高中数学选填题一

合集下载

高三数学考试试题

高三数学考试试题

高三数学考试试题一、选择题(每题4分,共40分)1. 若函数f(x) = ax^2 + bx + c的图像是开口向上的抛物线,那么a 的取值范围是:A. a > 0B. a < 0C. a = 0D. a ≠ 02. 已知集合A={x|-1≤x≤2},B={x|-2≤x≤1},则A∪B的结果是:A. {x|-2≤x≤2}B. {x|-1≤x≤1}C. {x|-1≤x≤2}D. {x|-2≤x≤1}3. 若sin(α+β)sin(α-β) = m,那么cos^2α - sin^2β的值是:A. mB. -mC. 1-mD. 1+m4. 已知数列{an}满足a1=2,an+1 = an + 3n,那么a5的值是:A. 23B. 28C. 33D. 385. 函数y = ln(x)的导数是:A. 1/xB. x/ln(x)C. ln(x)/xD. ln^2(x)6. 已知直线l1: x + y - 3 = 0 与直线l2: 2x - y + 6 = 0,它们的交点坐标是:A. (1, 2)B. (-1, 4)C. (3, 0)D. (0, 3)7. 已知圆心在原点,半径为2的圆的方程是:A. x^2 + y^2 = 4B. x^2 + y^2 = 2C. x^2 + y^2 > 4D. x^2 + y^2 < 48. 若z = x + yi,其中x和y为实数,i为虚数单位,那么|z|的值是:A. √(x^2 + y^2)B. √(x^2 - y^2)C. x - yiD. x + yi9. 已知函数f(x) = x^3 - 3x^2 + 2x - 1,求f'(1)的值:A. -1B. 0C. 1D. 210. 若方程x^2 - 4x + 3 = 0有实数根,则实数根的和是:A. 1B. 2C. 4D. 0二、填空题(每题3分,共15分)11. 若sin(θ) = √3/2,且θ为锐角,则cos(θ) = _______。

2024_2025年高考数学真题分类汇编15圆锥曲线选填题

2024_2025年高考数学真题分类汇编15圆锥曲线选填题

圆锥曲线小题一、选择题1.(2024年高考全国甲卷理科)已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为 ( )A B C D 【答案】A解析:因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A2.(2024年高考全国乙卷理科)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的随意一点P 都满意||2PB b ≤,则C 的离心率的取值范围是 ( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭ C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C3.(2024年高考数学课标Ⅰ卷理科)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = ( )A .2B .3C .6D .9【答案】C【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p.故选:C .4.(2024年高考数学课标Ⅱ卷理科)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 ( )A .4B .8C .16D .32【答案】B 解析:2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B .5.(2024年高考数学课标Ⅲ卷理科)设双曲线C :22221x y a b-=(a >0,b >0)左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a = ( )A .1B .2C .4D .8【答案】A解析:5ca=,c ∴=,依据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .6.(2024年高考数学课标Ⅲ卷理科)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( ) A .1,04⎛⎫⎪⎝⎭ B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)【答案】B解析:因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 依据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B .7.(2024年高考数学课标Ⅲ卷理科)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 ( )A .4B C .D .【答案】A【解析】由2,a b c ====,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在b y x a =上,则2P y ==1133262224PFO P S OF y ∴=⋅=⨯⨯=△,故选A . 8.(2024年高考数学课标全国Ⅱ卷理科)设F 为双曲线:C 22221x y a b-=()0,0a b >>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若PQ OF =,则C的离心率为()( )A .2B .3C .2D .5【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又∵||PQ OF c ==,∴||2c PA =, PA 为以OF 为直径的圆的半径,∴A 为圆心||2c OA =.∴,22c c P ⎛⎫⎪⎝⎭,又P 点在圆222x y a +=上,∴22244c c a +=,即222c a =,∴2222c e a==,∴2e =,故选A .9.(2024年高考数学课标全国Ⅱ卷理科)若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p = ( ) A .2 B .3 C .4 D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点,02p ⎛⎫⎪⎝⎭是椭圆2231x y p p +=的一个焦点,所以232p p p ⎛⎫-= ⎪⎝⎭,解得8p =,故选D .10.(2024年高考数学课标全国Ⅰ卷理科)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若222AF F B =,1AB BF =,则C 的方程为( )A .2212x y +=B .22132x y += C .22143x y += D .22154x y +=【答案】B解析:如图,设2BF t =,则212,3AF t BF t ==,由12122AF AF BF BF a +=+=,可得12AF t =,12AF AF =,所以点A 为椭圆的上顶点或下顶点.在1ABF △中,由余弦定理可得2222129491cos 12sin 2323t t t BAF OAF t t +-∠=-∠==⨯⨯,)的左、右OP ,则C 的离心率为 ( )A B .2CD【答案】C解析:法一:依据双曲线的对称性,不妨设过点2F 作渐近线by x a=的垂线,该垂线的方程为()a y x c b =--,联立方程()b y x aa y x cb ⎧=⎪⎪⎨⎪=--⎪⎩,解得2P Pab y c ax c ⎧=⎪⎪⎨⎪=⎪⎩由22116PF PF OP =⇒=222222266a ab ab a c a c c c c ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⇒++=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭整理可得42222240a a c c a b -++=即()422222240a a c c a c a -++-= 即4223c a c =即223c a =,所以23e =,所以e =C .法二:由双曲线的性质易知2PF b =,2OF c =,所以222OP c b a =-= 在2Rt POF ∆中,222cos PF bPF O OF c∠== 在12PF F ∆中,由余弦定理可得22221212212cos 2PF F F PF bPF O PF F F c+-∠==所以)222422b c bb cc+-=⋅,整理可得2222464b c a b =-=,即()222224633c a b c a -==-所以223c a =,所以e =C .12.(2024年高考数学课标Ⅱ卷(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23 B .12 C .13D .14【答案】D解析:因为12PF F ∆为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由余弦定理得1PF =,所以(2)P c ,而(,0)A a -,由已知AP k =,得4a c =,即14e =,故选D .13.(2024年高考数学课标Ⅱ卷(理))双曲线22221(0,0)x y a b a b-=>>线方程为( ) A.y = B.y =C.y = D.y = 14.(2024年高考数学课标卷Ⅰ(理))已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N .若OMN ∆为直角三角形,则MN =( )A .32B .3C.D .4【答案】B解析:双曲线22:13x C y -=的渐近线方程为:y x =,渐近线的夹角为:60,不妨设过()2,0F 的直线为:)2y x =-,则)2y x y x ⎧=-⎪⎨=⎪⎩解得3,22M ⎛⎫ ⎪ ⎪⎝⎭;)23y x y x ⎧=-⎪⎨=-⎪⎩解得:(3,N ,则3MN ==,故选B .15.(2024年高考数学课标卷Ⅰ(理))设抛物线2:4C y x =的焦点为F .过点()2,0-且斜率为23的直线与C 交于,M N 两点,则FM FN = ( ) A .5 B .6 C .7D .8【答案】D解析:抛物线2:4C y x =的焦点为()1,0F ,过点()2,0-且斜率为23的直线为:324y x =+,联立直线与抛物线2:4C y x =,消去x 可得:2680y y -+=,解得122,4y y ==,不妨()1,2M ,()4,4N ,()0,2FM =,()3,4FN =,则()()0,23,48FM FN ==,故选D . 16.(2017年高考数学新课标Ⅰ卷理科)已知F 为抛物线2:4C y x =的焦点,过F 作两条相互垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的是小值为( )A .16B .14C .12D .10【答案】A【解析】设1122(,),(,)A x y B x y ,3344(,),(,)D x y E x y ,直线1l 方程为1(1)y k x =-取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=∴21122124k x x k --+=-212124k k += 同理直线2l 与抛物线的交点满意22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++22122222121224244448816k k k k k k ++=++=++≥= 当且仅当121k k =-=(或1-)时,取得等号.17.(2017年高考数学课标Ⅲ卷理科)已知椭圆2222:1x y C a b+=,()0a b >>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.3B.3C.3D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为原点,半径为R a =,该圆与直线20bx ay ab -+=相切所以圆心()0,0到直线20bx ay ab -+=的距离d R a ===,整理可得223a b =所以c e a ==3==,故选A .18.(2017年高考数学课标Ⅲ卷理科)已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 ( ) A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】由渐近线的方程y x =,可设双曲线的方程为2245x y λ-= 又椭圆221123x y +=的焦点坐标为()3,0± 所以0λ>,且24531λλλ+=⇒=,故所求双曲线C 的方程为:22145x y -=,故选B . 19.(2017年高考数学课标Ⅱ卷理科)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2BCD.3【解析】解法一:常规解法依据双曲线的标准方程可求得渐近线方程为by x a=±,依据直线与圆的位置关系可求得圆心到=,解得2e =.解法二:待定系数法设渐进线的方程为y kx =∴=23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法三:几何法从题意可知:112OA OO O A ===,1OO A ∆为等边三角形,所以一条渐近线的倾斜较为3π由于tan k θ=,可得3k渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法四:坐标系转化法依据圆的直角坐标系方程:()2224x y -+=,可得极坐标方程4cos ρθ=,由4cos 2θ=可得极 角3πθ=,从上图可知:渐近线的倾斜角与圆的极坐标方程中的极角相等,所以3k =渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法五:参数法之直线参数方程如上图,依据双曲线的标准方程可求得渐近线方程为by x a =±,可以表示点A 的坐标为()2cos ,2sin θθ,∵ cos a c θ=,sin b c θ= ∴ 点A 的坐标为22,a b c c ⎛⎫⎪⎝⎭,代入圆方程中,解得2e =.20.(2016高考数学课标Ⅲ卷理科)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A B 、分别为C 的左、右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .34【答案】A【解析】由题意,设直线l 的方程为()y k x a =+,分别令x c =-与0x =,得点()FM k a c =-,OE ka =,由△OBE ∽△CBM ,得12OE OB FM BC =,即2()ka ak a c a c=-+,整理得13c a =,所以椭圆的离心率13e =,故选A. 21.(2016高考数学课标Ⅱ卷理科)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为 ( ) A .2 B .32C .3D .2【答案】A【解析1】由题可令21|MF |=3,|MF |=1,则22a 所以1a ,248c ,所以2c ,所以2e故选A.22.(2016高考数学课标Ⅰ卷理科)以抛物线C 的顶点为圆心的圆交C 于,A B 两点,交C 的准线于,D E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为 ( ) (A)2(B)4(C)6(D)8【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,题目条件翻译如图:设(0,22A x ,52p D ⎛-⎝, 点(0,22A x 在抛物线22ypx =上,∴082px =……①点52p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②点(0A x 在圆222x y r +=上,∴2208x r +=……③ 联立①②③解得:4p =,焦点到准线的距离为4p =. 故选B .23.(2016高考数学课标Ⅰ卷理科)已知方程222213-x y m n m n-=+错误!未指定书签。

2023年新高考地区数学名校地市选填压轴题汇编(一)

2023年新高考地区数学名校地市选填压轴题汇编(一)

