存在时,点M ,N 关于x 轴对称,此时AM ,AN 的斜率分别为12,-12,此时M ,N 恰为椭圆的上下顶点,直线MN 也过定点(0,0).综上可知,直线MN 过定点D (0,0). 答案:(0,0) 三、解答题7.已知点M 是椭圆C :x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433.(1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.解:(1)在△F 1MF 2中,由12|MF 1||MF 2|sin 60°=433,得|MF 1||MF 2|=163.由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|cos 60°=(|MF 1|+|MF 2|)2-2|MF 1||MF 2|·(1+cos 60°),解得|MF 1|+|MF 2|=42.从而2a =|MF 1|+|MF 2|=42,即a =22. 由|F 1F 2|=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1.(2)证明:当直线l 的斜率存在时,设斜率为k ,则其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k 1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)·4k (k -2)2k 2-8k=4.当直线l 的斜率不存在时,可得A (-1,142), B (-1,-142),得k 1+k 2=4. 综上,k 1+k 2为定值.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),右顶点为A ,且|AF |=1.(1)求椭圆C 的标准方程;(2)若动直线l :y =kx +m 与椭圆C 有且只有一个交点P ,且与直线x =4交于点Q ,是否存在点M (t ,0)使MP →·MQ →=0成立?若存在,求出t 的值;若不存在,说明理由.解:(1)由c =1,a -c =1,得a =2, 所以b =3,故椭圆C 的标准方程为x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12, 消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0, 所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0,即m 2=3+4k 2.设P (x P ,y P ),则x P =-4km 3+4k =-4km , y P =kx P +m =-4k 2m +m =3m,即P ⎝⎛⎭⎪⎫-4k m,3m .因为M (t ,0),Q (4,4k +m ), 所以MP →=⎝⎛⎭⎪⎫-4km-t ,3m ,MQ →=(4-t ,4k +m ),所以MP →·MQ →=⎝⎛⎭⎪⎫-4k m-t ·(4-t )+3m ·(4k +m )=t 2-4t +3+4k m(t -1)=0恒成立,故⎩⎪⎨⎪⎧t =1,t 2-4t +3=0, 即t =1.所以存在点M (1,0)符合题意.9.已知椭圆x 2a 2+y 2b2=1(a >b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解:(1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,所以a 2=3. 所以椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2),设l 方程为x =t (y -m ), 由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), 所以y 1-m =-y 1λ1,由题意y 1≠0, 所以λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.因为λ1+λ2=-3,所以y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,所以由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0, 所以(mt )2=1,由题意mt <0,所以mt =-1,满足②,得直线l 方程为x =ty +1,过定点(1,0),即Q 为定点.10.如图,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程.(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)设椭圆C 的焦距为2c ,则c =1, 因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上, 所以1a +12b =1,又a 2=b 2+c 2,所以a =2,b =c =1.故椭圆C 的标准方程为x 22+y 2=1.(2)设直线l 的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q (x 4,y 4), MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x 2+2y 2=2,消去x ,得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t 9且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t9且-3<t <3, 由PM →=NQ →,知四边形PMQN 为平行四边形, 而D 为线段MN 的中点,因此D 为线段PQ 的中点, 所以y 0=53+y 42=t 9,可得y 4=2t -159,又-3<t <3,可得-73<y 4<-1,因此点Q 不在椭圆上, 故不存在满足题意的直线l . 2.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |+|CD |=32.(1)求椭圆的方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围. 解:(1)由题意知,e =c a =22, 则a =2c ,b =c .当直线AB 的斜率为0时,|AB |+|CD |=2a +2b2a=22c +2c =32,所以c =1.所以椭圆的方程为x 22+y 2=1.(2)①当直线AB 与直线CD 中有一条的斜率为0时,另一条的斜率不存在. 由题意知S 四边形=12|AB |·|CD |=12×22×2=2.②当两条直线的斜率均存在且不为0时,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -1),则直线CD 的方程为y =-1k(x -1).将直线AB 的方程代入椭圆方程,并整理得 (1+2k 2)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2,所以|AB |=k 2+1|x 1-x 2|=k 2+1·2 2 k 2+11+2k 2=22(k 2+1)1+2k2. 同理,|CD |=22⎝ ⎛⎭⎪⎫1k 2+11+2k2=22(k 2+1)k 2+2.所以S 四边形=12·|AB |·|CD |=12·22(k 2+1)1+2k 2·22(k 2+1)k 2+2 =4(k 2+1)22k 4+2+5k2 =4⎝ ⎛⎭⎪⎫k +1k 22⎝ ⎛⎭⎪⎫k +1k 2+1=2-22⎝ ⎛⎭⎪⎫k +1k 2+1. 因为2⎝ ⎛⎭⎪⎫k +1k 2+1≥2⎝⎛⎭⎪⎫2k ·1k 2+1=9,当且仅当k =±1时取等号,所以S 四边形∈⎣⎢⎡⎭⎪⎫169,2. 综合①与②可知,S 四边形∈⎣⎢⎡⎦⎥⎤169,2.。

