数怎么不够用了_练习3
数怎么又不够用了

数怎么又不够用了学习目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性. 2.能判断给出的数是否为无理数,并能说出理由. 学习重点:1.让学生经历无理数发现的过程,感知生活中确实存有着不同于有理数的数 2.会判断一个数是否为有理数,是否不是有理数 学习难点:1、 无理数概念的建立及估算.2、判断一个数是否为有理数 预习导学:1.什么叫有理数?_________________________________。
__________和__________统称有理数。
2.π是有理数吗?___________。
3.已知一个等腰直角三角形的腰长为1,则斜边长平方为___________。
4.把下列各数表示成小数,你发现了什么?21= 53= 31= 61= 任何分数都能化成_________________________________a.有理数总能够用______________表示,反过来____________________,也是有理数。
由此归纳:有理数的几中常见形态_________________________________ 学习过程:一、1、准备两个边长为1的小正方形,剪一剪,拼一拼,并设法得到一个大的正方形,比如下图所示:(1)设大正方形的边长为a ,a 应满足什么条件?因为a 是正方形的边长,所以a 肯定是_______,因为两个小正方形面积之和等于大正方形的面积,所以根据正方形面积公式可知a²=______. (2)a 可能是整数吗?因为 1²=1,2²=4,3²=9……正数的平方越来越大,所以a 应在____和_____之间,所以___________。
(3)a 可能是分数吗?说说你的理由?因为21*21=41,32*32=94,……因为两个相同最简分数的 乘积还是_________,所以______________.(3)结合探究得到的结果,你感受到了什么?_______________________________________________________ 二、P86“做一做”(1)如右图,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,b 满足什么条件? (3)b 是有理数吗?11正方形三、随堂练习1.如图,正三角形的边长为2,高为h ,h可能是整数吗?可能是分数吗?2、生活中真的有很多不是有理数的数吗? 右图是由16个边长为1的小正方形拼成的, 任意连接这些小正方形的若干个顶点,可得 到一些线段。
2.1 数怎么又不够用了 课件 3(北师大版八年级上)

如上面的a
无限不循环小数叫无理数。
想一想
你能找到其他的无理数吗?
1.下列各数中,哪些是有理数?哪些是 无理数? 0.4583,3.7,-∏,-1/7,18
-
559 180
,3.97,-234.10101010……
..
0.12345678910111213…… (小数部分由相继的正整数组成)
2.(1)设面积为10的正方形的边长 为x,x是有理数吗?说说你的理由 (2).估计x的值(结果精确到十分 位),并用计算器验证你的估计。 (3).如果结果精确到百分位呢?
a 是一个无限不循环小数!
估计面积为5的正方形的边长 的值(结果精确到十分位)
计算结果精确到百分位呢? 事实上b=2.236067978……
练一练:把下列各数表示成小数,你 发现了什么?
3,4/5,5/9,-8/45,2/11
上面这些数都是有理数,因此有理数 总可以用有限小数或无限循环小数表示, 反过来,任何有限小数或无限循环小数 也都是有理数。
然而,第一个发现这样的数的人 却被抛进大海,你想知道这其中的曲 折离奇吗?这得追溯到 2500 年前,有 个叫毕达哥拉斯的人,他是一个伟大 的数学家,他创立了毕达哥拉斯学派, 这是一个非常神秘的学派,他们以领 袖毕达哥拉斯为核心,认为毕达哥拉 斯是至高无尚的,他所说的一切都是 真理。 毕达哥拉斯( Pythagoras) 认为“宇 宙间的一切现象都能归结为整数或整数 之比,即都可用有理数来描述。
1.9881<s<2.0164
1.414<a<1.415
1.4142<a<1.4143
1.999396<s<2.002225
1.99996164<s<2.00024449
八年级数学上册(第二章 第1课时 数怎么又不够用了)练习题北师大版 试题

轧东卡州北占业市传业学校<第二章 第1课时 数怎么又不够用了>练习题A 组一、填空题1.在△ABC 中,∠C=90°,AC=3,BC=1,那么斜边2AB=,AB 的长在正整数 与 之间。
2.如图,由9个边长为1的正方形拼成的,那么△ABC 的边长中, 是有理数线段, 和 不是有理数线段。
3.要做一个面积为172cm 的正方形,它的边长a 的整数局部是 ,十分位是 ,百分位是 。
4. 以下各数中哪些是有理数?哪些是无理数?0,722,14.3,9913,π-,6.5 错误!未找到引用源。
, 121121112.4〔每两个2中的1增加一个〕,901,6,14141414.3.有理数有 ; 无理数有 .5.一个圆的半径为1m ,第二个圆的面积是它的3倍,那么第二个圆的半径为 cm .〔精确到1.0cm 〕.6.有六个数:123.0,3)5.1(-,1416.3,722,π2-, 2020020002.0〔每两个2中的0增加一个〕假设其中无理数的个数为x ,整数的个数为y,非负数的个数为z,那么z y x ++= .二、解答题7.一长方形的长与宽之比为3:2,长方形的周长为10,对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?如果要求精确到个位,对角线的长为多少?精确到十分位呢?8.如图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的假设干个顶点,可得到一些线段,试在线段AB、AC、AD、AE、BE中分别找出两条长度是有理数的线段和三条长度不是有理数的线段.9.如图:在长方形ABCD AE,BE10.在棱长为4cm的正方体箱子中,放进一根细长的铁棒,那么这根铁棒的最大长度可能是多少?你能估计出来吗?〔结果保存2个有效数字〕B组订正:。
第二章 第一节 数怎么不够用了