2023年新高考数学选填压轴题好题汇编(一)一、单选题1.(2022·广东·广州市真光中学高三开学考试)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为4π3时,该裹蒸粽的高的最小值为()A.4B.6C.8D.102.(2022·广东惠州·高三阶段练习)甲罐中有5个红球,3个白球,乙罐中有4个红球,2个白球.整个取球过程分两步,先从甲罐中随机取出一球放入乙罐,分别用A1、A2表示由甲罐取出的球是红球、白球的事件;再从乙罐中随机取出两球,分别用B、C表示第二步由乙罐取出的球是“两球都为红球”、“两球为一红一白”的事件,则下列结论中不正确的是( )A.P B A1=1021 B.P C A2=47 C.P B =1942 D.P C =43843.(2022·广东·鹤山市鹤华中学高三开学考试)已知直线ax-2by+14=0平分圆C:x2+y2-4x-2y-11= 0的面积,过圆外一点P a,b向圆做切线,切点为Q,则PQ的最小值为( )A.4B.5C.6D.74.(2022·广东广州·高三开学考试)设a=ln1.1,b=e0.1-1,c=tan0.1,d=0.4π,则()A.a<b<c<dB.a<c<b<dC.a<b<d<cD.a<c<d<b5.(2022·广东广州·高三开学考试)若空间中经过定点O的三个平面α,β,γ两两垂直,过另一定点A作直线l与这三个平面的夹角都相等,过定点A作平面δ和这三个平面所夹的锐二面角都相等.记所作直线l的条数为m,所作平面δ的个数为n,则m+n=( )A.4B.8C.12D.166.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则( )A.a >b >cB.c >b >aC.b >a >cD.a >c >b7.(2022·广东·深圳外国语学校高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,∠F 1PF 2的平分线与x 轴交于Q ,若OQ=14OF 2 ,则双曲线的离心率范围为( )A.1,2B.1,4C.2,2D.2,48.(2022·广东·高三阶段练习)设a =4-ln4e2,b =ln22,c =1e ,则( )A.a <c <bB.a <b <cC.b <a <cD.b <c <a9.(2022·广东·高三阶段练习)定义在R 上的函数f x 满足f (-x )+f (x )=0,f (x )=f (2-x );且当x ∈[0,1]时,f (x )=x 3-x 2+x .则方程7f (x )-x +2=0所有的根之和为( )A.14B.12C.10D.810.(2022·广东·高三开学考试)设a =12e,b =ln 2,c =4-ln4e 2,则( )A.a <b <cB.c <b <aC.a <c <bD.b <c <a11.(2022·广东·高三开学考试)已知f (x )=2x 2,数列a n 满足a 1=2,且对一切n ∈N *,有a n +1=f a n ,则( )A.a n 是等差数列 B.a n 是等比数列C.log 2a n 是等比数列D.log 2a n +1 是等比数列12.(2022·广东·中山一中高三阶段练习)已知a =log 1.10.9,b =0.91.1,c =1.10.9,则a ,b ,c 的大小关系为( )A.a <b <cB.a <c <bC.b <a <cD.b <c <a13.(2022·广东·中山一中高三阶段练习)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =()A.-12B.13C.12D.114.(2022·广东·高三阶段练习)已知平面向量a ,b ,c 满足a=b =a ⋅b =2,且b -c ⋅3b -c =0,则c -a最小值为( )A.22+1B.33-3C.7-1D.23-215.(2022·湖南·邵阳市第二中学高三阶段练习)已知f (x )是定义在R 上的函数,且对任意x ∈R 都有f (x +2)=f (2-x )+4f (2),若函数y =f (x +1)的图象关于点(-1,0)对称,且f (1)=3,则f (2021)=( )A.6B.3C.0D.-316.(2022·湖南·邵阳市第二中学高三阶段练习)对于定义在R 上的函数f x ,若存在正常数a 、b ,使得f x +a≤f x +b 对一切x ∈R 均成立,则称f x 是“控制增长函数”.在以下四个函数中:①f x =e x ;②f x试卷第1页,共50页=x ;③f x =sin x 2;④f x =x ⋅sin x .是“控制增长函数”的有( )个A.1 B.2 C.3 D.417.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ⎳底面ABCD ,四边形ABFE ,CDEF 为两个全等的等腰梯形,EF =12AB =2,AE =23,则该刍甍的外接球的体积为( )A.642π3 B.32πC.643π3 D.642π18.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)若3x -3y >5-x -5-y ,则( )A.1x>1y B.x 3>y 3C.x >yD.ln x 2+1 >ln y 2+1二、多选题19.(2022·广东·广州市真光中学高三开学考试)已知抛物线C :y 2=2px p >0 的焦点为F ,抛物线C 上的点M 1,m 到点F 的距离是2,P 是抛物线C 的准线与x 轴的交点,A ,B 是抛物线C 上两个不同的动点,O 为坐标原点,则( )A.m =±2B.若直线AB 过点F ,则OA ⋅OB=-3C.若直线AB 过点F ,则PA PB =FAFB D.若直线AB 过点P ,则AF +BF >2PF20.(2022·广东·广州市真光中学高三开学考试)若函数f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈(0,1]时,f x =ln x ,则( )A.f x 为偶函数B.f e =1C.f 4-1e=-1D.当x ∈[1,2)时,f (x )=-ln (2-x )21.(2022·广东惠州·高三阶段练习)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则( )A.M ,N ,B ,D 1四点共面B.异面直线PD 1与MN 所成角的余弦值为1010C.平面BMN 截正方体所得截面为等腰梯形D.三棱锥P -MNB 的体积为1322.(2022·广东·鹤山市鹤华中学高三开学考试)已知椭圆C :x 216+y 29=1的左,右焦点为F 1,F 2,点P 为椭圆C上的动点(P 不在x 轴上),则( )A.椭圆C 的焦点在x 轴上B.△PF 1F 2的周长为8+27C.|PF 1|的取值范围为94,4 D.tan ∠F 1PF 2的最大值为3723.(2022·广东广州·高三开学考试)若f x =sin x +cos x ,则下列说法正确的有( )A.f x 的最小正周期是πB.方程x =-π2是f x 的一条对称轴C.f x 的值域为1,2D.∃a ,b >0,对∀x ∈R 都满足f x +a +f a -x =2b ,(a ,b 是实常数)24.(2022·广东广州·高三开学考试)已知抛物线y 2=2px 上的四点A 2,2 ,B ,C ,P ,直线AB ,AC 是圆M :x -22+y 2=1的两条切线,直线PQ 、PR 与圆M 分别切于点Q 、R ,则下列说法正确的有( )A.当劣弧QR 的弧长最短时,cos ∠QPR =-13B.当劣弧QR 的弧长最短时,cos ∠QPR =13C.直线BC 的方程为x +2y +1=0D.直线BC 的方程为3x +6y +4=025.(2022·广东广州·高三开学考试)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x ⋅f y ,则下列说法正确的有( )A.f 0 =1 B.f x 必为奇函数C.f x +f 0 ≥0D.若f 1 =12,则2023n =1f n =12 26.(2022·广东·深圳外国语学校高三阶段练习)已知函数f (x )=cos2πxx 2-2x +3,则下列说法正确的是( )A.f (x )是周期函数B.f (x )满足f (2-x )=f (x )C.f (x )>-12D.f (x )≥k 在R 上有解,则k 的最大值是1227.(2022·广东·深圳外国语学校高三阶段练习)如图,梯形ABCD 中,AB ∥CD ,AB =2DC =23,BC =2,AB ⊥BC ,M ,P ,N ,Q 分别是边AB ,BC ,CD ,DA 的中点,将△ACD 以AC 为轴旋转一周,则在此旋转过程中,下列说法正确的是( )A.MN 和BC 不可能平行B.AB 和CD 有可能垂直C.若AB 和CD 所成角是60∘,则PQ =32D.若面ACD ⊥面ABC ,则三棱锥D -ABC 的外接球的表面积是28π试卷第1页,共50页28.(2022·广东·高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >b >0 的左,右顶点分别为A 1,A 2,点P ,Q 是双曲线C 上关于原点对称的两点(异于顶点),直线PA 1,PA 2,QA 1的斜率分别为k PA 1,k PA 2,k QA 1,若k PA 1⋅k PA 2=34,则下列说法正确的是( )A.双曲线C 的渐近线方程为y =±34xB.双曲线C 的离心率为72C.k PA 1⋅k QA 1为定值D.tan ∠A 1PA 2的取值范围为0,+∞29.(2022·广东·高三阶段练习)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点P 为正方形A1B 1C 1D 1上的动点,则( )A.满足MP ⎳平面BDA 1的点P 的轨迹长度为2B.满足MP ⊥AM 的点P 的轨迹长度为223C.不存在点P ,使得平面AMP 经过点BD.存在点P 满足PA +PM =530.(2022·广东·高三开学考试)直六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1中,底面是边长为2的正六边形,侧棱AA 1=2,点O 是底面ABCDEF 的中心,则( )A.OF 1⎳平面A 1CD 1B.OF 1与BC 所成角的余弦值为24C.BO ⊥平面AA 1D 1DD.B 1F 与平面CC 1F 1F 所成角的正弦值为3431.(2022·广东·高三开学考试)已知直线l :y =ax -1,曲线C 1:f (x )=e x +1+1,曲线C 1关于直线y =x +1对称的曲线C 2所对应的函数为y =g (x ),则以下说法正确的是( )A.不论a 为何值,直线l 恒过定点(0,-1);B.g (x )=ln x -1;C.若直线l 与曲线C 2相切,则a =1;D.若直线l 上有两个关于直线y =x +1对称的点在曲线C 1上,则0<a <1.32.(2022·广东·中山一中高三阶段练习)下列命题中正确的是( )A.双曲线x 2-y 2=1与直线x +y -2=0有且只有一个公共点B.平面内满足PA -PB =2a a >0 的动点P 的轨迹为双曲线C.若方程x 24-t +y 2t -1=1表示焦点在y 轴上的双曲线,则t >4D.过给定圆上一定点A 作圆的动弦AB ,则弦AB 的中点P 的轨迹为椭圆33.(2022·广东·中山一中高三阶段练习)达·芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达·芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为f (x )=a cosh xa(a >0),双曲余弦函数cosh (x )=e x +e-x 2则以下正确的是( )A.f x 是奇函数B.f x 在-∞,0 上单调递减C.∀x ∈R ,f x ≥aD.∃a ∈0,+∞ ,f x ≥x 234.(2022·广东·高三阶段练习)设a 与b 是两个不共线向量,关于向量a +λb ,λ-1 a +2λb ,-b -2a ,则下列结论中正确的是( )A.当λ>1时,向量a +λb ,λ-1 a+2λb 不可能共线B.当λ>-3时,向量a +λb ,-b -2a可能出现共线情况C.若a ⋅b =0,且a ,b为单位向量,则当λ>-3时,向量λ-1 a +2λb ,-b -2a 可能出现垂直情况D.当λ=2时,向量a-λb 与-22b -a 平行35.(2022·广东·高三阶段练习)已知函数f x =x -2 +1,g x =kx ,若方程f x =g x 有两个不相等的实根,则实数k 的取值可以是( )A.43B.34C.45D.136.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数f x =sin cos x +cos sin x ,下列关于该函数结论正确的是( )A.f x 的图象关于直线x =π2对称B.f x 的一个周期是2πC.f x 的最大值为2D.f x 是区间0,π2上的减函数37.(2022·湖南·邵阳市第二中学高三阶段练习)在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到.而信号处理背后的“功臣”就是正弦型函数.函数f (x )=4i =1sin [(2i -1)x ]2i -1的图象就可以近似的模拟某种信号的波形,则( )A.函数f (x )为周期函数,且最小正周期为πB.函数f (x )的图象关于点(2π,0)对称C.函数f (x )的图象关于直线x =π2对称D.函数f (x )的导函数f (x )的最大值为438.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知函数f (x )是定义在R 上的奇函数,当x >0时,f(x )=e -x (x -1).则下列结论正确的是( )A.当x <0时,f (x )=e x (x +1)试卷第1页,共50页B.函数f(x)有两个零点C.若方程f(x)=m有三个解,则实数m的取值范围是f(-2)<m<f(2)D.∀x1,x2∈R,f x1-f x2max=239.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)2022年北京冬奥会开幕式精彩纷呈,其中雪花造型惊艳全球.有一个同学为了画出漂亮的雪花,将一个边长为1的正六边形进行线性分形.如图,图(n)中每个正六边形的边长是图n-1中每个正六边形的边长的12.记图(n)中所有正六边形的边长之和为a n,则下列说法正确的是( )A.图(4)中共有294个正六边形B.a4=10294C.a n是一个递增的等比数列D.记S n为数列a n的前n项和,则对任意的n∈N*且n≥2,都有a n>S n-1三、填空题40.(2022·广东·广州市真光中学高三开学考试)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆上存在一点P使得∠F1PF2=23π,则该椭圆离心率的取值范围是________.41.(2022·广东广州·高三开学考试)折纸是我国民间的一种传统手工艺术,明德小学在课后延时服务中聘请了民间艺术传人给同学们教授折纸.课堂上,老师给每位同学发了一张长为10cm,宽为8cm的矩形纸片,要求大家将纸片沿一条直线折叠.若折痕(线段)将纸片分为面积比为1:3的两部分,则折痕长度的取值范围是___________cm.42.(2022·广东·深圳外国语学校高三阶段练习)已知函数f(x)的导函数f (x)满足:f (x)-f(x)=e2x,且f(0)=1,当x∈0,+∞时,x(f(x)-a)≥1+ln x恒成立,则实数a的取值范围是______________.43.(2022·广东·高三阶段练习)若不等式a x+1e x-x<0有且仅有一个正整数解,则实数a的取值范围是______.44.(2022·广东·高三阶段练习)已知⊙C:x2+y2-2x-2y-2=0,直线l:x+2y+2=0,M为直线l上的动点,过点M作⊙C的切线MA,MB,切点为A,B,当四边形MACB的面积取最小值时,直线AB的方程为____.45.(2022·广东·高三开学考试)已知双曲线C:x24-y23=1,F1、F2是双曲线C的左、右焦点,M是双曲线C右支上一点,l是∠F1MF2的平分线,过F2作l的垂线,垂足为P,则点P的轨迹方程为_______.46.(2022·广东·中山一中高三阶段练习)在△ABC中,角A,B,C的对边分别为a,B,C,已知sin2A+sin2C=sin2B+sin A sin C,若△ABC的面积为334,则a+c的最小值为__________.47.(2022·广东·高三阶段练习)已知矩形ABCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为_____.48.(2022·湖南·邵阳市第二中学高三阶段练习)设f x =ln x,0<x≤2f4-x,2<x<4,若方程f x =m有四个不相等的实根x i i =1,2,3,4 ,则x 1+x 2 2+x 23+x 24的取值范围为___________.49.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知F 是双曲线C :x 2a2-y 2b 2=1a >0,b >0 的右焦点,过点F 的直线l 与双曲线C 的一条渐近线垂直,垂足为A ,且直线l 与双曲线C 的左支交于点B ,若3FA =AB ,则双曲线C 的渐近线的方程为______.四、双空题50.(2022·广东惠州·高三阶段练习)已知抛物线方程y 2=8x ,F 为焦点,P 为抛物线准线上一点,Q 为线段PF与抛物线的交点,定义:d P =PFFQ.已知点P -2,82 ,则d P =___________;设点P -2,t t >0 ,若4d P -PF-k >0恒成立,则k 的取值范围为___________.51.(2022·广东·鹤山市鹤华中学高三开学考试)甲射击一次,中靶概率是P 1,乙射击一次,中靶概率是P 2,已知1P 1,1P 2是方程x 2-5x +6=0的根,且P 1满足方程x 2-x +14=0.则甲射击一次,不中靶概率为_____;乙射击一次,不中靶概率为_____.52.(2022·湖南·邵阳市第二中学高三阶段练习)若f x =ln a +11-x+b 是奇函数,则a =_____,b =______.试卷第1页,共50页2023年新高考数学选填压轴题好题汇编(一)一、单选题1.(2022·广东·广州市真光中学高三开学考试)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为4π3时,该裹蒸粽的高的最小值为( )A.4B.6C.8D.10【答案】A 【解析】要使正四面体的高最小,当且仅当球与正四面体相内切,设正四面体的棱长为a ,高为h ,内切球的半径为r ,则4π3r 3=4π3,解得r =1,如图正四面体S -ABC 中,令D 为BC 的中点,O 1为底面三角形的中心,则SO 1⊥底面ABC所以V S -ABC =13S △ABC h =13⋅4S △ABC ⋅r ,即h =4r =4.故选:A2.(2022·广东惠州·高三阶段练习)甲罐中有5个红球,3个白球,乙罐中有4个红球,2个白球.整个取球过程分两步,先从甲罐中随机取出一球放入乙罐,分别用A 1、A 2表示由甲罐取出的球是红球、白球的事件;再从乙罐中随机取出两球,分别用B 、C 表示第二步由乙罐取出的球是“两球都为红球”、“两球为一红一白”的事件,则下列结论中不正确的是( )A.P B A 1 =1021B.P C A 2 =47C.P B =1942D.P C =4384【答案】C【解析】在事件A 1发生的条件下,乙罐中有5红2白7个球,则P B ∣A 1 =C 25C 27=1021,A 正确;在事件A 2发生的条件下,乙罐中有4红3白7个球,则P C ∣A 2 =C 14C 13C 27=1221=47,B 正确;因P A 1 =58,P A 2 =38,P B ∣A 1 =1021,P B ∣A 2 =C 24C 27=621,则P B =P A 1 P B ∣A 1 +P A 2 P B ∣A 2 =58×1021+38×621=1742,C 不正确;因P C ∣A 2 =1221,P C ∣A 1 =C 15C 12C 27=1021,则P C =P A 1 P C ∣A 1 +P A 2 P C ∣A 2 =58×1021+38×1221=4384,D 正确.故选:C .3.(2022·广东·鹤山市鹤华中学高三开学考试)已知直线ax -2by +14=0平分圆C :x 2+y 2-4x -2y -11=0的面积,过圆外一点P a ,b 向圆做切线,切点为Q ,则PQ 的最小值为( )A.4 B.5C.6D.7【答案】A【解析】圆C :x 2+y 2-4x -2y -11=0化为标准方程为x -2 2+y -1 2=16,所以圆心C 2,1 ,半径r =4,因为直线ax -2by +14=0平分圆C :x 2+y 2-4x -2y -11=0的面积,所以圆心C 2,1 在直线ax -2by +14=0上,故2a -2b +14=0,即b =a +7,在Rt △PQC 中,PQ2=PC 2-r 2=a -2 2+b -1 2-16=a -2 2+a +6 2-16=2a 2+8a +24=2a +2 2+16,当a =-2时,PQ 2最小为16,PQ 最小为4.故选:A .4.(2022·广东广州·高三开学考试)设a =ln1.1,b =e 0.1-1,c =tan0.1,d =0.4π,则( )A.a <b <c <d B.a <c <b <dC.a <b <d <cD.a <c <d <b【答案】B【解析】设a x =ln x +1 ,b x =e x -1,c x =tan x ,d x =4πx ,易得a 0 =b 0 =c 0 =d 0 .设y =d x -b x =4πx -e x +1,则令y =4π-e x =0有x =ln 4π,故y =d x -b x 在-∞,ln 4π上单调递增.①因为4π 10>43.2 10=54 10=2516 5>2416 5=32 5>e ,即4π 10>e ,故10ln 4π>1,即ln 4π>0.1,故d 0.1 -b 0.1 >d 0 -b 0 =0,即d >b .②设y =b x -c x =e x -1-tan x ,则y =e x-1cos 2x =e x cos 2x -1cos 2x,设f x =e x cos 2x -1,则f x =e x cos 2x -2sin x =e x -sin 2x -2sin x +1 .设g x =x -sin x ,则g x =1-cos x ≥0,故g x =x -sin x 为增函数,故g x ≥g 0 =0,即x ≥sin x .故f x ≥e x -x 2-2x +1 =e x -x +1 2+2 ,当x ∈0,0.1 时f x >0, f x =e x cos 2x -1为增函数,故f x ≥e 0cos 20-1=0,故当x ∈0,0.1 时y =b x -c x 为增函数,故b 0.1 -c 0.1 >b 0 -c 0 =0,故b >c .③设y =c x -a x =tan x -ln x +1 ,y =1cos 2x -1x +1=x +sin 2xx +1 cos 2x,易得当x ∈0,0.1 时y >0,故c 0.1 -a 0.1 >c 0 -a 0 =0,即c >a .综上d >b >c >a故选:B5.