高考数学一轮复习第9章平面解析几何章末总结分层演练文

高考数学一轮复习第9章平面解析几何章末总结分层演练文

第9章平面解析几何章末总结一、选择题1.(必修2 P110B组T5改编)已知A(1,2),B(3,4),点P在x轴的负半轴上,O为坐标原点,若△PAB的面积为10,则|OP|=( )A .9B .10C .11D .12解析:选C .设P (m ,0)(m <0),P 到直线AB 的距离为d , 因为|AB |=(3-1)2+(4-2)2=22, 由S △PAB =10得12×22×d =10.所以d =52. 又直线AB 的方程为x -y +1=0, 所以|m +1|2=52.解得m =-11或m =9(舍去), 所以|OP |=|m |=11.选C . 2.(必修2 P 133A 组T 8改编)Rt △ABC 中,|BC |=4,以BC 边的中点O 为圆心,半径为1 的圆分别交BC 于P ,Q ,则|AP |2+|AQ |2=( )A .4B .6C .8D .10解析:选D .法一:特殊法.当A 在BC 的中垂线上时, 由|BC |=4,得|OA |=2.所以|AP |2+|AQ |2=2|AP |2=2(12+22)=10.选D .法二:以O 为原点,BC 所在的直线为x 轴,建立直角坐标系,则B (-2,0),C (2,0),P (-1,0),Q (1,0)设A (x 0,y 0),由AB ⊥AC 得 y 0x 0+2·y 0x 0-2=-1. 即x 20+y 20=4.所以|AP |2+|AQ |2=(x 0+1)2+y 20+(x 0-1)2+y 20 =2(x 20+y 20)+2 =2×4+2=10.即|AP |2+|AQ |2=10.故选D . 3.(选修1­1 P 35例3改编)如图,AB 是椭圆C 长轴上的两个顶点,M 是C 上一点,∠MBA =45°,tan ∠MAB =13,则椭圆的离心率为 ( )A .22 B .32 C .33D .63解析:选D .以AB 所在的直线为x 轴,AB 的中点为原点建立平面直角坐标系(图略),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).则直线MA ,MB 的方程分别为y =13(x +a ),y =-x +a .联立解得M 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,所以⎝ ⎛⎭⎪⎫a 22a 2+⎝ ⎛⎭⎪⎫a 22b 2=1,化简得a 2=3b 2=3(a 2-c 2),所以c 2a 2=23,所以c a =63.故选D . 4.(选修1­1 P 61例4改编)过抛物线y 2=8x 的焦点F 的直线l 与抛物线交于A ,B 两点,与抛物线准线交于C 点,若B 是AC 的中点,则|AB |=( )A .8B .9C .10D .12解析:选B .设A ,B 在准线上的射影分别为D ,E ,且设AB =BC =m ,直线l 的倾斜角为α.则BE =m |cos α|,所以AD =AF =AB -BF =AB -BE =m (1-|cos α|), 所以|cos α|=AD AC=m (1-|cos α|)2m .解得|cos α|=13.由抛物线焦点弦长公式|AB |=2p sin 2α得|AB |=81-19=9.故选B .或:由|cos α|=13得tan α=±22.所以直线l 的方程为y =±22(x -2),代入y 2=8x 得 8(x 2-4x +4)=8x ,即x 2-5x +4=0.所以x A +x B =5,则|AB |=x A +x B +4=9.故选B . 二、填空题5.(选修1­1 P 54B 组T 1改编)与椭圆x 249+y 224=1有公共焦点,一条渐近线方程为4x +3y=0的双曲线方程为__________________.解析:由于椭圆x 249+y 224=1的焦点为(±5,0),所以可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 所以a 2+b 2=25.① 由渐近线方程4x +3y =0得b a =43,② 联立①②解得a =3,b =4,故双曲线方程为x 29-y 216=1.答案:x 29-y 216=16.(选修1­1 P 68A 组T 5改编)已知α∈(0,π),若曲线C :x 2+y 2cos α=1的离心率为22,则α=________. 解析:由题意知,曲线C 为椭圆,所以cos α∈(0,1),且C 的焦点在y 轴上. 所以a 2=1cos α,b 2=1,c 2=a 2-b 2=1cos α-1.由e =22得c 2a 2=12,即1cos α-11cos α=12.所以cos α=12,所以α=π3.答案:π3三、解答题7.(选修1­1 P 36练习T 3改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为22,过F 1的直线交椭圆于E ,F 两点,且△EFF 2的周长为8. (1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,若直线l 经过点B 且垂直于x 轴,点Q 是椭圆上异于A ,B 的一个动点,直线AQ 交l 于点M ,过点M 垂直于QB 的直线为m ,求证:直线m 过定点,并求出定点的坐标.解:(1)由椭圆的定义知|EF 1|+|EF 2|=2a ,|FF 1|+|FF 2|=2a ,又已知△EFF 2的周长为8,所以4a =8,故a =2.又e =c a =22,故c =2, 所以b 2=2,故椭圆C 的方程为x 24+y 22=1.(2)由题意A (-2,0),B (2,0),直线l :x =2,显然直线AQ 的斜率存在且不为0,设为k ,则直线AQ 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),可得点Q ⎝ ⎛⎭⎪⎫2-4k 22k 2+1,4k 2k 2+1.联立方程组⎩⎪⎨⎪⎧y =k (x +2),x =2,可得点M (2,4k ).又B (2,0),则k BQ =4k2k 2+12-4k 22k 2+1-2=-12k,所以k m =2k , 故直线m 的方程为y -4k =2k (x -2),即y =2kx , 所以直线m 过定点(0,0).8.(选修1­1 P 64A 组T 2(1)、P 41练习T 3(1)改编)已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),过点F 作直线l 交抛物线C 于A ,B 两点.椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32. (1)分别求抛物线C 和椭圆E 的方程;(2)经过A ,B 两点分别作抛物线C 的切线l 1,l 2,切线l 1与l 2相交于点M .证明:AB ⊥MF . 解:(1)由已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),可得抛物线C 的方程为x2=4y .设椭圆E 的方程为x 2a 2+y2b 2=1(a >b >0),半焦距为c .由已知得:⎩⎪⎨⎪⎧b =1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,所以椭圆E 的方程为x 24+y 2=1.(2)证明:显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不符合题意. 故可设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y 并整理得x 2-4kx -4=0,所以x 1x 2=-4.因为抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以过抛物线C 上A ,B 两点的切线方程分别是y -y 1=12x 1(x -x 1),y -y 2=12x 2(x -x 2),即y =12x 1x -14x 21,y =12x 2x -14x 22,解得两条切线l 1,l 2的交点M 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,x 1x 24,即M ⎝⎛⎭⎪⎫x 1+x 22,-1,所以FM →·AB →=⎝ ⎛⎭⎪⎫x 1+x 22,-2·(x 2-x 1,y 2-y 1)=12(x 22-x 21)-2⎝ ⎛⎭⎪⎫14x 22-14x 21=0. 所以AB ⊥MF .。

2019高考数学文一轮分层演练:第9章平面解析几何 第2讲 Word版含解析

2019高考数学文一轮分层演练:第9章平面解析几何 第2讲 Word版含解析

[学生用书P258(单独成册)]一、选择题1.已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -2=0,则“m =1”是“l 1⊥l 2”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A .由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A .2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B .由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得⎩⎪⎨⎪⎧x =k k -1,y =2k -1k -1. 又因为0<k <12,所以x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B .由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).4.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y =0平行,则l 1与l 2之间的距离为( ) A . 2 B .2 2 C .3 2D .4 2解析:选C .因为l 1∥l 2, 所以1a -2=a3,解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y =0,所以l 1与l 2的距离d =||6-02=32.选C .5.光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6B .a =-13,b =-6C .a =3,b =-16D .a =-3,b =16解析:选B .在直线y =-3x +b 上任意取一点A (1,b -3),则点A 关于直线x +y =0的对称点B (-b +3,-1)在直线y =ax +2上,故有-1=a (-b +3)+2,即-1=-ab +3a +2,所以ab =3a +3,结合所给的选项,只有B 项符合,故选B .6.在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( )A .102B .10C .5D .10解析:选D .由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以M 位于以PQ 为直径的圆上,因为|PQ |=9+1=10,所以|MP |2+|MQ |2=|PQ |2=10,故选D . 二、填空题7.直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0), 所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=08.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34.则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形. 故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25. 答案:259.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=010.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.因为k AC =6-23-1=2, 所以直线AC 的方程为y -2=2(x -1), 即2x -y =0.① 又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②联立①②⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4).答案:(2,4) 三、解答题11.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0. 所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线, 最大距离为|-5|5=5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.12.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离 d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0.设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离 d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.1.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), 所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.2.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解:(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718.所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.。