(2022·广东广州·高三开学考试)若空间中经过定点O 的三个平面α,β,γ两两垂直,过另一定点A 作直线l 与这三个平面的夹角都相等,过定点A 作平面δ和这三个平面所夹的锐二面角都相等.记所作直线l 的条数为m ,所作平面δ的个数为n ,则m +n =( )A.4 B.8C.12D.16【答案】B【解析】将α,β,γ放入正方体OBCD -A 1B 1C 1D 1,根据对称性可知,对角线OC 1分别与三个平面α,β,γ所成角都相等,对角线BD 1分别与三个平面α,β,γ所成角都相等,因为平面BC 1⎳平面α,所以对角线BD 1分别与三个平面α,β,γ所成角都相等,同理对角线B 1D ,A 1C 分别与三个平面α,β,γ所成角都相等,过点A 分别作BD 1,B 1D ,A 1C ,OC 1的平行线,则所作四条平行线分别与三个平面α,β,γ所成角都相等,所以m =4.试卷第1页,共50页如下图,正方体的内接正四面体O -B 1CD 1的四个平面与α,β,γ所夹的锐二面角都相等,所以过A 分别作与正四面体O -B 1CD 1四个面平行的平面即可,所以n =4.故选:B .6.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则( )A.a >b >c B.c >b >a C.b >a >cD.a >c >b【答案】D【解析】令f x =e x -x -1x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x >x +1,∴e 0.1>1.1,∴e 0.05> 1.1,即a >c ;令g x =ln x -x +1,则g x =1x -1=1-xx,∴当x ∈0,1 时,g x >0;当x ∈1,+∞ 时,g x <0;∴g x 在0,1 上单调递增,在1,+∞ 上单调递减,∴g x ≤g 1 =0,∴ln x ≤x -1(当且仅当x =1时取等号),∴ln x ≤x -1,即ln x2+1≤x (当且仅当x =1时取等号),∴ln1.12+1< 1.1,即b <c ;综上所述:a >c >b .故选:D .7.(2022·广东·深圳外国语学校高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,∠F 1PF 2的平分线与x 轴交于Q ,若OQ=14OF 2 ,则双曲线的离心率范围为( )A.1,2 B.1,4 C.2,2 D.2,4【答案】B【解析】设双曲线的半焦距为c c >0 , 离心率为e ,由OQ =14OF 2 ,则QF 1 =54c ,QF 2 =34c ,因为PQ 是∠F 1PF 2的平分线,所以PF 1 :PF 2 =5:3,又因为PF 1 -PF 2 =2a ,所以PF 1 =5a ,PF 2 =3a ,所以5a +3a >2c 2a <2c,解得1<ca<4,即1<e <4,所以双曲线的离心率取值范围为(1,4).故选:B8.(2022·广东·高三阶段练习)设a =4-ln4e2,b =ln22,c =1e ,则( )A.a <c <b B.a <b <cC.b <a <cD.b <c <a【答案】C 【解析】设f x =ln x x ,则f x =1-ln xx 2,当x >e 时,f x <0,函数单调递减,当0<x <e 时,f x >0,函数单调递增,故当x =e 时,函数取得最大值f e =1e,因为a =22-ln2 e 2=ln e 22e 22=f e 22 ,b =ln22=ln44=f 4 ,c =1e =f e ,∵e <e 22<4,当x >e 时,fx <0,函数单调递减,可得f 4 <f e 22<f e ,即b <a <c .故选:C9.(2022·广东·高三阶段练习)定义在R 上的函数f x 满足f (-x )+f (x )=0,f (x )=f (2-x );且当x ∈[0,1]时,f (x )=x 3-x 2+x .则方程7f (x )-x +2=0所有的根之和为( )A.14 B.12C.10D.8【答案】A【解析】由f (-x )+f (x )=0,f (x )=f (2-x )可得f x 为奇函数,且关于x =1对称.又由题意f (-x )=-f (x ),故f x =f 2-x =-f 2+x ,所以f x 关于2,0 对称,且f x =-f 2+x =f 4+x ,故f x 的周期为4.又当x ∈[0,1]时,f (x )=x 3-x 2+x ,此时f x =3x 2-2x +1=3x -13 2+23>0,故f (x )=x 3-x 2+x 在x ∈[0,1]为增函数.综上可画出y =f (x )的函数部分图象.又方程7f (x )-x +2=0的根即y =f (x )与y =17x -2 的交点,易得在区间-5,2 ,2,9 上均有3个交点,且关于2,0 对称,加上2,0 共7个交点,其根之和为3×2×2+2=14故选:A 10.(2022·广东·高三开学考试)设a =12e,b =ln 2,c =4-ln4e 2,则( )A.a <b <c B.c <b <a C.a <c <bD.b <c <a【答案】A 【解析】设f (x )=ln xx ,x ∈(0,+∞),因为f (x )=1-ln xx2,令f (x )>0,得0<x <e ;令f (x )<0,得x >e .所以f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,而a =12e =f (e ),b =ln212=ln22=f (2)=ln44=f (4),试卷第1页,共50页c =4-ln4e 2=2-ln2e 22=ln e22e 22=f e 22 ,因为0<e <2<e <e 22<4,所以a <b <c .故选:A .11.(2022·广东·高三开学考试)已知f (x )=2x 2,数列a n 满足a 1=2,且对一切n ∈N *,有a n +1=f a n ,则( )A.a n 是等差数列 B.a n 是等比数列C.log 2a n 是等比数列 D.log 2a n +1 是等比数列【答案】D【解析】由题意知a n +1=2a 2n ,所以log 2a n +1=1+2log 2a n ,所以log 2a n +1+1=2log 2a n +1 ,n ∈N *,所以log 2a n +1 是等比数列,且log 2a n +1=2n ,所以log 2a n =2n -1,选项A ,B ,C 错误,选项D 正确.故选:D .12.(2022·广东·中山一中高三阶段练习)已知a =log 1.10.9,b =0.91.1,c =1.10.9,则a ,b ,c 的大小关系为( )A.a <b <c B.a <c <bC.b <a <cD.b <c <a【答案】A【解析】由函数y =log 1.1x 在0,+∞ 上单调递增,所以a =log 1.10.9<log 1.11=0,由于函数y =0.9x 在R 上单调递减,所以0<0.91.1=b <0.90=1,由于函数y =1.1x 在0,+∞ 上单调递增,所以1.10.9>1.10=1,故a <b <c .故选:A .13.(2022·广东·中山一中高三阶段练习)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =()A.-12B.13C.12D.1【答案】C【解析】因为f (x )=x 2-2x +a (e x -1+e -x +1)=x -1 2+a (e x -1+e -x +1)-1,设t =x -1,则f x =g t =t 2+a e t +e -t -1,因为g t =g -t ,所以函数g t 为偶函数,若函数f (x )有唯一零点,则函数g t 有唯一零点,根据偶函数的性质可知,只有当t =0时,g t =0才满足题意,即x =1是函数f (x )的唯一零点,所以2a -1=0,解得a =12.故选:C .14.(2022·广东·高三阶段练习)已知平面向量a ,b ,c 满足a=b =a ⋅b =2,且b -c ⋅3b -c =0,则c -a最小值为( )A.22+1B.33-3C.7-1D.23-2【答案】D【解析】因为a=b =a ⋅b =2,所以cos a ,b =a ⋅ba ⋅b=12,又a ,b ∈0,π ,所以a ,b =π3,如图所示:不妨设A 1,3 ,B 2,0 ,C x ,y ,则a =OA=1,3 ,b =OB =2,0 ,c =OC =x ,y ,所以b -c =2-x ,-y ,3b -c=6-x ,-y ,因为b -c ⋅3b -c=0,所以2-x 6-x +y 2=0,即x -4 2+y 2=4,表示点C 在以M 4,0 为圆心,以2为半径的圆上,所以c -a最小值为AM -r =1-4 2+3 2-2=23-2,故选:D15.(2022·湖南·邵阳市第二中学高三阶段练习)已知f (x )是定义在R 上的函数,且对任意x ∈R 都有f (x +2)=f (2-x )+4f (2),若函数y =f (x +1)的图象关于点(-1,0)对称,且f (1)=3,则f (2021)=( )A.6 B.3 C.0 D.-3【答案】D【解析】令x =0,得f (2)=f (2)+4f (2),即f (2)=0,所以f (x +2)=f (2-x ),因为函数y =f (x +1)的图象关于点(-1,0)对称,所以函数y =f (x )的图象关于点(0,0)对称,即f (-x )=-f (x ),所以f (x +2)=f (2-x )=-f (x -2),即f (x +4)=-f (x ),可得f (x +8)=f (x ),则f (2021)=f (253×8-3)=f (-3)=-f (1)=-3,故选:D .16.(2022·湖南·邵阳市第二中学高三阶段练习)对于定义在R 上的函数f x ,若存在正常数a 、b ,使得f x +a≤f x +b 对一切x ∈R 均成立,则称f x 是“控制增长函数”.在以下四个函数中:①f x =e x ;②f x =x ;③f x =sin x 2;④f x =x ⋅sin x .是“控制增长函数”的有( )个A.1 B.2 C.3 D.4【答案】C【解析】对于①,f x +a ≤f x +b 可化为e x +a ≤e x +b ,即e x ≤be a-1对一切x ∈R 恒成立,由函数y =f x 的定义域为R 可知,不存在满足条件的正常数a 、b ,所以,函数f x =e x 不是“控制增长函数”;对于②,若函数f x =x为“控制增长函数”,则f x +a ≤f x +b 可化为x +a≤x +b ,∴x +a ≤x +b 2+2bx对一切x ∈R 恒成立,又x +a ≤x +a ,若x +a ≤x +b 2+2bx 成立,则x ≥a -b 22a,显然,当a <b 2时,不等式恒成立,试卷第1页,共50页所以,函数f x =x 为“控制增长函数”;对于③,∵-1≤sin x 2 ≤1,∴f x +a -f x ≤2,当b ≥2且a 为任意正实数时,f x +a ≤f x +b 恒成立,所以,函数f x =sin x 2 是“控制增长函数”;对于④,若函数f x =x ⋅sin x 是“控制增长函数”,则x +a ⋅sin x +a ≤x sin x +b 恒成立,∵x +a ⋅sin x +a ≤x +a ,若x +a ≤x sin x +b ≤x +b ,即a ≤b ,所以,函数f x =x ⋅sin x 是“控制增长函数”.因此,是“控制增长函数”的序号是②③④.故选:C17.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ⎳底面ABCD ,四边形ABFE ,CDEF为两个全等的等腰梯形,EF =12AB =2,AE =23,则该刍甍的外接球的体积为( )A.642π3B.32πC.643π3D.642π【答案】A【解析】取AD ,BC 中点N ,M ,正方形ABCD 中心O ,EF 中点O 2,连接EN ,MN ,FM ,OO 2,如图,依题意,OO 2⊥平面ABCD ,EF ⎳AB ⎳MN ,点O 是MN 的中点,MN =AB =4,等腰△AED 中,AD ⊥EN ,EN =AE 2-AN 2=22,同理FM =22,因此,等腰梯形EFMN 的高OO 2=EN 2-MN -EF 22=7,由几何体的结构特征知,刍甍的外接球球心O 1在直线OO 2上,连O 1E ,O 1A ,OA ,正方形ABCD 外接圆半径OA =22,则有O 1A 2=OA 2+OO 21O 1E 2=O 2E 2+O 2O 21 ,而O 1A =O 1E ,O 2E =12EF =1,当点O 1在线段O 2O 的延长线(含点O )时,视OO 1为非负数,若点O 1在线段O 2O (不含点O )上,视OO 1为负数,即有O 2O 1=O 2O +OO 1=7+OO 1,即(22)2+OO 21=1+(7+OO 1)2,解得OO 1=0,因此刍甍的外接球球心为O ,半径为OA =22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选:A18.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)若3x -3y >5-x -5-y ,则( )A.1x >1yB.x 3>y 3C.x >yD.ln x 2+1 >ln y 2+1【答案】B【解析】由3x -3y >5-x -5-y 得3x -5-x >3y -5-y ,设f (x )=3x -5-x ,易知f (x )是增函数,所以由3x -5-x >3y -5-y 得x >y ,当x <0时,C 不存在,错误,A 错误,0>x >y ,则0<x 2<y 2,0<x 2+1<y 2+1,从而ln (x 2+1)<ln (y 2+1),D 错误.由不等式性质,B 正确.故选:B .二、多选题19.(2022·广东·广州市真光中学高三开学考试)已知抛物线C :y 2=2px p >0 的焦点为F ,抛物线C 上的点M 1,m 到点F 的距离是2,P 是抛物线C 的准线与x 轴的交点,A ,B 是抛物线C 上两个不同的动点,O 为坐标原点,则( )A.m =±2B.若直线AB 过点F ,则OA ⋅OB=-3C.若直线AB 过点F ,则PA PB =FAFB D.若直线AB 过点P ,则AF +BF >2PF 【答案】BCD 【解析】由题意得1+p2=2,则p =2,故抛物线C 的方程为y 2=4x ,将M 1,m 代入抛物线的方程,得m 2=4,解得m =±2,所以A 不正确;设A x 1,y 1 ,B x 2,y 2 ,易知直线AB 的斜率不为零,当直线AB 过点F 1,0 时,可设直线AB 的方程为x =ty +1,与抛物线方程联立,得y 2=4xx =ty +1 ,化简得:y 2-4ty -4=0,则y 1y 2=-4,y 1+y 2=4t ,所以x 1x 2=y 21y 2216=1,所以OA ⋅OB =x 1x 2+y 1y 2=1-4=-3,所以B 正确;易知P -1,0 ,则由选项B 得k PA +k PB =y 1x 1+1+y 2x 2+1=y 1ty 2+2 +y 2ty 1+2 x 1+1 x 2+1 =2ty 1y 2+2y 2+y 1 x 1+1 x 2+1 =-8t +8t x 1+1 x 2+1=0,所以直线PF 平分∠APB ,所以PA PB =FAFB,选项C 正确;因为直线AB 过点P -1,0 ,且斜率不为零,所以设直线AB 的方程为x =ty -1,与抛物线方程联立,易得y 1y 2=4,所以x 1x 2=1.因为x 1>0,x 2>0,且x 1≠x 2,所以AF +BF =x 1+1+x 2+1>2x 1x 2+2=4,又PF =2,所以AF +BF >2PF ,所以D 正确.故选:BCD .20.(2022·广东·广州市真光中学高三开学考试)若函数f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈(0,1]时,f x =ln x ,则( )A.f x 为偶函数B.f e =1C.f 4-1e =-1D.当x ∈[1,2)时,f (x )=-ln (2-x )【答案】ACD试卷第1页,共50页【解析】对A ,因为函数f 2x +2 为偶函数,故f 2x +2 =f -2x +2 ,故f x 关于x =2对称.又f x +1 为奇函数,关于原点对称,故f x 关于1,0 对称.综上,f x 关于x =2与1,0 对称. 关于x =2对称有f x =f 4-x ,关于1,0 对称有f 4-x =-f x -2 ,f x =-f 2-x ,故-f x -2 =-f 2-x ,即f x =f -x ,所以f x 为偶函数,故A 正确;对B ,由A ,因为e ∈2,3 ,f e =-f 2-e =-f e -2 =-ln e -2 ,故B 错误;对C ,由A ,f 4-1e =f 1e =ln 1e=-1,故C 正确;对D ,当x ∈[1,2)时,2-x ∈0,1 ,故f x =-f 2-x =-ln 2-x ,故D 正确;故选:ACD21.(2022·广东惠州·高三阶段练习)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则( )A.M ,N ,B ,D 1四点共面B.异面直线PD 1与MN 所成角的余弦值为1010C.平面BMN 截正方体所得截面为等腰梯形D.三棱锥P -MNB 的体积为13【答案】BCD【解析】对于A ,易知MN 与BD 1为异面直线,所以M ,N ,B ,D 1不可能四点共面,故A 错误;对于B ,连接CD 1,CP ,易得MN ⎳CD 1,所以∠PD 1C 为异面直线PD 1与MN 所成角,设AB =2,则CD 1=22,D 1P =5,PC =3,所以cos ∠PD 1C =(22)2+(5)2-322×22×5=1010,所以异面直线PD 1与MN 所成角的余弦值为1010,故B 正确;对于C ,连接A 1B ,A 1M ,易得A 1B ⎳MN ,所以平面BMN 截正方体所得截面为梯形MNBA 1,故C 正确;对于D ,易得D 1P ⎳BN ,因为D 1P ⊄平面MNB ,MN ⊂平面MNB ,所以D 1P ⎳平面MNB ,所以V P -MNB =V D 1-MNB =V B -MND 1=13×12×1×1×2=13,故D 正确.故选:BCD22.(2022·广东·鹤山市鹤华中学高三开学考试)已知椭圆C :x 216+y 29=1的左,右焦点为F 1,F 2,点P 为椭圆C 上的动点(P 不在x 轴上),则( )A.椭圆C 的焦点在x 轴上B.△PF 1F 2的周长为8+27C.|PF 1|的取值范围为94,4 D.tan ∠F 1PF 2的最大值为37【答案】ABD【解析】对于A ,由椭圆的方程可知,椭圆焦点在x 轴上,故A 正确;对于B ,因为c =16-9=7,而△PF 1F 2的周长为2a +2c =8+27,故B 正确;对于C ,因为P 不在x 轴上,所以a -c <PF 1 <a +c ,所以PF 1 的取值范围为4-7,4+7 ,故C 不正确;对于D ,设椭圆的上顶点为B ,则0≤∠F 1PF 2≤∠F 1BF 2<π2,所以tan ∠F 1PF 2的最大值为tan ∠F 1BF 2.设∠OBF 2=α,则tan α=73,且∠F 1BF 2=2α,而tan2α=2tan α1-tan 2α=37,所以tan ∠F 1PF 2的最大值为37,故D 正确.故选:ABD .23.(2022·广东广州·高三开学考试)若f x =sin x +cos x ,则下列说法正确的有( )A.f x 的最小正周期是πB.方程x =-π2是f x 的一条对称轴C.f x 的值域为1,2D.∃a ,b >0,对∀x ∈R 都满足f x +a +f a -x =2b ,(a ,b 是实常数)【答案】BC【解析】对A ,因为f x =sin x +cos x ,所以f x +π2 =sin x +π2 +cos x +π2=cos x +sin x =f x ,故π2是f x 的一个周期,故最小正周期是π是错误的,对B ,因为f x -π =sin x -π +cos x -π =sin x +cos x =f x ,故x =-π2是f x 的一条对称轴是正确的,对C ,当x ∈0,π2 时,f x =sin x +cos x =sin x +cos x =2sin x +π4 ,由x ∈0,π2 ,则x +π4∈π4,3π4 ,故sin x +π4 ∈22,1 ,因此f (x )∈1,2 ,由A 知π2是f x 的周期,故f x 的值域为1,2 ,C 正确,对D ,因为当x ∈0,π2时,f x =sin x +cos x =sin x +cos x =2sin x +π4 ,且π2是f x 的周期,故画出f (x )的图象如图:由图可知,f (x )没有对称中心,故不存在a ,b ,使得f x +a +f a -x =2b ,故D 错误.故选:BC24.(2022·广东广州·高三开学考试)已知抛物线y 2=2px 上的四点A 2,2 ,B ,C ,P ,直线AB ,AC 是圆M :x -22+y 2=1的两条切线,直线PQ 、PR 与圆M 分别切于点Q 、R ,则下列说法正确的有( )A.当劣弧QR 的弧长最短时,cos ∠QPR =-13B.当劣弧QR 的弧长最短时,cos ∠QPR =13C.直线BC 的方程为x +2y +1=0D.直线BC 的方程为3x +6y +4=0试卷第1页,共50页【答案】BD【解析】由已知得抛物线y 2=2px 过点A 2,2 ,即22=2p ×2,所以p =1,即抛物线为y 2=2x ,对于AB 选项,如图所示,设点P y 202,y 0当劣弧QR 的弧长最短时,∠QMR 最小,又∠QMR +∠QOR =π,所以∠QPR 最大,即cos ∠QPR 最小,又cos ∠QPR =cos2∠QPM =1-2sin 2∠QPM =1-2⋅MQ 2PM 2,又圆M :x -2 2+y 2=1,所以圆心M 2,0 ,半径r =QM =1,cos ∠QPR =1-2PM2,又PM 2=y 202-22+y 20=14y 20-2 2+3,所以当y 20=2时,PM 2取最小值为3,此时cos ∠QPR 最小为1-23=13,所以A 选项错误,B 选项正确;对于CD 选项,设过点A 作圆M 切线的方程为y -2=k x -2 ,即kx -y -2k +2=0,所以d =2k -0-2k +21+k2=r =1,解得k =±3,则直线AB 的方程为:y -2=3x -2 ,即y =3x -23+2,直线AC 的方程为:y -2=-3x -2 ,即y =-3x +23+2,联立直线AB 与抛物线y =3x -23+2y 2=2x ,得y 2-233y +433-4=0,故2y B =433-4,y B =233-2,B 83-433,233-2 ,同理可得C 83+433,-233-2 ,所以k BC =233-2 --233-2 83-433 -83+433=-12,直线BC 的方程为y -233-2 =-12x -83-433,即3x +6y +4=0,所以C 选项错误,D 选项正确;故选:BD .25.(2022·广东广州·高三开学考试)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x ⋅f y ,则下列说法正确的有( )A.f 0 =1 B.f x 必为奇函数C.f x +f 0 ≥0D.若f 1 =12,则2023n =1f n =12 【答案】BCD【解析】对于A ,令x =y =0,则由f x +y +f x -y =2f x ⋅f y 可得2f 0 =2f 20 ,故f (0)=0或f 0 =1,故A 错误;对于B ,当f (0)=0时,令y =0,则f x +f x =2f x ⋅f 0 =0,则f (x )=0 ,故f (x )=0,函数f x 既是奇函数又是偶函数;。

高中数学练习题及答案

高中数学练习题及答案

高中数学练习题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 5,求f(2)的值。

A. 9B. 15C. 17D. 192. 一个圆的半径为3,求该圆的面积。

A. 28πB. 9πC. 18πD. 36π3. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。

A. 17B. 14C. 21D. 204. 直线y = 2x + 1与x轴的交点坐标是什么?A. (-1/2, 0)B. (0, 1)C. (1/2, 0)D. (1, 0)5. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。

A. 6B. 3√3C. 4√3D. 5√3二、填空题6. 函数y = 3x^3 - 2x^2 + x - 5的导数是______。

7. 已知抛物线y^2 = 4x,求该抛物线的焦点坐标。

8. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

9. 已知一个球的体积为(4/3)π,求该球的半径。

10. 已知正弦函数sin(x)的周期是2π,求余弦函数cos(x)的周期。

三、解答题11. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求该函数的极值点。

12. 解不等式:2x^2 - 5x + 2 > 0。

13. 已知点A(1, 2)和点B(4, 6),求直线AB的斜率和方程。

14. 证明:对于任意实数x,等式e^x ≥ x + 1恒成立。

15. 已知函数h(x) = √x,求该函数的定义域和值域。

答案:1. B2. A3. A4. A5. B6. 9x^2 - 4x + 17. 焦点坐标为(1, 0)8. 59. √(3/π)10. 2π11. 极小值点x = 1,极大值点x = 512. x < 1/2 或 x > 213. 斜率k = 2,方程为2x - y - 2 = 014. 证明略15. 定义域为[0, +∞),值域为[0, +∞)本试卷涵盖了高中数学的多个知识点,包括函数、导数、不等式、几何图形、三角函数等,旨在帮助学生全面复习和巩固所学知识。