2019版高考数学大一轮复习人教B版全国通用文档:第九

2019版高考数学大一轮复习人教B版全国通用文档:第九

§9.3圆的方程圆的定义与方程知识拓展1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.(√)(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.(√)(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(√)(4)方程x2+2ax+y2=0一定表示圆.(×)(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.(√)(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.(×)题组二教材改编2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A.(x-3)2+(y+1)2=1B.(x-3)2+(y-1)2=1C.(x+3)2+(y-1)2=1D.(x+3)2+(y+1)2=1答案 A3.圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为______________.答案(x-2)2+y2=10解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,∴圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.题组三易错自纠4.若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是()A.(-∞,-2)∪(2,+∞)B.(-∞,-22)∪(22,+∞)C.(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞) 答案 B解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝⎛⎭⎫x +m 22+(y -1)2=m24-2. 由其表示圆可得m 24-2>0,解得m <-22或m >2 2.5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±4答案 A解析 ∵点(1,1)在圆内,∴(1-a )2+(a +1)2<4,即-1<a <1.6.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ) A .(x -2)2+(y -1)2=1 B .(x -2)2+(y +1)2=1 C .(x +2)2+(y -1)2=1 D .(x -3)2+(y -1)2=1 答案 A解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a,1)(a >0),又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去).∴圆的标准方程为(x -2)2+(y -1)2=1.故选A.题型一 圆的方程典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________. 答案 (x -3)2+y 2=2解析 方法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过点B 且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,②联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2,所以圆C 的方程为(x -3)2+y 2=2.方法二 设圆方程为(x -a )2+(y -b )2=r 2(r >0), 因为点A (4,1),B (2,1)都在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2, 又因为b -1a -2=-1,解得a =3,b =0,r =2,故所求圆的方程为(x -3)2+y 2=2.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________.答案 x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0解析 设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20,①3D -E +F =-10. ② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6,即(x 1+x 2)2-4x 1x 2=36, 得D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练 (2017·广东七校联考)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________. 答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0 解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ), 又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③ 联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E2, 半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .① 圆心⎝⎛⎭⎫-D 2,-E2到直线y =x 的距离为 d =⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2,即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝⎛⎭⎫-D 2,-E2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 题型二 与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,yx 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题. 跟踪训练 已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上. (1)求yx 的最大值和最小值;(2)求x +y 的最大值与最小值.解 (1)方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4.yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆相切时,斜率最大或最小,如图①所示.设切线方程为y =kx ,即kx -y =0, 由圆心C (3,3)到切线的距离等于半径2, 可得|3k -3|k 2+1=2,解得k =9±2145,所以yx 的最大值为9+2145,最小值为9-2145.(2)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆(x -3)2+(y -3)2=4相切时,b 取得最大值或最小值,如图②所示.由圆心C (3,3)到切线x +y =b 的距离等于圆的半径2,可得|3+3-b |12+12=2,即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2. 题型三 与圆有关的轨迹问题典例 (2017·潍坊调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法 (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 (2017·河北衡水中学调研)已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3,所以y x +1·y x -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9.1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( ) A .(x +1)2+(y -3)2=29 B .(x -1)2+(y +3)2=29 C .(x +1)2+(y -3)2=116 D .(x -1)2+(y +3)2=116 答案 B解析 由题意可知A (-4,-5),B (6,-1), 则以线段AB 为直径的圆的圆心为点⎝⎛⎭⎫-4+62,-5-12,即(1,-3),半径为(6+4)2+(-1+5)22=29,故以线段AB 为直径的圆的方程是 (x -1)2+(y +3)2=29. 故选B.2.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.3.(2017·豫北名校联考)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.4.(2017·厦门联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( ) A .0 B .1 C .2 D .3答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay+2a 2+a -1=0表示圆,故选B.5.(2018·长沙二模)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2答案 A解析 将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2的距离的最大值为d +1=2+1,故选A.6.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中,得(x -2)2+(y +1)2=1. 7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2,解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0,化为标准方程为(x +2)2+(y +4)2=25,表示以(-2,-4)为圆心,5为半径的圆.8.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |,解得m =-32.所以圆C 的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 9.(2017·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________.答案 (0,-1)解析 圆C 的方程可化为⎝⎛⎭⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).10.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是__________.答案 x +y -1=0解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1, ∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.11.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r ,则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3. ∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.12.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2.又|QC |=(2+2)2+(7-3)2=42>2 2.所以点Q 在圆C 外,所以|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 因为直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________.答案 74解析 设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.(2017·运城二模)已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为_________________. 答案 (x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2解析 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧ r 2=2b 2,r 2=a 2+1,|a -2b |5=55, ∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧ a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.15.(2017·广东七校联考)圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b的最小值是( ) A .2 3B.203 C .4D.163答案 D解析 由圆x 2+y 2+2x -6y +1=0知,其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b+3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3a b,即a =b 时取等号,故选D. 16.已知平面区域⎩⎪⎨⎪⎧ x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为______________.答案 (x -2)2+(y -1)2=5解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部, ∴覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5, 因此圆C 的方程为(x -2)2+(y -1)2=5.。