高考数学选填压轴题练习与答案

高考数学选填压轴题练习与答案

高考数学选填压轴题练习与答案一.选择题(共25小题)1.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),若b n=a n cos2nπ3,且数列{b n}的前n项和为S n,则S11=()A.64B.80C.﹣64D.﹣80【解答】解:数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),则a n+1n+1=a nn+1,可得数列{a nn}是首项为1、公差为1的等差数列,即有a nn=n,即为a n=n2,则b n=a n cos2nπ3=n2cos2nπ3,则S11=−12(12+22+42+52+72+82+102+112)+(32+62+92)=−12(12+22﹣32﹣32+42+52﹣62﹣62﹣72+82﹣92﹣92+102+112)=−12×(5+23+41+59)=﹣64.故选:C.2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(π6+x)=﹣f(π6−x),f(π2+x)=f(π2−x),下列四个结论:①φ=π4;②ω=92+3k(k∈N);③f(−π2)=0;④直线x=−π3是f(x)图象的一条对称轴.其中所有正确结论的编号是()A.①②B.①③C.②④D.③④【解答】解:函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(x)图象的一条对称轴是直线x=π2,所以f(π2+x)=f(π2−x),由f (x )的一个零点为π6, 所以f (π6+x )=﹣f (π6−x ),整理得T 4+k ⋅T 2=π2−π6=π3, 所以T =4π3(1+2k), 故ω=2πT=32+3k (k ∈Z ),故②错误;当k =1时,f (x )=sin (92x +φ), 把(π6,0)代入关系式,得到sin (3π4+φ)=0,由于0<φ<π2,所以φ=π4,故①正确;对于f (−π3)=sin (92⋅π3+π4)≠±1,故④错误; f (−π2)=sin[92⋅(−π2)+π4]=sin (﹣2π)=0,故③正确. 故选:B .3.已知四面体ABCD 的四个顶点都在以AB 为直径的球R 面上,且BC =CD =DB =2,若四面体ABCD 的体积是4√23,则这个球面的面积是( )A .16πB .323πC .4πD .763π【解答】解:由题意,几何体的直观图如图, 四面体ABCD 的体积是4√23,可得O 到平面BCD 的距离为h ,13×√34×22×2ℎ=4√23,解得h =2√63, 所以外接球的半径为R =OB =OD =OC =OA =(2√63)(23√32=2,所以外接球的表面积为:4π×22=16π. 故选:A .4.已知函数f (x )={log 2x ,x >114x +1,x ≤1,g (x )=f (x )﹣kx ,若函数g (x )有两个零点,则k 的取值范围是( ) A .(0,14]B .(0,1eln2) C .[0,1e)D .[14,1eln2)【解答】解:函数f (x )={log 2x ,x >114x +1,x ≤1,作出f (x )的图象与y =kx 图象有两个交点,(如图)设y =kx 与y =log 2x 的切点为(x 0,y 0), 可得{y 0=kx 0y 0=log 2x 01k =x 0ln2,解得x 0=e ,∴相切时的斜率k =1eln2.故得f (x )的图象与y =kx 图象有两个交点时,14≤k <1eln2. 故选:D .5.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,椭圆E 上一点P (2,1)关于原点的对称点为Q ,若△PQF 的周长为4√2+2√5.则离心率e =( )A.√32B.√22C.√33D.√23【解答】解:∵P与Q关于原点对称,则Q(﹣2,﹣1),∴|PQ|=2√12+22=2√5,又三角形PQF的周长为|QP|+|PF|+|QF|=4√2+2√5,∴|PF|+|QF|=4√2,设椭圆的右焦点为M,则由椭圆的性质可得|PF|=|QM|,∴|QM|+|QF|=2a=4√2,得a=2√2,将点P代入椭圆方程可得:48+1b2=1,解得b=√2,∴c=√a2−b2=√6.则离心率e=ca =√62√2=√32.故选:A.6.对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),g(x)=lnxx,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)【解答】解:∵f(x)=m(x+1)恒过定点(﹣1,0),f(x)关于y轴对称的图象的函数解析式为y=﹣m(x﹣1)依题意可得,y=﹣m(x﹣1)与g(x)=lnxx有2个交点,由g(x)=lnxx ,得g′(x)=1−lnxx2,当0<x<e时,h′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,而y=﹣m(x﹣1)恒过定点(1,0),作出函数g(x)=lnxx的图象如图,当直线y=﹣m(x﹣1)与g(x)=lnxx切于(1,0)时,由导数的几何意义可得,﹣m=1−ln112=1,则要使y =﹣m (x ﹣1)与g (x )=lnx x有2个交点,则﹣m >0且﹣m ≠1,∴实数m 的取值范围为(﹣∞,﹣1)∪(﹣1,0). 故选:D .7.已知函数f (x )={|xlnx|,x >0|x(x +1)|,x ⩽0,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有8个不同的实数根,则t 的取值范围是( ) A .(−1e −e ,+∞) B .(−2e ,−12)∪(﹣∞,−1e −e )C .(﹣∞,−174)D .(2,+∞)∪(﹣∞,−174)【解答】解:当x >0时,f (x )=|xlnx |,令F (x )=xlnx ,F ′(x )=lnx +1, 令F ′(x )=lnx +1=0,解得x =1e,F (1e)=−1e,f (1e)=1e,故当x >0时,函数f (x )在(0,1e )上单调递增,在(1e ,1)上单调递减,在(1,+∞)上单调递增; 当x <0时,可得函数f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,−12)上单调递增,在(−12,0)上单调递减.又f (−12)=14,f (1e )=1e ,故刻画出函数f (x )的大致图象如图:令m =f (x ),则已知方程可化为m 2+tm +1=0.观察图象可知,当m >1e 时,只有2个交点;当m =1e 时,有3个交点;当14<m <1e 时,有4个交点; 当0<m <14时,有6个交点.要想满足题意,则只需使得方程m 2+tm +1=0在(14,1e )上存在两个不同实数根,或在(1e ,+∞)和(0,14)上各有1个根,方程m 2+tm +1=0的两根之积为1, 令g (m )=m 2+tm +1,由题意,{g(14)<0g(4)<0,解得t <−174,即t 的取值范围是(﹣∞,−174).故选:C .8.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上一点,若满足|PB |+|PC 1|=d 的点P 的个数为4.则d 的取值范围为( ) A .(√2,2)B .(√2,2√2)C .[2,1+√3)D .(1+√3,2√2)【解答】解:点P 分别在BB 1,BC ,CC 1,B 1C 1上运动时,m 的取值范围是[√2,2], 当点P 分别在C 1D 1,AB 上运动时,m 的取值范围是[√2,1+√3], 当点P 分别在棱A 1B 1,CD 上运动时,m 的取值范围是[2,2√2],当P 分别在棱A 1D 1,DD 1,AD ,AA 1上运动时,m 的取值范围是[√4+2√2,2√2], 由结合图形可知,点P 在正方体的每一条棱上运动时, 它所在的位置与m 的值是一一对应的, 当|PB |+|PC 1|=d 的点P 的个数为4, 则d 的取值范围为[2,1+√3), 故选:C .9.已知不相等的两个正实数x ,y 满足x 2﹣y =4(log 2y ﹣log 4x ),则下列不等式中不可能成立的是( )A.x<y<1B.y<x<1C.1<x<y D.1<y<x【解答】解:由已知x2﹣y=4(log2y﹣log4x),因为2log4x=log2x,所以原式可变形为x2+2log2x=y+4log2y,令f(x)=x2+2log2x,g(x)=x+4log2x,函数f(x)与g(x)均为(0,+∞)上的增函数,且f(x)=g(y),且f(1)=g(1),当x>1时,f(x)>1,g(y)>1,y>1,当x<1时,f(x)<1,g(y)<1,y<1,要比较x与y的大小,只需比较g(x)与g(y)的大小,g(x)﹣g(y)=g(x)﹣f(x)=x+4log2x﹣x2﹣2log2x=x﹣x2+2log2x,设h(x)=x﹣x2+2log2x(x>0),则h'(x)=1−2x+2xln2,故h'(x)在(0,+∞)上单调递减,又h'(1)=−1+2ln2>0,h'(2)=−3+1ln2<0,则存在x0∈(1,2)使得h'(x)=0,所以当x∈(0,x0)时,h'(x)>0,当x∈(x0,+∞)时,h'(x)<0,又因为h(1)=0,h(x0)>h(1)=0,h(4)=﹣12+4=﹣8<0,所以当x<1时,h(x)<0,当x>1时,h(x)正负不确定,故当x<1,y<1时,h(x)<0,所以g(x)<g(y)<g(1),故x<y<1,当x>1,y>1时,h(x)正负不定,所以g(x)与g(y)的正负不定,所以x>y>1,x=y>1,y>x>1均有可能,即选项A,C,D均有可能,选项B不可能.故选:B.10.正实数a,b,c满足a+2﹣a=2,b+3b=3,c+log4c=4,则实数a,b,c之间的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a【解答】解:c+log4c=4⇒log4c=4﹣c,即c 为函数y =log 4x 与y =4﹣x 的图象交点的横坐标; b +3b =3⇒1+3b =4﹣b ,即b 为函数y =1+3x 与y =4﹣x 的图象交点的横坐标; a +2﹣a =2⇒2+12a =4−a ,即a 为函数y =2+12x 与y =4﹣x 的图象交点的横坐标; 在同一坐标系中画出图象,可得b <a <c . 故选:A .11.《九章算术》是我国古代数学经典名著,堪与欧几里得《几何原本》相媲美的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”.已知某鳖臑A ﹣BCD 的外接球半径为1,则该鳖臑A ﹣BCD 的体积最大值为( ) A .49√3B .427√3C .94√3D .316√3【解答】解:四个面都是直角三角形的四面体称为“鳖臑”.如图:某鳖臑A ﹣BCD 的外接球半径为1,可知CD =2,设AB =a ,BC =b ,AD =c , 所以a 2+b 2+c 2=4,可得4=a 2+b 2+c 2≥3√(abc)23,所以abc ≤√4333=8√39.当且仅当a =b =c =2√33时,取等号.该鳖臑A ﹣BCD 的体积:13×12abc ≤16×8√39=4√327. 故选:B .12.已知抛物线y=x2+mx﹣2与x轴交于A,B两点,点C的坐标为(3,1),圆Q过A,B,C三点,当实数m变化时,存在一条定直线l被圆Q截得的弦长为定值,则此定直线l方程为()A.x﹣3y=0B.3x﹣y+1=0C.√3x﹣y﹣1=0D.x−√3y=0【解答】解:y=x2+mx﹣2与x轴交于A,B,设两点A(x1,0),B(x2,0),设圆Q的方程为x2+y2+Dx+Ey+F=0,取y=0,可得x2+Dx+F=0.则方程x2+Dx+F=0与方程x2+mx﹣2=0等价,则D=m,F=﹣2,则圆的方程为x2+y2+mx+Ey﹣2=0.∵圆Q过C(3,1),∴10+3m+E﹣2=0,即E=﹣8﹣3m,得圆Q的方程为x2+y2+mx﹣(8+3m)y﹣2=0,即x2+y2﹣8y﹣2+m(x﹣3y)=0,由圆系方程可知,圆x2+y2﹣8y﹣2+m(x﹣3y)=0经过圆x2+y2﹣8y﹣2=0与直线x﹣3y=0的交点,则圆Q被直线x﹣3y=0所截弦长为定值.故选:A.+alnx+e2≥ax恒成立(e为自然对数的底数),则正实数a的取值范围是13.对任意x>0,若不等式e xx()A.(0,e]B.(0,e2]C.[2e ,e]D.[2e,e2]【解答】解:不等式e xx +alnx+e2≥ax可化为e xx−a(x﹣lnx)+e2≥0,即e xx−aln e xx+e2≥0;设t=e xx,其中x>0;由e x≥ex知t≥e,所以f(t)=t﹣alnt+e2(t≥e),只需证明f(t)的最小值f(t)min≥0即可;对函数f(t)求导数,得f′(t)=1−at =t−at(t≥e),①当0<a≤e时,f′(t)≥0恒成立,f(t)是[e,+∞)上的单调增函数,所以f(t)的最小值是f(t)min=f(e)=e﹣alne+e2≥0,解得a≤e2+e;又0<a≤e,所以a的取值范围是(0,e].②当a>e时,f(t)在[e,a)上单调递减,在(a,+∞)上单调递增,所以f(t)的最小值是f(t)min=f(a)=a﹣alna+e2≥0;设g(a)=a﹣alna+e2,其中a>e,则g′(a)=1﹣lna﹣1=﹣lna<0,所以g(a)在(e,+∞)上是单调减函数;g(e2)=e2﹣e2lne2+e2=0,所以g(a)≥0时,a≤e2;由a>e知,a的取值范围是(e,e2];综上知,正实数a的取值范围是(0,e2].故选:B.14.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是其右支上第一象限内的一点,直线PO,PF2分别交该双曲线左、右支于另两点A,B,若|PF1|=2|PF2|,且∠AF2B=60°,则该双曲线的离心率是()A.√3B.√2C.2√33D.√52【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,可得|PF2|=2a,|PF1|=4a,结合双曲线性质可以得到|PO|=|AO|,而|F1O|=|F2O|,结合四边形对角线平分,可得四边形PF1AF2为平行四边形,结合∠AF2B=60°,得∠F1AF2=60°,对三角形F1AF2,用余弦定理,得到|AF1|2+|AF2|2﹣|F1F2|2=2|AF1|•|AF2|•cos∠F1PF2,由|PF1|=2|PF2|,可得|AF1|=2a,|AF2|=4a,|F1F2|=2c,代入上式子中,得到3a2=c2,∴e=ca=√3,故选:A.15.如图,双曲线F:x2a2−y2b2=1(a>0,b>0)以梯形ABCD的顶点A,D为焦点,且经过点B,C,其中AB∥CD,∠BAD=60°,|CD|=4|AB|,则F的离心率为()A.3√34B.√3C.65D.5√36【解答】解:如图,不妨设|AB|=1,|CD|=4,则|BD|=1+2a,|AC|=4+2a,在△ABD中,由余弦定理得1+4c2﹣2•1•2c•cos60°=(1+2a)2,①在△ACD中,由余弦定理得16+4c2﹣2•4•2c•cos120°=(4+2a)2,②②﹣①得,15+10c=12a+15,则e=ca =65.故选:C.16.已知定义R在上的函数f(x),其导函数为f'(x),若f(x)=f(﹣x)﹣2sin x.且当x≥0时,f'(x)+cos x>0,则不等式f(x+π2)>f(x)+sin x﹣cos x的解集为()A.(﹣∞,π2)B.(π2,+∞)C.(﹣∞,﹣π4)D.(﹣π4,+∞)【解答】解:令g(x)=f(x)+sin x,则g(﹣x)=f(﹣x)+sin(﹣x)=f(﹣x)﹣sin x,又f(x)=f(﹣x)﹣2sin x,∴f(x)+sin x=f(﹣x)﹣sin x,故g(﹣x)=g(x),∴g(x)为定义在R上的偶函数;当x≥0时,g′(x)=f′(x)+cos x>0,∴g(x)在[0,+∞)上单调递增,又∵g(x)为偶函数,故g(x)在(﹣∞,0]上单调递减,由f(x+π2)+cosx=f(x+π2)+sin(x+π2)>f(x)+sinx得g(x+π2)>g(x),∴|x+π2|>|x|,解得x>−π4,∴不等式的解集为(−π4,+∞).故选:D.17.已知双曲线C:x2a2−y2b2=1(a>0,b>0),过C的右焦点F作垂直于渐近线的直线l交两渐近线于A,B两点,A,B两点分别在一、四象限,若|AF||BF|=513,则双曲线C的离心率为()A.1312B.√133C.√135D.√13【解答】解:由题意知:双曲线的右焦点F(c,0),渐近线方程为y=±bax,即bx±ay=0,如下图所示:由点到直线距离公式可知:|F A |=√a 2+b 2=b ,又∵c 2=a 2+b 2,∴|OA |=a ,∵|AF||BF|=513,∴|BF |=135b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α, 而tan α=ba ,tan2α=|AB||OA|=18b 5a,由正切二倍角公式可知:tan2α=2tanα1−tan 2α=2×b a 1−(b a)2=2ab a 2−b 2,即2ab a 2−b2=18b 5a,化简可得:4a 2=9b 2, 由双曲线离心率公式可知:e =c a=√1+b 2a2=√1+49=√133. 故选:B .18.数学中一般用min {a ,b }表示a ,b 中的较小值.关于函数f(x)=min{sinx +√3cosx ,sinx −√3cosx}有如下四个命题:①f (x )的最小正周期为π; ②f (x )的图象关于直线x =3π2对称;③f (x )的值域为[﹣2,2];④f (x )在区间(−π6,π4)上单调递增. 其中是真命题的是( ) A .②④B .①②C .①③D .③④【解答】解:令g(x)=sinx +√3cosx =2sin(x +π3),ℎ(x)=sinx −√3cosx =2sin(x −π3), 则f (x )=min {g (x ),h (x )}={g(x),g(x)⩽ℎ(x)ℎ(x),g(x)>ℎ(x)={2sin(x +π3),π2+2kπ⩽x ⩽3π2+2kπ2sin(x −π3),−π2+2kπ<x <π2+2kπ,(k ∈Z),如图所示:由图知:则f (x )的最小正周期为2π,故①错误; f (x )的图象关于直线x =3π2对称,故②正确;f (x )的值域为[﹣2,1],故③错误;f (x )在区间(−π6,π4)上单调递增,故④正确. 故选:A .19.四棱锥P ﹣ABCD 中,底面ABCD 为矩形,体积为163,若P A ⊥平面ABCD ,且P A =2,则四棱锥P ﹣ABCD的外接球体积的最小值是( ) A .160√53π B .256πC .125πD .20√53π【解答】解:底面为矩形的四棱锥P ﹣ABCD 的体积为163,若P A ⊥平面ABCD ,且P A =2, 可得底面面积为:8,设AB =a ,BC =b ,则ab =8,四棱锥的外接球就是扩展的长方体的外接球,PC 就是外接球的直径,可得:2R =√a 2+b 2+22≥√4+2ab =√4+2×8=2√5,当且仅当a =b =2√2,取等号,R ≥√5. 外接球的体积的最小值为:4π3×(√5)3=20√5π3.故选:D .20.已知函数f (x )={|log 2x|(x >0)2x 2+4x +1(x ≤0),若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则x 1+x 2﹣x 3x 4的值是( ) A .﹣4B .﹣3C .﹣2D .﹣1【解答】解:作出f (x )的函数图象如图所示:因为函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4, 即y =f (x )与y =b 有四个不同的交点, 由图象知 x 1+x 2=﹣2×42×2=−2,由﹣log 2x 3=log 2x 4,得:log 2x 3+log 2x 4=0,得:x 3x 4=1, ∴x 1+x 2﹣x 3x 4=﹣3, 故选:B .21.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为( )A .512√6729π B .16√23π C .32√627π D .128√281π【解答】解:由题意可得每个三角形面积为S =12×4×2√3=4√3,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为√16−(4√33)2=4√63,故四面体的体积为13×4√3×4√63=16√23,∵该六面体的体积是正四面体的2倍, ∴六面体的体积是32√23, 由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥, 设丸子的半径为R ,则32√23=6×13×4√3×R ,解得R =4√69,∴丸子的体积的最大值为V max =4π3R 3=4π3×(4√69)3=512√6729π. 故选:A .22.已知函数f (x )=e x ﹣aln (ax ﹣a )+a (a >0),若关于x 的不等式f (x )>0恒成立,则实数a 的取值范围为( ) A .(0,e 2]B .(0,e 2)C .[1,e 2]D .(1,e 2)【解答】解:∵f (x )=e x ﹣aln (ax ﹣a )+a >0(a >0)恒成立, ∴e xa >ln(x −1)+lna −1, ∴e x ﹣lna+x ﹣lna >ln (x ﹣1)+x ﹣1, ∴e x﹣lna+x ﹣lna >e ln(x ﹣1)+ln (x ﹣1).令g (x )=e x +x ,易得g (x )在(1,+∞)上单调递增, ∴x ﹣lna >ln (x ﹣1),∴﹣lna >ln (x ﹣1)﹣x . ∵ln (x ﹣1)﹣x ≤x ﹣2﹣x =﹣2, ∴﹣lna >﹣2,∴0<a <e 2, ∴实数a 的取值范围为(0,e 2). 故选:B .23.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c cos A +a cos C =2,AC 边上的高为√3,则∠ABC 的最大值为( ) A .π6B .π3C .π2D .2π3【解答】解:因为c cos A +a cos C =2, 所以由余弦定理可得c •b 2+c 2−a 22bc+a •a 2+b 2−c 22ab=2,整理可得b =2,因为AC 边上的高为√3, 所以12×2×√3=12acsinB , 所以ac =2√3sinB, 因为cos B =a 2+c 2−b 22ac≥2ac−b 22ac=1−2ac,当且仅当a =c 时取等号,所以cos B ≥1−√33sinB , 即3cos B +√3sin B ≥3, 所以2√3sin (B +π3)≥3,所以sin (B +π3)≥√32, 因为B ∈(0,π),所以B +π3∈(π3,4π3), 所以B +π3∈(π3,2π3],所以B ∈(0,π3], 则∠ABC 的最大值为π3. 故选:B .24.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (p >0)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为△F AB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM →⋅ON →的取值范围是( ) A .[−6325,9]B .[﹣3,21]C .[6325,21]D .[3,27]【解答】解:抛物线C :y 2=2px (p >0)的焦点F (p2,0),准线方程为x =−p2, 设A (3,√6p ),所以|AF |=3+p2=4,解得p =2, 所以抛物线的方程为y 2=4x ,A (3,2√3),B (3,﹣2√3),F (1,0), 所以直线AF 的方程为y =√3(x ﹣1), 设圆心坐标为(x 0,0), 所以(x 0﹣1)2=(3﹣x 0)2+12, 解得x 0=5,即E (5,0), ∴圆的方程为(x ﹣5)2+y 2=16,不妨设y M >0,设直线OM 的方程为y =kx ,则k >0, 根据√1+k2=4,解得k =43, 由{y =43x(x −5)2+y 2=16,解得M (95,125), 设N (4cos θ+5,4sin θ), 所以OM →•ON →=365cos θ+485sin θ+9=125(3cos θ+4sin θ)+9,因为3cos θ+4sin θ=5sin (θ+φ)∈[﹣5,5], 所以OM →•ON →∈[﹣3,21]. 故选:B .25.已知双曲线x 24−y 25=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O为圆心,|OF |为半径的圆上,则直线MF 的斜率是( ) A .−√35B .−5√117C .5√117D .√35【解答】解:如图所示,设线段MF 的中点为H ,连接OH ,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=12|MF|=12(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF中,tanα=√32−(12)212=√35,∴直线MF的斜率是−√35.故选:A.二.多选题(共7小题)26.下列结论正确的是()A.存在这样的四面体ABCD,四个面都是直角三角形B.存在这样的四面体ABCD,∠BAC=∠CAD=∠DAB=∠BCD=90°C.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=90°D.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=∠DAB=90°【解答】解:对于A,在长方体ABCD﹣A1B1C1D1中,四面体A1﹣ABC的四个面都是直角三角形,所以选项A正确;对于B ,三个直角均以A 为顶点,那么△BCD 为锐角三角形,故选项B 错误;对于C ,存在不共面的四点A 、B 、C 、D ,使∠ABC =∠BCD =∠CDA =90°,如图所示,故选项C 正确;对于D ,若∠ABC =∠BCD =∠CDA =∠DAB =90°,则A ,B ,C ,D 四点共面,故选项D 错误. 故选:AC .27.已知函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),则下列说法正确的是( ) A .若a =﹣1,则f (x )是(0,12)上的减函数B .若0<a <1,则f (x )有两个零点C .若a =1,则f (x )≥0D .若a >1,则曲线y =f (x )上存在相异两点M ,N 处的切线平行 【解答】解:函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),对于A ,当a =﹣1,f (x )=x 2+x ﹣lnx (x >0),f ′(x )=2x +1−1x在(0,+∞)上单调递增,又f ′(12)=0,故当x ∈(0,12)时,f ′(x )<0,则f (x )是(0,12)上的减函数,故A 正确; 对于B ,若f (x )=0,则x 2﹣ax ﹣lnx =0,故a =x −lnx x(x >0),令g (x )=x −lnx x(x >0),则g ′(x )=1−1−lnx x 2=x 2+lnx−1x 2,再令h (x )=x 2+lnx ﹣1(x >0),显然,h (x )在(0,+∞)上单调递增,又h (1)=0,所以,当x ∈(0,1)时,h (x )<0,即g ′(x )<0,则g (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,则g (x )在(1,+∞)上单调递增, 故g (x )min =g (1)=1,要使f (x )有零点,则a ≥1,故B 错误;对于C ,当a =1时,f (x )=x 2﹣x ﹣lnx (x >0),f ′(x )=2x ﹣1−1x 在(0,+∞)上单调递增,又f ′(1)=0,故当x ∈(0,1)时,f ′(x )<0,则f (x )是在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,则f (x )在(1,+∞)上单调递增,故f (x )≥f (1)=0,故C 正确;对于D ,由于f ′(x )=2x ﹣a −1x (x >0),若曲线y =f (x )上存在相异两点M (x 1,f (x 1)),N (x 2,f (x 2))处的切线平行, 则f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2), 即2x 1﹣a −1x 1=2x 2﹣a −1x 2,即2x 1−1x 1=2x 2−1x 2,也就是f ′(x )=2x ﹣a −1x =0有两异根,即a =2x −1x (x >0)有两个交点.令t (x )=2x −1x (x >0),则t (x )在(0,+∞)上单调递增,当t →0+时,t (x )→﹣∞;当t →+∞时,t (x )→+∞,故y =a 与t (x )=2x −1x (x >0)只有一个交点,故D 错误. 综上所述,AC 正确, 故选:AC .28.已知无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项,则下列结论正确的是( ) A .d 的最大值是6 B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{a n }中的项【解答】解:∵无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项, ∴设{17−5=12=md 23−17=6=nd ,解得d =6m−n ,∴d 的最大值为6,故A 正确; ∵a 1≤5,d ∈N *,∴2a 2﹣a 8=a 1﹣5d ≤0,故B 正确;∵d =6m−n ,∴当m ﹣n =2时,d =3,数列可能为5,8,11,14,17,20,23,…,故C 错误; ∵137=23+19×6,∴137一定是等差数列{a n }中的项,故D 正确. 故选:ABD .29.已知函数f (x )=(sin x +cos x )|sin x ﹣cos x |,下列说法正确的是( ) A .f (x )是周期函数B .f (x )在区间[−π2,π2]上是增函数 C .若|f (x 1)|+|f (x 2)|=2,则x 1+x 2=kπ2(k ∈Z )D .函数g (x )=f (x )+1在区间[0,2π]上有且仅有1个零点【解答】解:f (x )=(sin x +cos x )|sin x ﹣cos x |={cos 2x −sin 2x ,sinx <cosx sin 2x −cos 2x ,sinx ≥cosx ={cos2x ,sinx <cosx−cos2x ,sinx ≥cosx .其图象如图:由图可知,f (x )是周期为2π的周期函数,故A 正确; f (x )在区间[−π2,π2]上不是单调函数,故B 错误;若|f (x 1)|+|f (x 2)|=2,由|f (x 1)|≤1,|f (x 2)|≤1,则只有|f (x 1)|=|f (x 2)|=1,即x 1,x 2只能是函数的最值点的横坐标, 可得x 1+x 2=kπ2(k ∈Z ),故C 正确;函数g (x )=f (x )+1的图象是把y =f (x )的图象向上平移1个单位得到的,则在区间[0,2π]上有且仅有2个零点,故D 错误. ∴说法正确的是AC . 故选:AC .30.已知F 1,F 2是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作倾斜角为π3的直线分别交y 轴、双曲线右支于点M 、点P ,且|PM |=|MF 1|,下列判断正确的是( )A.E的渐近线方程为y=±√2x B.|MF2|=12|PF1|C.E的离心率等于2+√3D.∠F1PF2=π6【解答】解:如右图,由|PM|=|MF1|,可得M为PF1的中点,又O为F1F2的中点,可得OM∥PF2,∠PF2F1=90°,∠PF1F2=60°,∠F1PF2=30°,|MF2|=12|PF1|,故B正确,D正确;设|F1F2|=2c,则|PF1|=2ccos60°=4c,|PF2|=2c tan60°=2√3c,则2a=|PF1|﹣|PF2|=(4﹣2√3)c,可得e=ca =(4−2√3)c=2+√3,ba=√c2a2−1=√6+4√3,则双曲线的渐近线方程为y=±bax即为y=±√6+4√3x.故C正确,A错误.故选:BCD.31.已知函数f(x)=e x﹣cos x,x∈R,下列判断正确的是()A.f(x)在(﹣2π,−32π)单调递增B.f(x)在(﹣π,0)有2个极值点C.f(x)在(﹣2π,−π2)仅有1个极小值D.当﹣4π≤x≤﹣2π时,f(x)≤1【解答】解:函数f(x)=e x﹣cos x,则f′(x)=e x+sin x,对于A,当x∈(﹣2π,−32π)时,f′(x)>0,所以f(x)单调递增,故A正确;对于B,函数f′(x)=e x+sin x的零点,即为方程f′(x)=0的根,作出函数y=﹣sin x与函数y=e x的大致图象,如图所示:由图象可知,当x∈(﹣π,0)时,函数y=﹣sin x与函数y=e x有两个交点,则方程f′(x)=0有两个实根,所以f(x)在(﹣π,0)有2个极值点,故B正确;对于C,由图象可得,函数y=﹣sin x与函数y=e x在(﹣2π,−π2)上只有一个交点,则方程f′(x)=0只有一个实数根x0,且在(﹣2π,x0)上,f′(x)>0,f(x)单调递增,在(x0,−π2)上,f′(x)<0,f(x)单调递减,所以f(x)在x=x0处取得极大值,故C错误;对于D,当x=﹣3π时,f(x)=e﹣3π+1>1,故D错误.故选:AB.32.随着高三毕业日期的逐渐临近,有n(n≥2)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则()A.当n=4时,每个人抽到的卡片都不是自己的概率为38B.当n=5时,恰有一人抽到自己的卡片的概率为340C.甲和乙恰好互换了卡片的概率为1n−1−1nD.记n个同学都拿到其他同学的卡片的抽法数为a n,则a n+2=(n+1)(a n+a n+1)n∈N*【解答】解:考虑n+1个同学时的情况,若n+1个同学都拿到其他同学的卡片,则第n+2个同学可以与其中任何一个交换卡片,若n+1个同学只有一个拿到自己的卡片,则第n+2个同学必须与该同学交换卡片,∴a n+2=(n+1)a n+1+(n+1)a n,故D正确;a n+2﹣(n+2)a n+1=﹣[a n+1﹣(n+1)a n],∵a1=0,a2=1,∴a n﹣na n﹣1=(﹣1)n,∴a n=n!⋅∑n i=2(−1)ii!,代入数据可得a4=9,∴当n=4时,每个人抽到的卡片都不是自己的概率为a44!=38,故A正确;当n=5时,恰有一人抽到自己的卡片的概率为5a45!=38,故B错误;甲和乙恰好互换了卡片的概率为(n−2)!n!=1n−1−1n,故C正确.故选:ACD.三.填空题(共18小题)33.已知矩形ABCD中,AB=2,BC=√3,E是CD边的中点.现以AE为折痕将△ADE折起,当三棱锥D﹣ABE的体积最大时,该三棱锥外接球的表面积为16π3.【解答】解:由题意,当平面ADE⊥平面ABE时,三棱锥D﹣ABE的高最大值,此时体积最大.∵△ADE是直角三角形,∴三棱锥D﹣ABE换成B﹣ADE∴底面△ADE外接圆半径r=12AE=1,垂直面△ABE是边长为2等边三角形,可得AE边上的高h=√3;设球心与圆心距离为d,球半径为R,R2=r2+d2……①√3−d=R⋯⋯②由①②解得R=√3;三棱锥外接球的表面积S=4πR2=16π3;故答案为:16π3.34.由正三棱锥S﹣ABC截得的三棱台ABC﹣A1B1C1的各顶点都在球O的球面上,若AB=6,三棱台ABC ﹣A1B1C1的高为2,且球心O在平面ABC与平面A1B1C1之间(不在两平面上),则AB1的取值范围为(2√6,6).【解答】解:该三棱台的横截面如图所示,因为△ABC为正三角形,且AB=6,=2√3,则AH=√3又GH=2,球心O在GH上,A,A1都在球面上,故OA=OA1,设OH=h,A1G=m,则由△A1GO和△AOH均为直角三角形,所以m2+(2﹣h)2=h2+12,解得m2=8+4h,由图可知,h∈(0,2),m∈(0,2√3),综上可得,m∈(2√2,2√3),又A1B1=√3A1G,所以A1B1∈(2√6,6),即AB1的取值范围为(2√6,6).故答案为:(2√6,6).35.设数列a1,a2,a3,a4各项互不相同,且a i∈{1,2,3,4}(i=1,2,3,4).若下列四个关系①a1=1;②a2≠1;③a3=2;④a4≠4中恰有一个正确,则(10a1+a2)﹣(10a3+a4)的最大值是18.【解答】解:若①正确,则②一定正确,因此不符合题意;若②正确,此时令a4=4,a3=1,a1=3,a2=2,则有(10a1+a2)﹣(10a3+a4)的最大值为18;若③正确,此时a4=4,a2=1,a1=3,a3=2,则有(10a1+a2)﹣(10a3+a4)的最大值为7;若④正确,此时a4=2,a3=3,a1=4,a2=1,则有(10a1+a2)﹣(10a3+a4)的最大值为9.综上可得,(10a1+a2)﹣(10a3+a4)的最大值为18.故答案为:1836.设抛物线C1:y=x2﹣2x+2和C2:y=﹣x2+ax+b在它们的一个交点处的切线互相垂直,则C2过定点(1,3).2【解答】解:∵y=x2﹣2x+2,∴y'=2x﹣2,∵y=﹣x2+ax+b,∴y'=﹣2x+a,设交点为(x0,y0),∵它们在一个交点处切线互相垂直,∴(2x0﹣2)(﹣2x0+a)=﹣1,即4x02﹣(2a+4)x0+2a﹣1=0,①由交点分别代入二次函数式,整理得,2x02﹣(2+a)x0+2﹣b=0,即4x02﹣(4+2a)x0+4﹣2b=0,②由①②整理得2a﹣1﹣4+2b=0,即a+b=52,所以C2:y=﹣x2+ax+52−a,令x=1,可得y=32,则C2过定点(1,32),故答案为:(1,32),37.在三棱锥A﹣BCD中,AB=AC=BC=BD=CD=6,AD=9,则三棱锥A﹣BCD外接球O的表面积为84π.【解答】解:如图所示:取BC的中点E,连接AE,DE,取AD的中点F,连接EF,因为AB=AC=BC=BD=CD=6,所以AE⊥BC,DE⊥BC,且三角形ABC和三角形BCD都是正三角形,所以AE=DE=3√3,即三角形ADE为等腰三角形,所以EF⊥AD,且EF平分∠AED,不妨设三角形BCD的外接圆圆心为O′,且O′在DE上,所以EO′=13ED=√3,设外接球的球心为O,半径为R,则OA=OD=R,利用面面垂直可证得平面AED⊥平面BCD,又平面AED∩平面BCD=ED,则球心O必在三角形AED中,又OA=OD=R,所以O在∠AED的角平分线EF上,连接OO′,则OO′⊥平面BCD,即OO′⊥ED,在三角形AED中,由余弦定理可得:cos∠AED=AE2+ED2−AD22AE⋅ED =−12,所以∠AED=120°,所以∠FED=12∠AED=60°,在Rt△EOO′中,tan∠FED=OO′EO′=√3=√3,所以OO′=3,在Rt△OO′D中,OD=R,O′D=2√3,所以R2=OO′2+O′D2=21,所以球O的表面积为S=4πR2=84π,故答案为:84π.38.如图,在三棱锥A﹣BCD中,BC=CD=BD=2√2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的√3倍,则该三棱锥外接球的表面积为12π.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以AE=√4a2−2,=3√2×√4a2−2=6√2a2−1,由此可知该三棱锥的侧面积S侧底面△BCD的面积为2√3,所以6√2a2−1=√3×2√3,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以BF=2√6,3)2=4①,在Rt△ABF中,由勾股定理可得(R−x)2+(2√63)=R2②,在Rt△OBF中,由勾股定理可得x2+(2√63,由①②解得R=√3,x=√33所以外接球的表面积S =4πR 2=12π. 故答案为:12π.39.在△ABC 中,点M ,N 是线段BC 上的两点,|MA →|=|MB →|=|MC →|=1,MA →⋅MN →=12,则MA →⋅NA →= 12 ,|NA →|的取值范围是 (12,1] .【解答】解:根据题意,画出大致图形如下:结合题意及图形, 可知MA →•MN →+MA →•NA →=MA →•(MN →+NA →) =MA →•MA →=|MA →|2 =1,∵MA →⋅MN →=12, ∴MA →⋅NA →=1−12=12,又∵12=MA →⋅NA →=|MA →|•|NA →|•cos <MA →,NA →>=|NA →|•cos <MA →,NA →>, ∴|NA →|=12cos <MA →,NA →>,由题意可知点N 在线段BC 上,假设点N 与点B 重合,则12=MA →⋅MN →=MA →•MB →=|MA →|•|MB →|•cos <MA →,MB →>=cos <MA →,MB →>, 即cos ∠BMA =12,∴∠BMA =π3或2π3,∴∠BAM =π3或π6,即cos <MA →,NA →>=12或√32, 假设点N 与点C 重合,则12=MA →⋅MN →=MA →•MC →=|MA →|•|MC →|•cos <MA →,MC →>=cos <MA →,MC →>,此时cos <MA →,NA →>=12或√32, 综合可得,12≤cos <MA →,NA →><1, ∴1≤2cos <MA →,NA →><2, ∴12<12cos <MA →,NA →>≤1,即12<|NA →|≤1, 故答案为:12;(12,1].40.已知一圆锥纸盒母线长为6,其轴截面为正三角形,在纸盒内放置一个棱长为a 的正方体,若正方体可在纸盒内任意转动,则a 的最大值为 2 .【解答】解:由于正方体可在圆锥内任意转动,故当正方体棱长a 最大时,正方体外接球为圆锥内切球, 设圆心为P ,半径为r ,轴截面上球与圆锥母线切点为Q ,SO ⊥AB ,SO 平分AB , 由△SAB 为正三角形,SA =SB =AB =6,OA =OB =3, 因为PB 为∠SAB 的角平分线,所以∠PBA =30°,PO =OB tan30°=√3=r ,由正方体外接球直径与正方体之间的关系可得,2R =√3a , 又正方体外接球为圆锥内切球,所以√3a =2r =2√3,故a =2, 所以a 的最大值为2. 故答案为:2.41.若数列{a n}满足递推公式a n+2=a n+1+a n(n∈N*),且a1=a2,a2020=2021,则a1+a3+a5+…+a2019=2021.【解答】解:∵a1=a2,a n+2=a n+1+a n(n∈N*),且a2020=2021,∴a1+a3+a5+…+a2019=a2+a3+a5+…+a2019=a4+a5+…+a2019=…=a2018+a2019=a2020=2021,故答案为:2021.42.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC中,角A =60°,以AB、BC、AC为边向外作三个等边三角形,其外接圆圆心依次为O1、O2、O3,若三角形O1O2O3的面积为√32,则三角形ABC的周长最小值为3√2.【解答】解:由题意知△O1O2O3为等边三角形,设边长为m,则S△O1O2O3=12m2sin60°=√34m2=√32,解得|O1O2|=m=√2;设BC=a,AC=b,AB=c,如图所示:在△O1AO2中,∠O1AB=∠O1BA=30°,由∠BAC =60°,所以∠O 1AO 2=120°, 在等腰△BO 1A 中,ABO 1A=sin120°sin30°,解得O 1A =√3,同理得O 3A =√3,在△O 1AO 2中,由余弦定理得O 1O 32=O 1A 2+O 3A 2﹣2O 1A •O 3A •cos120°, 即2=c 23+b 23−2•bc 3•(−12),即b 2+c 2+bc =6,在△ABC 中,由余弦定理知, a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc , ∴a =√(b 2+c 2+bc)−2bc =√6−2bc , 又∵(b +c )2=b 2+c 2+bc +bc =6+bc , ∴b +c =√6+bc ,∴△ABC 的周长为a +b +c =√6−2bc +√6+bc , 又∵b 2+c 2≥2bc , ∴b 2+c 2+bc =6≥3bc , ∴bc ≤2.令f (x )=√6−2x +√6+x (0<x ≤2), 则f ′(x )=√6−2x2√6+x ,当f ′(x )<0时,有√6−2x2√6+x0,解得x >3,∴f (x )在(0,2]上单调递减, ∴当x =2时取得最小值,f (2)=3√2. ∴a +b +c ≥3√2,即△ABC 的周长最小值为3√2. 故答案为:3√2.43.设函数f (x )的定义域为D ,若存在x 0∈D ,使得f (x 0+1)=f (x 0)+f (1),则称x 0为函数f (x )的“可拆点”.若函数f(x)=log 2a1+x 2在(0,+∞)上存在“可拆点”,则正实数a 的取值范围为 [3−√5,2) . 【解答】解:由已知可得函数f (x )有“可拆点”, 则log 2(a1+x 2)+log 2(a2)=log 2(a1+(1+x)2)成立,即a1+(1+x)2=a1+x2⋅a2,整理可得:(2﹣a)x2﹣2ax+2﹣2a=0,从而问题转化为方程(2﹣a)x2﹣2ax+2﹣2a=0在区间(0,+∞)上有解,设h(x)=(2﹣a)x2﹣2ax+2﹣2a,由已知可得a>0,则当a>2且x>0时,h(x)<0,方程h(x)=0无解,不满足题意,当a=2时,方程h(x)=0的根为−12,不满足题意,当0<a<2时,函数h(x)的图象的对称轴为x=a2−a>0,要使方程h(x)=0在区间(0,+∞)上有解,只需△=4a2﹣4(2﹣a)(2﹣2a)≥0,解得3−√5≤a≤3+√5,所以3−√5≤a<2,故实数a的取值范围为:[3−√5,2).故答案为:[3−√5,2).44.在棱长为√2的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于√312.【解答】解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又AC=√2AB=2,所以HC=HG=13D1C=13AC⋅√32=√33,所以点Q的轨迹所组成的图形的面积S=12CH⋅HG⋅sin120°=√312.故答案为:√312.45.已知F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F2作圆x2+y2=a2的切线交双曲线左支于点M,且∠F1MF2=60°,则该双曲线的渐近线方程为y=±(1+√33)x.【解答】解:设切点为A,过F1作F1B⊥MF2,垂足为B,由题意可得|OA|=a,|OF2|=c,|AF2|=√c2−a2=b,由OA为△BF1F2的中位线,可得|BF1|=2a,|BF2|=2b,又∠F1MF2=60°,可得|MF1|=|BF1|sin60°=√3,|MB|=√3|MF2|=|MB|+|BF2|=√32b,又|MF2|﹣|MF1|=√3+2b√3=2a,所以b=(1+√33)a,所以双曲线的渐近线方程为y=±(1+√33)x.故答案为:y=±(1+√33)x.46.已知函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,现有以下四个命题:①f(x)﹣g(x)是奇函数;②函数f(x)的图象与函数g(x)的图象关于原点中心对称;③对任意x∈R,恒有f(x)≥g(x);④函数f(x)与函数h(x)的最小值相同其中正确命题的序号是③④.【解答】解:函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,对于①,令F(x)=f(x)﹣g(x)=x•e x﹣x•e﹣x,由于F(﹣x)=F(x)故函数F(x)为偶函数,故①错误;对于②,函数f(﹣x)=﹣x•e﹣x≠﹣f(x),所以函数f(x)不为奇函数,函数g(﹣x)=−xe−x=−x⋅e x≠−g(x),所以函数g(x)不为奇函数,故②错误;对于③,当x=0时,f(x)=g(x)=0,当x>0时,e2x>1,得到e x>1e x,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),当x<0时,e2x<1,整理得e x<1e x ,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),故③正确;对于④,f′(x)=(1+x)•e x,令f′(x)<0,得到x<﹣1,f′(x)>0,得到x>﹣1,所以函数f(x)的最小值为f(﹣1)=−e−1=−1e.h′(x)=1+lnx(x>0),令h ′(x )<0,解得0<x <1e , 令h ′(x )>0,解得x >1e ,所以函数h (x )的最小值为h (1e )=1e ⋅ln 1e =−1e =f(−1),故④正确; 故选:③④.47.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin A +2sin B =2cos A sin C ,a +b =3√2,△ABC 的面积是√3,则边长c = √14 . 【解答】解:∵sin A +2sin B =2cos A sin C , ∴sin A +2sin (A +C )=2cos A sin C , 即sin A +2sin A cos C +2cos A sin C =2cos A sin C , 即sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =−12,则C =120°, ∵△ABC 的面积是S =12ab ×√32=√3,∴ab =4,则c 2=a 2+b 2﹣2ab ×(−12)=(a +b )2﹣ab =18﹣4=14, 则c =√14, 故答案为:√14.48.抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴的交点为A ,如果在直线x +y +4=0上存在点M ,使得∠FMA =90°,则实数p 的取值范围是 [4√2,+∞) . 【解答】解:由题意可得F (p2,0),A (−p2,0),∵M 在直线x +y +4=0上,设点M (x ,﹣x ﹣4), ∴AM →=(x +p2,﹣x ﹣4),FM →=(x −p2,﹣x ﹣4),又∠FMA =90°,∴AM →•FM →=(x +p 2)(x −p2)+(﹣x ﹣4)2=0, 即2x 2+8x +16−p24=0,∴△=82﹣4×2×(16−p24)=2p2﹣64≥0,解得p ≤﹣4√2或p ≥4√2, 又p >0,∴p 的取值范围是[4√2,+∞). 故答案为:[4√2,+∞). 49.已知F 1,F 2是双曲线C 1:x 2a2−y 2b 2=1(a >0,b >0)与椭圆C 2:x 225+y 29=1的公共焦点,点P ,Q 分别是曲线C 1,C 2在第一、第三象限的交点,四边形PF 1QF 2的面积为6√6,设双曲线C 1与椭圆C 2的离心率依次为e 1,e 2,则e 1+e 2=2√10+45.【解答】解:由题意可得a 2+b 2=16,根据双曲线C 1与椭圆C 2的对称性可得△PF 1F 2的面积为3√6, 设P (x 0,y 0),(x 0,y 0>0),则{12⋅8⋅y 0=3√6x 0225+y 029=1,解得x 0=5√104,y 0=3√64, 代入双曲线的方程结合b 2=16﹣a 2,可得a 4﹣35a 2+250=0,结合0<a <c =4,解得a =√10, 双曲线的离心率为e 1=c a=√10=2√105, 而椭圆的离心率e 2=45, ∴e 1+e 2=2√10+45. 故答案为:2√10+45.50.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R −ℎ)ℎ2,其中R 为球的半径,h 为球缺的高.若一球与一棱长为。