2019高考数学文一轮分层演练:第9章平面解析几何 第5讲 第1课时 Word版含解析

[学生用书P264(单独成册)]一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值是( )A .6或9B .5C .1或9D .3或5解析:选D .由题意,得c =1, 当椭圆的焦点在x 轴上时, 由m -4=1,解得m =5; 当椭圆的点在y 轴上时, 由4-m =1,解得m =3, 所以m 的值是3或5,故选D .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线x -y +6=0相切,则椭圆C 的方程为( )A .x 28+y 26=1B .x 212+y 29=1C .x 24+y 23=1D .x 26+y 24=1解析:选C .由题意知e =c a =12,所以e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2.以原点为圆心,椭圆的短半轴长为半径的圆的方程为x 2+y 2=b 2,由题意可知b =62=3,所以a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1,故选C .3.设椭圆x 24+y 23=1的焦点为F 1,F 2,点P 在椭圆上,若△PF 1F 2是直角三角形,则△PF 1F 2的面积为( )A .3B .3或32C .32D .6或3解析:选C .由已知a =2,b =3,c =1,则点P 为短轴顶点(0,3)时,∠F 1PF 2=π3,△PF 1F 2是正三角形,若△PF 1F 2是直角三角形,则直角顶点不可能是点P ,只能是焦点F 1(或F 2)为直角顶点,此时|PF 1|=b 2a =32⎝⎛⎭⎫或|PF 2|=b 2a ,S △PF 1F 2=12·b 2a ·2c =b 2c a =32.故选C .4.已知F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,A 为右顶点,P 是椭圆上一点,PF ⊥x 轴,|PF |=14|AF |,则该椭圆的离心率是( )A .14B .34C .12D .32解析:选B .由题可知点P 的横坐标是-c ,代入椭圆方程,有c 2a 2+y 2b 2=1,得y =±b 2a .又|PF |=14|AF |,即b 2a =14(a +c ),化简得4c 2+ac -3a 2=0,即4e 2+e -3=0,解得e =34或e =-1(舍去).5.如图,椭圆x 2a 2+y 22=1(a >0)的左、右焦点分别为F 1,F 2,P 点在椭圆上,若 |PF 1|=4,∠F 1PF 2=120°,则a 的值为( )A .2B .3C .4D .5解析:选B .b 2=2,c =a 2-2,故|F 1F 2|=2a 2-2,又|PF 1|=4,|PF 1|+|PF 2|=2a ,|PF 2|=2a -4,由余弦定理得cos 120°=42+(2a -4)2-(2a 2-2)22×4×(2a -4)=-12,化简得8a =24,即a =3,故选B .6.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .43B .53C .54D .103解析:选B .由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点A (0,-2),B ⎝⎛⎭⎫53,43,所以S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53,故选B .二、填空题7.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.解析:因为方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则由⎩⎪⎨⎪⎧2-k >0,2k -1>0,2k -1>2-k得⎩⎪⎨⎪⎧k <2,k >12,k >1,故k 的取值范围为(1,2).答案:(1,2)8.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________.解析:设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16>8=|C 1C 2|, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.答案:x 264+y 248=19.已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是__________________.解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,a ∶b =2∶3,解得a 2=16,b 2=12.c =2,所以椭圆C 的方程为x 216+y 212=1.答案:x 216+y 212=110.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.解析:设P 点坐标为(x 0,y 0).由题意知a =2,因为e =c a =12,所以c =1,b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.所以-2≤x 0≤2,-3≤y 0≤3. 因为F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0), 所以PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1 =14(x 0-2)2. 即当x 0=-2时,PF →·P A →取得最大值4. 答案:4 三、解答题11.已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率.(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c =2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4), 当且仅当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为22.12.(2018·陕西质量检测)已知椭圆与抛物线y 2=42x 有一个相同的焦点,且该椭圆的离心率为22. (1)求椭圆的标准方程;(2)过点P (0,1)的直线与该椭圆交于A ,B 两点,O 为坐标原点,若AP →=2PB →,求△AOB 的面积.解:(1)依题意,设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0), 由题意可得c =2,又e =c a =22,所以a =2.所以b 2=a 2-c 2=2,所以椭圆的标准方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x 1=2x 21-y 1=2(y 2-1),验证易知直线AB 的斜率存在,设直线AB 的方程为y =kx +1,代入椭圆方程整理,得(2k 2+1)x 2+4kx -2=0,所以x 1+x 2=-4k 2k 2+1,x 1·x 2=-22k 2+1.将x 1=-2x 2代入上式可得,(4k 2k 2+1)2=12k 2+1,解得k 2=114.所以△AOB 的面积S =12|OP |·|x 1-x 2|=(x 1+x 2)2-4x 1x 22=12·28k 2+22k 2+1=3148.1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,且经过点P ⎝⎛⎭⎫2,53. (1)求椭圆C 的方程;(2)若直线l 经过M (0,1),与C 交于A ,B 两点,MA →=-23MB →,求直线l 的方程.解:(1)依题意,2c =4,则椭圆C 的焦点为F 1(-2,0),F 2(2,0), 由椭圆的定义可得2a =|PF 1|+|PF 2| =(2+2)2+⎝⎛⎭⎫532+(2-2)2+⎝⎛⎭⎫532=133+53=6,即有a =3,则b 2=a 2-c 2=5,故椭圆C 的方程为x 29+y 25=1.(2)若l 与x 轴垂直,则l 的方程为x =0, A ,B 为椭圆短轴的两个端点,不符合题意. 若l 与x 轴不垂直,设l 的方程为y =kx +1, 由⎩⎪⎨⎪⎧x 29+y 25=1,y =kx +1得(9k 2+5)x 2+18kx -36=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-18k 9k 2+5,x 1·x 2=-369k 2+5,易知Δ>0,由MA →=-23MB →,得(x 1,y 1-1)=-23(x 2,y 2-1)即有x 1=-23x 2,可得13x 2=-18k 9k 2+5,-23x 22=-369k 2+5,即有⎝⎛⎭⎫-54k 9k 2+52=549k 2+5,解得k =±13,故直线l 的方程为y =13x +1或y =-13x +1.2.(2018·揭阳一中期末)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解:(1)依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得a =2,b =1,所以椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意; ②当MN 不垂直于x 轴时,设直线l 的方程为 y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y ,整理得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2.所以y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2.因为OM ⊥ON , 所以OM →·ON →=0,所以x 1x 2+y 1y 2=k 2-21+2k 2=0,所以k =±2,即直线l 的方程为y =±2(x -1).。