高一数学选择填空题难题精选及答案(必修一)

高一数学选择填空题难题精选及答案(必修一)

高一年级上学期数学难题(选择填空题)一、选择题1、设3log 21=a ,2.031⎪⎭⎫⎝⎛=b ,312=c ,则( A )A. c b a <<B. a b c <<C. b a c <<D. c a b <<2、设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( B )A (1,1.25)B (1.25,1.5)C (1.5,2)D 不能确定 3、设奇函数()x f 在()∝+,0上为增函数,且(),01=f 则不等式()()0<--xx f x f 的解集为( D )A .()()∝+⋃-,10,1 B.()()1,01,⋃-∝- C.()()∝+⋃-∝-,11, D.()()1,00,1⋃- 4、函数2()log 10f x x x =+-的零点所在区间为(B )A.()7,0B.()8,6C.()10,8D.()+∞,95、函数()()26f x x x =--在(],a -∞上取得最小值4-,则实数a 的集合是( C )A. (]4,∞-B. []4,224-C. []224,4+ D. [)4,+∞6、若yx y x ---≥-)3(log )3(log )3(log )3(log 5522,则( B )A .0x y -≥B .0x y +≥C .0x y -≤D .0x y +≤ 7、已知函数ax x x f +=2)(,a x g x-=2)(,且121<<a ,则关于x 的方程 )(lg x f =)(lg x g 实数解的个数是( D )A .1B .2C .3D .无法确定8、函数)1lg(2++=x x y 的图像 ( C ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线y x =对称9、已知函数()x f 是R 上的增函数,()1,0-A ,()1,3B 是其图像上的两点,那么()11<+x f 的解集的补集是( D )A 、()2,1-B 、()4,1C 、(][)+∞⋃-∞-,41,D 、(][)+∞⋃-∞-,21,10、已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是 ( A ) A . (0,8) B .(0,2) C .(2,8) D . (,0)-∞11、已知函数)(x f 满足:①定义域为R ;②任意R x ∈,都有)(2)2(x f x f -=+;③当]1,1[-∈x 时,x x f -=1)(.则方程x x f 2log )(=在区间[-10,10]内的解个数是( B ).A .5B .6C .7D .10 12、设奇函数()f x 在(0)+∞,上为增函数,且(2)0f =,则不等式()()0f x f x x--<的解集为 ( A ) A .(20)(0,2)-, B .(2)(0,)-∞-,2 C .(2)(2)-∞-+∞,, D .(20)(2)-+∞,, 13、2()log (1)(01)a f x x ax a a =-+>≠且满足:对任意实数21,x x ,当221ax x ≤<时,总有12()()<0f x f x -,那么a 的取值范围是 ( B ) A. (0,2) B.(0,1) C.(0,1)(1,2) D. (1,2)14、若两个函数的对应关系相同,值域也相同,但定义域不同,则称这两个函数为同族函数.那么与函数2,{1,0,1,2}y x x =∈-为同族函数的个数有 ( D )A. 5个B. 6个C. 7个D. 8个 15、函数)1lg(+=x y 的图象是( A )16、若函数234y x x =--的定义域为[0,]m ,4A .(]4,0B .3[3]2, C .3[]2,4 D .3[2+∞,)17、函数()()26f x x x =--在(],a -∞上取得最小值4-,则实数a 的集合是 ( C )A. (],4-∞B. 4⎡⎤-⎣⎦C. 4,4⎡+⎣D. [)4,+∞18、已知函数()(01)xf x a a a =>≠且在区间[-2,2]上的值不大于2,则函数2()log g a a =的值域是( A )A 、11[,0)(0,]22-⋃B 、11(,)(0,]22-∞-⋃C 、11[,]22-D 、11[,0)[,)22-⋃+∞19、设偶函数()log a f x x b =-在(),0-∞上是增函数,则()1f a +与()2f b +的 大小关系是 ( B ) A. ()()12f a f b +=+ B. ()()12f a f b +>+ C. ()()12f a f b +<+ D. 不能确定20、已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是 ( A )A .101a b -<<< B .101b a -<<<C .101<<<-a bD .1101ab --<<<21、函数()34log 2++=kx kx y a 的定义域为 R,则k 的取值范围是( B )A .⎪⎭⎫ ⎝⎛43,0 B .⎪⎭⎫⎢⎣⎡43,0 C .⎥⎦⎤⎢⎣⎡43,0D .(]⎪⎭⎫⎝⎛∝+⋃∝-,430, x22、若函数()()x g x f ,分别为R 上的奇函数、偶函数,且满足()()xe x g xf =-,则有( D )A.()()()032g f f << B.()()()230f f g <<C.()()()302f g f <<D.()()()320f f g <<23、函数xy 3log 3=的图象是( A )24、若方程2ax 2-x -1=0在(0,1)内恰好有一个解,则a 的取值范围是 ( B )A .a <-1B .a >1C .-1<a <1D .0≤a <125、函数)1lg(+=x y 的图象是 ( A )26、函数)32(log )(221--=x x x f 的单调递增区间是 ( B )A .(-∞,1)B .(-∞,-1)C .(3,+∞)D .(1,+∞)27、若函数1()log (011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( A )A .12B 2C 2D .228、已知函数2()log (2)a f x x ax =-在[4,5]上为增函数,则a 的取值范围是 ( C )y-10 Axy0 1Bxy 0 12Cxy0 -1 1DA. (1,4)B. (1,4]C. (1,2)D. (1,2] 二、填空题1、()22()2,961f x x x a f bx x x =++=-+已知函数,其中b a R x ,,∈为常数,则方程()0=+b ax f 的解集为 {}2=x x2、计算=+-+51log 5log 4)5(log 42222____________2-_____ . 3、若,11)11(2-=+xx f 则()=x f ________)1(22≠-x x x _______. 4、若方程0322=-+-k kx x 的两根分别在()1,0和()2,1内,则k 的取值范围____53<<k ___.5、若方程()()1lg 2lg +=x kx 只有一个实数解,则实数k 的取值范围为___0<k 或4=k . ___________ .6、函数y =2231()3x x -+的单调增区间是)1,(-∞7、关于x 的方程x 2-x -(m +1)=0在区间[-1,1]上有解,则实数m 的取值范围是 ]1,45[-8、已知8123==yx,则y x 11-= ___32___ 9、已知函数)(x f 为偶函数,当[)+∞∈,0x 时,1)(-=x x f ,则(1)0f x -<的解集是)2,0(10、若关于x 的方程|1|2x a a -=- (a >0,且a ≠1)有两个不相等的实根,则实数a 的取值范围是 . 答案:(1,2)11、已知函数22log ()y x ax a =--定义域为R ,则实数a 的取值范围是___)0,4(-____12、已知函数)3(log )(2+-=x ax x f a 在[2,4]上是增函数,则实数a 的取值范围是_()+∞⎥⎦⎤⎝⎛,181,161 __13、 已知函数22()321,()f x x x g x ax =-+=,对任意的正实数x ,()()f x g x ≥恒成立,则实数a 的取值范围是 2a ≤14、已知函数22()4,()f x x m x m m R =++-∈的零点有且只有一个,则m = 2 15、若,m n 为正整数,且111log log (1)log (1)log (1)11a a a a m m m m n +++++++++-log log a a m n =+,则m n += 4 .16、若当1(0,)2x ∈时,不等式2log a x x x +<恒成立,则实数a 的取值范围是 )1,44[3.17、幂函数242)22(----=m x m m y 在),0(+∞∈x 上为减函数,则实数m 的值是_______3___.18、已知⎪⎪⎩⎪⎪⎨⎧≤<-≤≤+=.121 ),1(2,210 ,21)(x x x x x f ,则方程x x f f =)]([的解集为______⎭⎬⎫⎩⎨⎧65,32,31____________.19、已知函数)21(log )(2+-=x ax x f a .当10<<a 时,)(x f 在]2,1[∈x 上恒大于0,则实数a 的取值范围是: 8521<<a20、若方程2)22(log 22=+-x ax 在区间]2,21[有解,则实数∈a ]12,23[21、设函数2()1f x x =-,对任意),23[+∞∈x ,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是2m ≤-或2m ≥ .22、函数2([1,1])21x xy x =∈-+的值域为__ 12[,]33__ . 23、若1,1,a b >>且lg()lg lg ,a b a b +=+则lg(1)lg(1)a b -+-的值为 0 .24、设函数01021(),()()1,()()2,f x x f x f x f x f x ==-=-则函数2()f x 的图象与x 轴所围成图形中的封闭部分的面积是 7 .。