2019版高考数学大一轮复习人教B版全国通用文档:第九

§9.2 两条直线的位置关系1.两条直线的位置关系 已知两条直线的方程为: l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0,则 (1)l 1与l 2相交的条件是:A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2B 2≠0).(2)l 1与l 2平行的条件是:A 1B 2-A 2B 1=0,而B 1C 2-C 1B 2≠0或A 2C 1-A 1C 2≠0; 或A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0). (3)l 1与l 2重合的条件是:A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0); 或A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0). (4)l 1与l 2垂直的条件是A 1A 2+B 1B 2=0.(5)两条斜率存在且分别为k 1,k 2的直线l 1和l 2垂直的条件是k 1k 2=-1. 2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离 |P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 知识拓展 1.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ). 2.两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行或重合的充要条件是A 1B 2-A 2B 1=0.3.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 4.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2. 5.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( × ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定为-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( × )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.( √ ) 题组二 教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A. 2 B .2- 2 C.2-1 D.2+1 答案 C解析 由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________. 答案 1解析 由题意知m -4-2-m =1,所以m -4=-2-m ,所以m =1. 题组三 易错自纠4.(2017·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于( ) A .2 B .-3 C .2或-3 D .-2或-3答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.故选C.5.直线2x +2y +1=0,x +y +2=0之间的距离是______. 答案324解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =⎪⎪⎪⎪2-122=324.6.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________. 答案 0或1解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一 两条直线的位置关系典例 (2018·青岛模拟)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)由已知可得l 2的斜率存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0. 又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在且不为0. ∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab(1-a )=-1.(*)又∵l 1过点(-3,-1),∴-3a +b +4=0.(**) 由(*)(**)联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在, k 1=k 2,即ab=1-a ,①又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b ,②联立①②,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 跟踪训练 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)方法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2. 方法二 由A 1B 2-A 2B 1=0, 得a (a -1)-1×2=0, 由A 1C 2-A 2C 1≠0, 得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0,⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2, 故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23. 方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0, 可得a =23.题型二 两条直线的交点与距离问题1.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是_____. 答案 ⎝⎛⎭⎫-16,12 解析 方法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.方法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k P A <k <k PB . ∵k P A =-16,k PB =12.∴-16<k <12.2.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________________________. 答案 x +3y -5=0或x =-1解析 方法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 方法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 的中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 思维升华 (1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三 对称问题命题点1 点关于点中心对称典例 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 命题点2 点关于直线对称典例 如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .3 3B .6C .210D .2 5答案 C解析 直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3 直线关于直线的对称问题典例 已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则 ⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧a =613,b =3013,∴M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3). 又∵直线m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 思维升华 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决. 跟踪训练 已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程; (3)直线l 关于(1,2)的对称直线.解 (1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎨⎧x ′=-4x +3y -95,③y ′=3x +4y +35. ④把x =4,y =5代入③④得x ′=-2,y ′=7, ∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7). (2)用③④分别代换x -y -2=0中的x ,y , 得关于l 对称的直线方程为 -4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3), 关于(1,2)的对称点M ′(x ′,y ′), ∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1). l 关于(1,2)的对称直线平行于l ,∴k =3, ∴对称直线方程为y -1=3×(x -2), 即3x -y -5=0.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例1 求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.思想方法指导 因为所求直线与3x +4y +1=0平行,因此,可设该直线方程为3x +4y +c =0(c ≠1). 规范解答解 由题意,设所求直线方程为3x +4y +c =0(c ≠1), 又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11. 因此,所求直线方程为3x +4y -11=0. 二、垂直直线系由于直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0.因此,当两直线垂直时,它们的一次项系数有必然的联系.可以考虑用直线系方程求解. 典例2 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程. 思想方法指导 依据两直线垂直的特征设出方程,再由待定系数法求解. 规范解答解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C 1=0,又直线过点A (2,1),所以有2-2×1+C 1=0,解得C 1=0, 即所求直线方程为x -2y =0. 三、过直线交点的直线系典例3 (2017·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为____________.思想方法指导 可分别求出直线l 1与l 2的交点及直线l 的斜率k ,直接写出方程;也可以根据垂直关系设出所求方程,再把交点坐标代入求解;又可以利用过交点的直线系方程设直线方程,再用待定系数法求解. 答案 4x -3y +9=0解析 方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,解得⎩⎨⎧x =-53,y =79,即交点为⎝⎛⎭⎫-53,79, ∵所求直线与直线3x +4y -7=0垂直, ∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝⎛⎭⎫x +53, 即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,可解得交点为⎝⎛⎭⎫-53,79, 代入4x -3y +m =0,得m =9, 故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为 (2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又∵所求直线与直线3x +4y -7=0垂直, ∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A .平行 B .垂直 C .相交但不垂直 D .不能确定答案 C解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1. 故选C.2.(2018·邢台模拟)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 由题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a (a -2)=3×1,a ×1≠3×1, 解得a =-1,故选C.3.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( ) A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0答案 A解析 由直线与向量a =(8,4)平行知,过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确.4.(2017·兰州一模)一只虫子从点O (0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是( ) A. 2 B .2 C .3 D .4 答案 B解析 点O (0,0)关于直线x -y +1=0的对称点为O ′(-1,1),则虫子爬行的最短路程为|O ′A |=(1+1)2+(1-1)2=2.故选B.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( ) A.423B .4 2 C.823 D .2 2答案 C解析 ∵l 1∥l 2,∴a ≠2且a ≠0, ∴1a -2=a 3≠62a,解得a =-1, ∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =⎪⎪⎪⎪6-232=823.6.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点 ( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2)答案 B解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).7.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________. 答案345解析 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线, 于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12, 解得⎩⎨⎧m =35,n =315,故m +n =345.9.(2017·浙江嘉兴一中月考)已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________. 答案 1 (3,3)解析 ∵直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,且l 1⊥l 2,∴a ×1+1×(a -2)=0,即a =1,联立方程⎩⎪⎨⎪⎧x +y -6=0,x -y =0,易得x =3,y =3,∴P (3,3).10.已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为________. 答案 -1 1 2 2解析 若直线l 1的倾斜角为π4,则-a =k =tan π4=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1-(-3)|1+1=2 2.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于4 2.(1)解 显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,∴⎩⎪⎨⎪⎧ 2x -y -6=0,x -y -4=0,解得⎩⎪⎨⎪⎧x =2,y =-2,故直线经过的定点为M (2,-2). (2)证明 过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0. 但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,请说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行直线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0). 若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718.所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.13.(2017·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( ) A .(-2,4) B .(-2,-4) C .(2,4) D .(2,-4)答案 C解析 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3), ∴AC 所在直线方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C.14.(2017·岳阳二模)已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,则12a +2c 的最小值为________.答案 94解析 因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,又Q (4,0)到动直线l 的最大距离为3, 所以(4-1)2+(-m )2=3,解得m =0. 所以a +c =2,则12a +2c =12(a +c )·⎝⎛⎭⎫12a +2c =12⎝⎛⎭⎫52+c 2a +2a c ≥12⎝⎛⎭⎫52+2c 2a ·2a c =94, 当且仅当c =2a =43时取等号.15.如图,已知直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2之间的距离分别为3和2,点B 是l 2上的一动点,作AC ⊥AB ,且AC 与l 1交于点C ,则△ABC 的面积的最小值为________.答案 6解析 以A 为坐标原点,平行于l 1的直线为x 轴,建立如图所示的直角坐标系,设 B (a ,-2),C (b,3).∵AC ⊥AB ,∴ab -6=0,ab =6,b =6a .Rt △ABC 的面积S =12a 2+4·b 2+9=12a 2+4·36a 2+9=1272+9a 2+144a2≥1272+72=6(当且仅当a 2=4时取等号). 16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是______________. 答案 6x -8y +1=0解析 由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点P ⎝⎛⎭⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝⎛⎭⎫4-m ,6-b -3m 4,∴6-b -3m 4=34(4-m )+b +114,解得b =18. ∴直线l 的方程是y =34x +18,即6x -8y +1=0.。

2019版高考数学大一轮复习人教B版全国通用文档:第九

§9.6双曲线1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,集合P为双曲线;(2)当2a=|F1F2|时,集合P为两条射线;(3)当2a>|F1F2|时,集合P为空集.2.双曲线的标准方程和几何性质知识拓展 巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( √ ) 题组二 教材改编2.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±yb =0,即bx ±ay =0,∴2a =bc a 2+b2=b .又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.3.经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________. 答案 x 28-y 28=1解析 设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (3,-1)代入,得a 2=8(舍负), 故所求方程为x 28-y 28=1.题组三 易错自纠4.(2016·全国Ⅰ)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(-1,3) B .(-1,3) C .(0,3) D .(0,3)答案 A解析 ∵方程x 2m 2+n -y 23m 2-n =1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.5.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73 B.54 C.43 D.53答案 D解析 由条件知y =-b a x 过点(3,-4),∴3ba =4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.6.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为__________.答案 x 24-y 2=1解析 由双曲线的渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.题型一 双曲线的定义及标准方程命题点1 利用定义求轨迹方程典例 (2018·大连月考)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 2,C 1的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 典例 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54,∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点, 故焦点在y 轴上,且a =12.又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.命题点3 利用定义解决焦点三角形问题典例 已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有 |PF 1|-|PF 2|=|PF 2|=2a =22, ∴|PF 1|=2|PF 2|=42,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.引申探究1.本例中,若将条件“|PF 1|=2|PF 2|”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2 3.2.本例中,若将条件“|PF 1|=2|PF 2|”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4,∴S △F 1PF 2=12|PF 1|·|PF 2|=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF 1-PF 2|=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(3)利用待定系数法求双曲线方程要先定形,再定量,如果已知双曲线的渐近线方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.跟踪训练 (1)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为________________. 答案 x 216-y 29=1解析 由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8.由双曲线的定义知,a =4,b =3.故曲线C 2的标准方程为x 242-y 232=1.即x 216-y 29=1.(2)(2016·天津)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1 答案 D解析 由题意知双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b 2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b 4+b 2或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b 4+b 2,即第一象限的交点为⎝ ⎛⎭⎪⎫44+b 2,2b 4+b 2.由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b4+b 2,故8×4b 4+b 2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.故选D.题型二 双曲线的几何性质典例 (1)已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B .x ±2y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±bax =±2x ,即2x ±y =0.(2)(2016·山东)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是______. 答案 2解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a=3×2c .又∵b 2=c 2-a 2,整理得2c 2-3ac -2a 2=0,两边同除以a 2,得2⎝⎛⎭⎫c a 2-3c a -2=0,即2e 2-3e -2=0,解得e =2.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba满足关系式e 2=1+k 2.跟踪训练 (2016·全国Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32 C.3 D .2答案 A解析 离心率e =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选A.题型三 直线与双曲线的综合问题典例 (2018·福州模拟)已知直线y =kx -1和双曲线x 2-y 2=1的右支交于不同两点,则k 的取值范围是______. 答案 (1,2)解析 由直线y =kx -1和双曲线x 2-y 2=1联立方程组,消y 得(1-k 2)x 2+2kx -2=0, 因为该方程有两个不等且都大于1的根,所以⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+8(1-k 2)>0,-k1-k 2>1,(1-k 2+2k -2)(1-k 2)>0,解得1<k < 2.思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.跟踪训练 (2017·贵州贵阳第一中学月考)已知双曲线x 22-y 23=1上存在两点P ,Q 关于直线y=x +b 对称,且PQ 的中点M 在抛物线y 2=9x 上,则实数b 的值为( ) A .0或-10 B .0或-2 C .-2 D .-10答案 A解析 因为点P ,Q 关于直线y =x +b 对称,所以PQ 的垂直平分线为y =x +b ,所以直线PQ 的斜率为-1.设直线PQ 的方程为y =-x +m , 由⎩⎪⎨⎪⎧y =-x +m ,x 22-y 23=1,得x 2+4mx -2m 2-6=0, 所以x P +x Q =-4m ,所以x M =-2m , 所以M (-2m,3m ).因为PQ 的中点M 在抛物线y 2=9x 上, 所以9m 2=9(-2m ),解得m =0或m =-2, 又PQ 的中点M 也在直线y =x +b 上, 得b =5m ,∴b =0或-10,故选A.直线与圆锥曲线的交点典例 若直线y =kx +2与曲线x =y 2+6交于不同的两点,那么k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1 错解展示:由直线y =kx +2与曲线x 2-y 2=6相切,得x 2-(kx +2)2=6,Δ=16k 2-4(1-k 2)(-10)=0,解得k =±153,所以k 的取值范围是⎝⎛⎭⎫-153,153. 错误答案 A 现场纠错解析 曲线x =y 2+6表示焦点在x 轴上的双曲线的右支,由直线y =kx +2与双曲线方程联立得⎩⎨⎧y =kx +2,x =y 2+6,消去y ,得(1-k 2)x 2-4kx -10=0. 由直线与双曲线右支交于不同两点,得⎩⎪⎨⎪⎧1-k 2≠0,4k1-k2>0,-101-k 2>0,Δ=16k 2+40(1-k 2)>0,解得k ∈⎝⎛⎭⎫-153,-1.故选D. 答案 D纠错心得 (1)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法. (2)直线与圆锥曲线的交点问题往往需考虑圆锥曲线的几何性质,数形结合求解.1.(2018·新余摸底)双曲线x 2a 2-y 24a 2=1(a ≠0)的渐近线方程为( )A .y =±2xB .y =±12xC .y =±4xD .y =±2x答案 A解析 根据双曲线的渐近线方程知, y =±2aax =±2x ,故选A.2.