2023新高考一卷数学选择填空

2023新高考一卷数学选择填空2023新高考一卷数学选择填空一、填空题(共10小题,每小题2分,共20分)1. 设函数f(x) = x^2 + 2x - 5,那么当x = _______ 时,f(x)的值最小。

2. 若f(x) = (x + 1)(x - 2),则f(3) - f(0)的值为 _______ 。

3. 集合A = {x | 0 ≤ x ≤ 5},集合B = {y | 1 ≤ y ≤ 4},则集合A ∩ B的元素个数是 _______ 。

4. 在平面直角坐标系中,曲线y = x^2 - 2x + 3与x轴交点的个数是_______ 。

5. 设函数g(x) = a^x,其中a > 0,那么当a > 1时,函数g(x)的图像在x轴上的点的个数是 _______ 。

6. 若|a - 1| = a - 1,则a的值是 _______ 。

7. 已知函数h(x) = ax^2 - bx + c,其中a > 0,对于任意的x,h(x)的值都大于0,那么a、b、c之间的关系是 _______ 。

8. m是一正整数,若a + b + c < d + e + f,则m = _______ 。

9. 已知点A(1, -3)、B(4, 2),则直线AB的斜率为 _______ 。

10. 设点C在数轴上,若|c - 2| > 7,则C的取值范围是 _______ 。

二、应用题(共5小题,每小题10分,共50分)11. 求解方程组:2x + y = 5x + 3y = 1112. 已知一个等边三角形的面积为9√3平方单位,求其外接圆的面积。

13. 若e^x = 2,f(x) = e^x + x^2,则f(√2)的值为 _______ 。

14. 数列{a_n}满足a_1 = 1,a_{n+1} = 2a_n + 1,求a_6的值。

15. 已知函数f(x) = |x - 2| 的图像为一条直线,求f(x)在(-∞, +∞)上的解析表达式。

新高考一数学试卷

一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x - 3,若f(x+1) = 2,则x的值为()A. 1B. 2C. 3D. 42. 下列命题中正确的是()A. 函数y = x^2在定义域内单调递增B. 函数y = log2x在定义域内单调递减C. 函数y = e^x在定义域内单调递增D. 函数y = 1/x在定义域内单调递减3. 已知等差数列{an}的首项为a1,公差为d,若a1 + a4 = 10,a3 + a5 = 20,则数列{an}的通项公式为()A. an = 2n - 1B. an = n + 1C. an = 3n - 2D. an = 4n - 34. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在()A. 虚轴上B. 实轴上C. 第一象限D. 第二象限5. 已知向量a = (1, 2),向量b = (3, 4),则向量a与向量b的夹角余弦值为()A. 1/5B. 2/5C. 3/5D. 4/56. 下列函数中,y = x^3 - 3x在x = 0处有极值的是()A. 最大值B. 最小值C. 无极值D. 极值不存在7. 若等比数列{an}的首项为a1,公比为q,若a1 + a2 = 6,a2 + a3 = 12,则q 的值为()A. 2B. 3C. 4D. 68. 下列不等式中,恒成立的是()A. x^2 + y^2 > 0B. x^2 - y^2 < 0C. x^2 + y^2 ≤ 0D. x^2 - y^2 ≥ 09. 已知函数f(x) = x^3 - 3x,则f(x)的图像在()A. x < 0时单调递增B. x > 0时单调递增C. x < 0时单调递减D. x > 0时单调递减10. 若函数y = x^2 + kx + 1在x = -1处有极值,则k的值为()A. -2B. -1C. 0D. 111. 下列函数中,y = e^x + e^-x在定义域内单调递增的是()A. e^xB. e^-xC. e^x + e^-xD. e^x - e^-x12. 已知等差数列{an}的首项为a1,公差为d,若a1 + a3 = 10,a2 + a4 = 18,则数列{an}的通项公式为()A. an = 2n - 1B. an = n + 1C. an = 3n - 2D. an = 4n - 3二、填空题(本大题共8小题,每小题5分,共40分)13. 若函数f(x) = ax^2 + bx + c的图像开口向上,且f(1) = 3,f(2) = 8,则a = __________,b = __________,c = __________。

高考数学选填练习题

高考数学选填练习题一、选择题(每题4分,共40分)1. 若函数f(x) = 2x^2 - 4x + 3的最小值是2,则实数a的值为:A. 1B. 2C. 3D. 42. 已知向量a = (3, -1),向量b = (-2, 4),则向量a与向量b的数量积为:A. -10B. -2C. 10D. 23. 若方程x^2 + 2x + 1 = 0有两个相等的实根,则判别式Δ的值为:A. 0B. 1C. -1D. 44. 函数y = sin(x)在区间[0, π/2]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增5. 已知等差数列{an}的首项a1 = 2,公差d = 3,则该数列的第5项a5为:A. 14B. 17C. 20D. 236. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为√5,则a与b的关系为:A. a = 2bB. b = 2aC. a = bD. a = 4b7. 已知函数f(x) = x^3 - 3x^2 + 2在x = 1处的导数为:A. -1B. 0C. 1D. 28. 已知三角形ABC的三边长分别为a、b、c,且a^2 + b^2 = c^2,三角形ABC的形状为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不等边三角形9. 已知集合A = {x | x^2 - 5x + 6 = 0},集合B = {x | x^2 - 3x + 2 = 0},则A∩B的元素个数为:A. 0B. 1C. 2D. 310. 已知抛物线y = ax^2 + bx + c的顶点坐标为(2, -1),则a的值为:A. 1/2B. -1/2C. 1D. -1二、填空题(每题4分,共20分)1. 已知函数f(x) = x^2 - 4x + 4,求f(0)的值为________。

2. 已知等比数列{bn}的首项b1 = 3,公比q = 2,则该数列的前三项和S3为________。

高中数学试题归纳及答案

高中数学试题归纳及答案一、选择题1. 若函数f(x)=x^2-4x+3,求f(1)的值。

A. 0B. 1C. 2D. 3答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。

A. 17B. 14C. 11D. 8答案:A3. 计算三角函数sin(π/6)的值。

A. 1/2B. √3/2C. 1/√2D. √2/2答案:A4. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a=2,b=1,求双曲线的离心率e。

A. √2B. √5C. 2D. 5答案:B5. 求函数y=|x|+|x-1|的值域。

A. [0, +∞)B. [1, +∞)C. [2, +∞)D. [3, +∞)答案:B二、填空题6. 已知向量a=(3, -1),b=(2, 4),求向量a与向量b的数量积。

答案:107. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求圆心坐标和半径。

答案:圆心坐标(2, -1),半径38. 计算定积分∫(0到1) x^2 dx的值。

答案:1/39. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标。

答案:(-1/2, 0)10. 已知抛物线y=x^2-4x+3与x轴的交点为A和B,求线段AB的长度。

答案:4三、解答题11. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]解:将第一个方程乘以2,得到2x + 2y = 10,然后将第二个方程加到这个结果上,得到4x = 11,解得x = 11/4。

将x的值代入第一个方程,得到y = 5 - 11/4 = 9/4。

所以方程组的解为: \[\begin{cases}x = \frac{11}{4} \\y = \frac{9}{4}\end{cases}\]12. 已知函数f(x)=x^3-3x^2+2,求导数f'(x),并求f'(1)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选填题一一、选择题(每小题5分,共50分) 1. 已知i 是虚数单位,则=+6)11(i( )A. 8B. i 8C. i 8-D. -8 2. 将函数)32sin()(π+=x x f 的图像向左平移12π个单位,得到)(x g 的图像,则)(x g 的解析式为 ( )A. x x g 2cos )(=B. x x g 2cos )(-=C. x x g 2sin )(=D. )1252sin()(π+=x x g 3. 在正项等比数列}{n a 中,3lg lg lg 963=++a a a ,则111a a 的值是 ( )A. 10000B. 1000C. 100D. 10 4.设x 、y 、z 是空间的不同直线或不同平面,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是 ( )A. x 为直线,y 、z 为平面B. x 、y 、z 为平面C. x 、y 为直线,z 为平面D. x 、y 、z 为直线 5.设}11|{≥∈=xR x P ,}0)1ln(|{≤-∈=x R x Q ,则“P x ∈”是“Q x ∈”的 ( ) A. 必要不充分条件 B. 充分不必要条件 C. 必要条件 D. 既不充分也不必要条件 6.已知直线l 的参数方程为:⎩⎨⎧+==t y t x 434(t 为参数),圆C 的极坐标方程为θρsin 22=,那么,直线l 与圆C 的位置关系是 ( )A. 直线l 平分圆CB. 相离C. 相切D. 相交7.已知点F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上的一点,且021=⋅PF PF ,则21F PF ∆面积为 ( )A. abB. 12ab C. b 2 D. a 28.对于三次函数)0()(23≠+++=a d cx bx ax x f ,给出定义:设)(x f '是函数)(x f y =的导数,)(x f ''是函数)(x f '的导数,若方程)(x f ''=0有实数解x 0,则称点(x 0,f (x 0))为函数)(x f y =的“拐点”。

某同学经过探究发现:任何一个一元三次函数都有“拐点”;且该“拐点”也为该函数的对称中心。

若12123)(23++-=x x x x f ,则)20142013()20142()20141(f f f +⋅⋅⋅++=( ) A. 1 B. 2 C. 2013 D. 2014 9. 阅读下列程序框图,运行相应程序,则输出的S 值为 ( )A. 81-B. 81C. 161D. 32110.已知函数)2lg()(2a bx ax x f ++=Rb a ∈,且,若)(x f 的值域为R ,则(a+2)2+(b-1)2的取值范围是( )A. (2,+∞)B. [2,+∞)C. [4,+∞)D.(4,+∞) 二、填空题:(本题共5小题, 每小题5分,共25分。

) 11. 抛物线22x y =的焦点坐标是____________12. 某班主任对全班30名男生进行了作业量多少的调查,数据如下表:认为作业多认为作业不多总数 喜欢玩电脑游戏 12 8 20 不喜欢玩电脑游戏2 8 10 总数141630该班主任据此推断男生喜欢玩电脑游戏与认为作业量的多少有关,这种推断犯错误的概率不超过____________13. “公差为d 的等差数列{a n }的前n 项和为S n ,则数列}{n S n 是公差为2d的等差数列”。

类比上述性质有:“公比为q 的正项等比数列{b n }的前n 项积为T n ,则数列____________”。

14. 从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字的四位数,这个数能被3整除的概率为____________15. 在三角形ABC 中,若角A 、B 、C 所对的三边a 、b 、c 成等差数列,则下列结论中正确的是____________。

①b 2≥ac ; ②b c a 211≤+; ③2222c a b +≤; ④2tan 2tan 2tan 2C A B ≤;开始n=1,S=1S=S·cos721π⋅-nn ≥3输出S 结束n=n+1是否)(2k K P ≥ 0.050 0.010 0.001k 3.841 6.625 10.828附:))()()(()(22d b c a d c b a bc ad n K ++++-=选填题二一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,则复数243(2)ii +-=( )A.1B.-1C.iD.-i2.设全集U R =,{ |(2)0 }A x x x =-<,{ |ln(1) }B x y x ==-,则)(B C A U ⋂=( )A .2, 1-()B .[1, 2)C .(2, 1]-D .1, 2() 3.执行如图所示程序框图,输出结果 S =( )A.1B.2C.6D.10第3题图 第4题图 4.如图是某几何体的三视图,则该几何体的体积为( )A .1B . 31C .21D .235.设随机变量()2~1,5X N ,且()()02P X P X a ≤=>-,则实数a 的值为( )A .4B .6C .8D .106. 已知数字发生器每次等可能地输出数字1或2中的一个数字,则连续输出的4个数字之和能被3整除的概率是( ) A.81 B.41 C.83 D.217. 定义在R 上的函数=)(x fx x e e x -++,则满足)3()12(f x f <-的x 的取值范围是( )A .(-2,2)B .(-∞,2)C .(2,+∞)D .(-1,2)n=1,S=1,T=1S=T 一(-1) SnT=T+2n = n+1输出ST>7?否是开始结束8.如果数列1a ,21a a ,32a a ,…,1n n a a -,…是首项为1,公比为2-的等比数列,则5a =( )A .32B .64C .-32D .-649.若1F 、2F 为双曲线22221x y a b-=的左、右焦点,O 为坐标原点,点P 在双曲线的左支上,点M 在双曲线的直线222ba a x +=上,且满足:111,()OF OM FO PM OP OF OMλ==+)0(>λ,则该双曲线的离心率为( ) A .2 B .3 C .2 D .310. 函数()(31)2f a m a b m =-+-,当[]0,1m ∈时,0()1f a ≤≤恒成立,则229a b ab+的最大值与最小值之和为( )A .18B .16C .14D .494二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.设p :|4x -3|≤1,q : 2x -(2a +1)x +a (a +1)≤0,若p 是q 的充分而不必要条件,则实数a 的取值范围是____________.12.已知曲线C :⎪⎩⎪⎨⎧+=+=121222t t y t x ,其中t 为参数,则曲线C 被直线 :cos()13l πρθ+=所截得的弦长为 .13.已知121(11),a x dx -=+-⎰则61()2a x x π⎡⎤--⎢⎥⎣⎦展开式中的常数项为__________.14.已知O 是锐角ABC ∆的外接圆圆心,210||,16||==AC AB ,若AC y AB x AO +=,且252532=+y x ,则=||AO _______________.15.已知两点(0,3)(0,3)M N -和,若直线上存在点P ,使||||2P M P N -=,则称该直线为“和谐直线”.现给出下列直线:①2x =;②230x y --=;③22y x =;④2310x y +-=,其中为“和谐直线”的是 (请写出符合题意的所有编号)选填题三一、选择题:本大题共10小题,每小题5分,共50分,(1)若(12)1ai i bi +=-,其中a 、b ∈R ,i 是虚数单位,则||a bi += ( )(A )12i + (B )5(C )52 (D )54(2)已知全集U R =,{|21}x A x y ==-,则=A C U ( )(A )[0,)+∞ (B )(,0)-∞ (C )(0,)+∞ (D ) (,0]-∞(3)设x,y 满足约束条件⎪⎩⎪⎨⎧≥≥-≤--,0,0,023y y x y x 则z=-2x+y 的最小值为( )(A ) -34(B ) -1 (C ) 0 (D )1 (4) 已知{}n a 为等差数列,若9654=++a a a ,则=9S ( )(A )24(B )27 (C )15(D )54(5)下列直线中,平行于极轴且与圆2cos ρθ=相切的是 ( )(A )cos 1ρθ= (B )sin 1ρθ= (C )cos 2ρθ= (D )sin 2ρθ= (6)执行如右图所示的程序框图,输出 的S 值为( )(A ) 1- (B ) 1 (C )21(D )2 (7)已知函数y =A sin ()ωx +φ+m 的最大值为4,最小值为0.两个对称轴间最短距离为π2,直线x =π6是其图象的一条对称轴,则符合条件的解析式为 ( )(A ))62sin(4π+=x y (B )2)62sin(2++-=πx y (C ))3sin(2π+-=x y (D )2)32sin(2++=πx y (8)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图所示,则几开始1=i ,2=s1+=i iss 1-1= 5>i输出S 结束是否何体的体积为 ( )(A )7 (B )223 (C )476 (D )233 (9)在矩形ABCD 中,AB = 1 ,AD=3,P 为矩形内一点,且.AP=23若),(R AD AB AP ∈+=μλμλ,则μλ3+的最大值为 ( )(A )23 (B )26 (C ) 433+ (D )4236+ (10)某大学的8名同学准备拼车(共同租用两辆出租车)去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车。

每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一有一对的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自于同一年级的乘坐方式共有 ( )(A )24种 (B )18种 (C )48种 (D )36种二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置。

相关文档
最新文档