(2017·山西四校联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),右焦点F 到渐近线的距离为2,点F 到原点的距离为3,则双曲线C 的离心率e 为( ) A.53B.355C.63D.62答案 B解析 ∵右焦点F 到渐近线的距离为2,∴F (c,0)到y =b a x 的距离为2,即|bc |a 2+b 2=2,又b >0,c >0,a 2+b 2=c 2,∴bc c=b =2.∵点F 到原点的距离为3,∴c =3, ∴a =c 2-b 2=5,∴离心率e =c a =35=355. 3.(2017·新乡二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1 答案 D解析 不妨设B (0,b ),由BA →=2AF →,F (c,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,即49·a 2+b 2a 2=109, ∴b 2a 2=32.① 又|BF →|=b 2+c 2=4,c 2=a 2+b 2,∴a 2+2b 2=16,②由①②可得,a 2=4,b 2=6,∴双曲线C 的方程为x 24-y 26=1,故选D. 4.(2017·龙岩二模)已知离心率为52的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,则双曲线的实轴长是( )A .32B .16C .84D .4 答案 B解析 由题意知F 2(c,0),不妨令点M 在渐近线y =b a x 上,由题意可知|F 2M |=bc a 2+b 2=b ,所以|OM |=c 2-b 2=a .由S △OMF 2=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B.5.(2018·开封模拟)已知l 是双曲线C :x 22-y 24=1的一条渐近线,P 是l 上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→=0,则P 到x 轴的距离为( ) A.233B. 2 C .2 D.263答案 C解析 由题意知F 1(-6,0),F 2(6,0),不妨设l 的方程为y =2x ,则可设P (x 0,2x 0).由PF 1→·PF 2→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0, 得x 0=±2,故P 到x 轴的距离为2|x 0|=2,故选C.6.(2018·武汉调研)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与对称轴垂直的直线与渐近线交于A ,B 两点,若△OAB 的面积为13bc 3,则双曲线的离心率为( ) A.52 B.53 C.132 D.133 答案 D解析 由题意可求得|AB |=2bc a ,所以S △OAB =12×2bc a ×c =13bc 3,整理得c a =133,即e =133,故选D.7.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、4为半径的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 由⎩⎪⎨⎪⎧ x =a ,y =-b a x ,得⎩⎪⎨⎪⎧x =a ,y =-b ,∴A (a ,-b ). 由题意知右焦点到原点的距离为c =4,∴(a -4)2+(-b )2=4,即(a -4)2+b 2=16.而a 2+b 2=16,∴a =2,b =2 3.∴双曲线C 的方程为x 24-y 212=1. 8.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)上存在一点P 满足以|OP |为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是( )A.⎝⎛⎦⎤1,52B.⎝⎛⎦⎤1,72 C.⎣⎡⎭⎫52,+∞ D.⎣⎡⎭⎫72,+∞ 答案 C解析 由条件,得|OP |2=2ab ,又P 为双曲线上一点,从而|OP |≥a ,∴2ab ≥a 2,∴2b ≥a ,又∵c 2=a 2+b 2≥a 2+a 24=54a 2,∴e =c a ≥52. 9.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________.答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.10.设动圆C 与两圆C 1:(x +5)2+y 2=4,C 2:(x -5)2+y 2=4中的一个内切,另一个外切,则动圆圆心C 的轨迹方程为____________.答案 x 24-y 2=1 解析 设圆C 的圆心C 的坐标为(x ,y ),半径为r ,由题设知r >2,于是有⎩⎪⎨⎪⎧ |CC 1|=r +2,|CC 2|=r -2或⎩⎪⎨⎪⎧|CC 1|=r -2,|CC 2|=r +2, ∴||CC 1|-|CC 2||=4<25=|C 1C 2|,即圆心C 的轨迹L 是以C 1,C 2为焦点,4为实轴长的双曲线,∴L 的方程为x 2⎝⎛⎭⎫422-y 2(5)2-⎝⎛⎭⎫422=1, 即x 24-y 2=1. 11.(2018·南昌调研)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 答案 52解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax . 由⎩⎪⎨⎪⎧ y =b a x ,x -3y +m =0,得A ⎝⎛⎭⎫am 3b -a ,bm 3b -a , 由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0得B ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b , 所以AB 的中点C 的坐标为⎝⎛⎭⎫a 2m 9b 2-a 2,3b 2m 9b 2-a 2. 设直线l :x -3y +m =0(m ≠0),因为|P A |=|PB |,所以PC ⊥l ,所以k PC =-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=54a 2, 所以e =c a =52. 12.设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2,由于△PF 1F 2为锐角三角形,结合实际意义可知m 需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2, 解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8.13.(2017·黄冈二模)已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( ) A .3B .2C .-3D .-2答案 B解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2, ∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2.又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14, ∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|cos ∠PF 2F 1=2×4×14=2.故选B. 14.(2017·安庆二模)已知F 1,F 2为双曲线的焦点,过F 2作垂直于实轴的直线交双曲线于A ,B 两点,BF 1交y 轴于点C ,若AC ⊥BF 1,则双曲线的离心率为( ) A. 2 B. 3 C .2 2D .2 3答案 B解析 不妨设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知,取A 点坐标为⎝⎛⎭⎫c ,b 2a ,取B 点坐标为⎝⎛⎭⎫c ,-b 2a ,则C 点坐标为⎝⎛⎭⎫0,-b 22a 且F 1(-c,0).由AC ⊥BF 1知AC →·BF 1→=0,又AC →=⎝⎛⎭⎫-c ,-3b 22a ,BF 1→=⎝⎛⎭⎫-2c ,b 2a ,可得2c 2-3b 42a 2=0,又b 2=c 2-a 2,可得3c 4-10c 2a 2+3a 4=0,则有3e 4-10e 2+3=0,可得e 2=3或13,又e >1, 所以e = 3.故选B.15.(2017·福州质检)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=6,P 是E 右支上的一点,PF 1与y 轴交于点A ,△P AF 2的内切圆与边AF 2的切点为Q .若|AQ |=3,则E 的离心率是( )A .2 3 B. 5 C. 3 D. 2答案 C解析 如图所示,设PF 1,PF 2分别与△P AF 2的内切圆切于M ,N ,依题意,有|MA |=|AQ |,|NP |=|MP |,|NF 2|=|QF 2|,|AF 1|=|AF 2|=|QA |+|QF 2|,2a =|PF 1|-|PF 2|=(|AF 1|+|MA |+|MP |)-(|NP |+|NF 2|)=2|QA |=23,故a =3,从而e =c a =33=3,故选C. 16.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,求此双曲线的离心率e 的最大值.解 由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a . 当P ,F 1,F 2三点不共线时,在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=649a 2+49a 2-4c 22·83a ·23a =178-98e 2, 即e 2=179-89cos ∠F 1PF 2. ∵cos ∠F 1PF 2∈(-1,1),∴e ∈⎝⎛⎭⎫1,53. 当P ,F 1,F 2三点共线时,∵|PF 1|=4|PF 2|,∴e =c a =53, 综上,e 的最大值为53.。

(全国通用版)2019版高考数学大一轮复习-第九章 平面解析几何专题探究课五课件 新人教A版

高考导航 1.圆锥曲线是平面解析几何的核心部分,也是高考 必考知识,主要以一个小题一个大题的形式呈现,难度中等 偏上;2.高考中的选择题或填空题主要考查圆锥曲线的基本性 质,高考中的解答题,常以求曲线的标准方程、位置关系、 定点、定值、最值、范围、探索性问题为主.这些试题的命制 有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一 般都伴有较为复杂的运算,对考生解决问题的能力要求较高.
7 分 (得分点 5)
由题设可知Δ=16(4k2-m2+1)>0. 设 A(x1,y1),B(x2,y2),则 x1+x2=-4k82k+m1,x1x2=44mk22+-14.
8 分 (得分点 6) 则 k1+k2=y1x-1 1+y2x-2 1=kx1+xm1 -1+kx2+xm2 -1=2kx1x2+(m-x1x12)(x1+x2). 由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0. ∴(2k+1)·44mk22+-14+(m-1)·4-k28+km1=0.
(2)当直线 PQ 的斜率存在时,设直线 PQ 的方程为 y=kx+2,点 P,Q 的坐标分别 为(x1,y1),(x2,y2),直线 PQ 与椭圆方程联立1x62+1y22=1,消去 y 得(4k2+3)x2+16kx
y=kx+2 -32=0,
则 x1+x2=-4k126+k 3,x1x2=-4k32+2 3, 从而O→P·O→Q+M→P·M→Q=x1x2+y1y2+[x1x2+(y1-2)·(y2-2)]=2(1+k2)x1x2+2k(x1+x2)
【训练 1】 (2017·菏泽调研)已知焦距为 2 2的椭圆 C:ax22+by22=1(a>b>0)的右顶点 为 A,直线 y=43与椭圆 C 交于 P,Q 两点(P 在 Q 的左边),Q 在 x 轴上的射影为 B,且四边形 ABPQ 是平行四边形. (1)求椭圆 C 的方程; (2)斜率为 k 的直线 l 与椭圆 C 交于两个不同的点 M,N.若 M 是椭圆的左顶点,D 是直线 MN 上一点,且 DA⊥AM.点 G 是 x 轴上异于点 M 的点,且以 DN 为直径 的圆恒过直线 AN 和 DG 的交点,求证:点 G 是定点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学生用书P266(单独成册)]一、选择题1.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y2=1上的点,则|PM |+|PN |的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,12解析:选C .如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA |+|PB |=2a =10,连接PA ,PB 分别与圆相交于M ,N 两点,此时|PM |+|PN |最小,最小值为|PA |+|PB |-2R =8;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时|PM |+|PN |最大,最大值为|PA |+|PB |+2R =12,即最小值和最大值分别为8,12.2.设A 1、A 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,若在椭圆上存在点P ,使得kPA 1·kPA 2>-12,则该椭圆的离心率的取值范围是( )A .(0,12)B .(0,22) C .(22,1) D .(12,1)解析:选C .椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1(-a ,0)、A 2(a ,0),设P (x 0,y 0),根据题意,kPA 1·kPA 2=y 20x 20-a 2>-12,而x 20a 2+y 20b 2=1,所以a 2-x 20=a 2y 20b 2,于是b 2a 2<12,即a 2-c 2a 2<12,1-e 2<12,所以e >22,又e <1,故22<e <1,选C .3.(2016·高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .34解析:选A .设E (0,m ),则直线AE 的方程为-x a +y m=1,由题意可知M ⎝⎛⎭⎪⎫-c ,m -mc a,⎝ ⎛⎭⎪⎫0,m 2和B (a ,0)三点共线,则m -mc a -m 2-c =m 2-a ,化简得a =3c ,则C 的离心率e =c a =13. 4.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )A .32B .332C .94D .154解析:选B .设向量F 1P →,F 2A →的夹角为θ.由条件知|AF 2|=b 2a =32,则F 1P →·F 2A →=32|F 1P→|cos θ,于是F 1P →·F 2A →要取得最大值,只需F 1P →在向量F 2A →上的投影值最大,易知此时点P 在椭圆短轴的上顶点,所以F 1P →·F 2A →=32|F 1P →|cos θ≤332,即F 1P →·F 2A →的最大值为332.二、填空题5.已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),A ,B 分别是椭圆长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2,若|k 1·k 2|=14,则椭圆的离心率为________.解析:设M (x 0,y 0),则N (x 0,-y 0),|k 1·k 2|=⎪⎪⎪⎪⎪⎪y 0x 0+a ·y 0a -x 0=y 20a 2-x 20=b 2⎝ ⎛⎭⎪⎫1-x 20a 2a 2-x 20=b 2a 2=14, 从而e =1-b 2a 2=32.答案:326.已知椭圆C :x 24+y 2=1,过椭圆C 的右顶点A 的两条斜率之积为-14的直线分别与椭圆交于点M ,N ,则直线MN 恒过的定点为________.解析:直线MN 过定点D .当直线MN 的斜率存在时, 设MN :y =kx +m ,代入椭圆方程得(1+4k 2)x 2+8kmx +4m 2-4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.根据已知可知y 1x 1-2·y 2x 2-2=-14, 即4y 1y 2+(x 1-2)(x 2-2)=0,即(1+4k 2)x 1x 2+(4km -2)(x 1+x 2)+4m 2+4=0,所以(1+4k 2)·4m 2-41+4k 2+(4km -2)⎝ ⎛⎭⎪⎫-8km 1+4k 2+4m 2+4=0,即(4km -2)(-8km )+8m 2(1+4k 2)=0, 即m 2+2km =0,得m =0或m =-2k . 当m =0时,直线y =kx 经过定点D (0,0).由于AM ,AN 的斜率之积为负值,故点M ,N 在椭圆上位于x 轴两侧,直线MN 与x 轴的交点一定在椭圆内部,而当m =-2k 时,直线y =kx -2k 过定点(2,0),故不可能.当MN 的斜率不存在时,点M ,N 关于x 轴对称,此时AM ,AN 的斜率分别为12,-12,此时M ,N 恰为椭圆的上下顶点,直线MN 也过定点(0,0).综上可知,直线MN 过定点D (0,0). 答案:(0,0) 三、解答题7.已知点M 是椭圆C :x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433.(1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.解:(1)在△F 1MF 2中,由12|MF 1||MF 2|sin 60°=433,得|MF 1||MF 2|=163.由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|cos 60°=(|MF 1|+|MF 2|)2-2|MF 1||MF 2|·(1+cos 60°),解得|MF 1|+|MF 2|=42.从而2a =|MF 1|+|MF 2|=42,即a =22. 由|F 1F 2|=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1. (2)证明:当直线l 的斜率存在时,设斜率为k ,则其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k 1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)·4k (k -2)2k 2-8k=4.当直线l 的斜率不存在时,可得A (-1,142), B (-1,-142),得k 1+k 2=4. 综上,k 1+k 2为定值.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),右顶点为A ,且|AF |=1.(1)求椭圆C 的标准方程;(2)若动直线l :y =kx +m 与椭圆C 有且只有一个交点P ,且与直线x =4交于点Q ,是否存在点M (t ,0)使MP →·MQ →=0成立?若存在,求出t 的值;若不存在,说明理由.解:(1)由c =1,a -c =1,得a =2, 所以b =3,故椭圆C 的标准方程为x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12, 消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0, 所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0, 即m 2=3+4k 2.设P (x P ,y P ),则x P =-4km 3+4k 2=-4k m , y P =kx P +m =-4k 2m +m =3m,即P ⎝⎛⎭⎪⎫-4k m,3m .因为M (t ,0),Q (4,4k +m ), 所以MP →=⎝⎛⎭⎪⎫-4km-t ,3m ,MQ →=(4-t ,4k +m ),所以MP →·MQ →=⎝⎛⎭⎪⎫-4k m-t ·(4-t )+3m ·(4k +m )=t 2-4t +3+4k m(t -1)=0恒成立,故⎩⎪⎨⎪⎧t =1,t 2-4t +3=0, 即t =1.所以存在点M (1,0)符合题意.9.已知椭圆x 2a 2+y 2b2=1(a >b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解:(1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,所以a 2=3. 所以椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2),设l 方程为x =t (y -m ), 由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), 所以y 1-m =-y 1λ1,由题意y 1≠0, 所以λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.因为λ1+λ2=-3,所以y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,所以由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0, 所以(mt )2=1,由题意mt <0,所以mt =-1,满足②,得直线l 方程为x =ty +1,过定点(1,0),即Q 为定点.10.如图,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程.(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)设椭圆C 的焦距为2c ,则c =1, 因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上, 所以1a 2+12b 2=1,又a 2=b 2+c 2,所以a =2,b =c =1.故椭圆C 的标准方程为x 22+y 2=1.(2)设直线l 的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x 2+2y 2=2,消去x , 得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t 9且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t9且-3<t <3, 由PM →=NQ →,知四边形PMQN 为平行四边形, 而D 为线段MN 的中点,因此D 为线段PQ 的中点, 所以y 0=53+y 42=t 9,可得y 4=2t -159,又-3<t <3,可得-73<y 4<-1,因此点Q 不在椭圆上, 故不存在满足题意的直线l . 2.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |+|CD |=32.(1)求椭圆的方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围. 解:(1)由题意知,e =c a =22, 则a =2c ,b =c .当直线AB 的斜率为0时,|AB |+|CD |=2a +2b2a=22c +2c =32,所以c =1.所以椭圆的方程为x 22+y 2=1.(2)①当直线AB 与直线CD 中有一条的斜率为0时,另一条的斜率不存在. 由题意知S 四边形=12|AB |·|CD |=12×22×2=2.②当两条直线的斜率均存在且不为0时,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -1),则直线CD 的方程为y =-1k(x -1).将直线AB 的方程代入椭圆方程,并整理得 (1+2k 2)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2,所以|AB |=k 2+1|x 1-x 2|=k 2+1·2 2 k 2+11+2k 2=22(k 2+1)1+2k2. 同理,|CD |=22⎝ ⎛⎭⎪⎫1k 2+11+2k2=22(k 2+1)k 2+2.所以S 四边形=12·|AB |·|CD |=12·22(k 2+1)1+2k 2·22(k 2+1)k 2+2 =4(k 2+1)22k 4+2+5k2 =4⎝ ⎛⎭⎪⎫k +1k 22⎝ ⎛⎭⎪⎫k +1k 2+1=2-22⎝ ⎛⎭⎪⎫k +1k 2+1. 因为2⎝ ⎛⎭⎪⎫k +1k 2+1≥2⎝⎛⎭⎪⎫2k ·1k 2+1=9,当且仅当k =±1时取等号,所以S 四边形∈⎣⎢⎡⎭⎪⎫169,2. 综合①与②可知,S 四边形∈⎣⎢⎡⎦⎥⎤169,2.。

相关文档
最新文档