第二章 第一节 数怎么不够用了补充练习一、用概念判断:1、下列说法正确的是( )A 、一个数前面加上“-”号这个数就是负数;B 、非负数就是正数;C 、正数和负数统称为有理数;D 、0既不是正数也不是负数 2、下列说法中错误的是( )A.0是最小的自然数B.0是整数也是偶数C.0既非正数也是非负数D.0℃表示没有温度3、下列说法正确的个数是 ( ) A 1 B 2 C 3 D 4 ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的4、.下面是关于0的一些说法,其中正确说法的个数是( ) ①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. A 1 B 2 C 3 D 45、下列说法正确的个数是( )A 1 B 2 C 3 D 4①不是负数的数一定是正数;②带“+”号的数是正数,带“-”号的数是负数;③任意一个正数,前面加上“-”号,就是一个负数;④小于零的数是负数;⑤-a 一定是负数. 6、下列说法错误的是( )A.圆周率π是无限不循环小数,它不是有理数B.正有理数与负有理数组成有理数C.负整数与负分数统称为负有理数D.927不是分数,而是整数 7、下列说法正确的是( )A 最小的数是零B 自然数一定是正整数C 负数中没有最大的整数D 零是自然数 8、思考回答:最大的正整数: 最大的负整数: 最小的正整数: 最小的负整数: 最大的整数: 最小的整数: 二、正负数的性质:1、水池中的水位在某天八个不同时间测得记录事下:(规定向上为正,向下为负,单位:厘米)+3,-6,-1,+5,-4,+2,-3,-2,那么这天中水池中水位的最终变化情况是___________________________.2、某粮站在一个星期内共收五次麦子,每次收购数分别是6吨,3.5吨,4吨,5吨和2.5吨。
§2.1数怎么不够用了1

§2.1数怎么不够用了【学习目标】1.通过生活中的事例,掌握正数和负数的概念2.会用正、负数表示具有相反意义的量3.掌握有理数的分类【课前知多少】1、实际生活中有许多数的应用,比如我们班有 ______ 人,这个月一共有 ______ 天,从家到学校大约需要 ______ 分钟,长方体有 ____ 个面 ____ 条棱,这些都可以用数字来表示。
【合作探究问题解决】一、用正数和负数表示具有相反意义的量探究1、像5,1.2,300,…这样,比 _____ 大的数叫做 ________ 。
像-10,-3,-2.5,…这样,比 _____ 小的数叫做 ________ 。
注意:_____既不是正数,也不是负数,它是正数与负数的分界。
例1、对于具有 ________________ 的两个量,如果其中一种量用正数表示,那么另一种量可以用 ________ 表示。
例2、将下面的数字填入相应的大括号里:-3.5,2,0,-错误!未找到引用源。
,4.8,-500,错误!未找到引用源。
,99①正数:{}②负数:{}③正整数:{}④负整数:{}例3 、“一个数,如果不是正数,那它必定是负数。
“这句话对不对?为什么?例4、如果水位升高3米记作+3m,那么水位下降3米可以记作 ________ ;若水位不升不降,应记作什么? ________ 。
例5、A地海拔高度是70m,B地海拔高度是-30m,C地海拔高度是30m,D地海拔高度是-90m。
哪个地方海拔最高?哪个地方海拔最低?二、有理数的有关概念探究2、对我们学过的数进行以下几种情况分类:正整数:举例__________________,零:0,负整数:举例____________正分数:举例______________,负分数:举例_________________________________、 __________和 __________统称为整数, ____________和_________ 统称分数,1、有理数的定义:___________ 和__________统称为有理数。
第二章《有理数及其运算》专项练习(含答案)

第二章《有理数及其运算》专项练习李其明(山东枣庄十五中)同学们,你能用数简便地表示出每天的天气状况吗?你和你的伙伴会玩扑克游戏吗?你能用折线图表示身边的事物的变化吗?……,那么请跟我一起走进五彩缤纷的数字世界,在这里将为你介绍一个新的数---------负数,有了它,数将变得更加绚丽多彩,更加便于应用,本章首先让你认识什么是有理数,然后依次由低带高向你讲述有理数的加、减、乘、除以及乘方运算的意义法则和运算律,你将学会扑克玩“24”点游戏,学会用折线统计图表示水位的变化,用计算器进行数的简单计算,还为你提供丰富的数学活动机会,通过探索规律,体会数学与现实世界的联系.专题一:数怎么不够用了1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A.文具店 B.玩具店 C.文具店西40米处 D.玩具店西60米处6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
2.1 数怎么又不够用了(第1课时)课件 (北师大版八年级上)

h C
B
5.长,宽分别是3,2的长方形,它的对角线的 长可能是整数吗?可能是分数吗?
3分钟 感受有理数又不够用了 1.通过拼图活动,_____________________ 。 有理数或不是有理数 。 2.会确定一个数是______________________
欣赏有趣的图形:
1
1
毕达哥拉斯树 螺形图
学生自学,教师巡视(5分钟)
自学检测1:(6分钟)
有理数能完全满足我们的生活需要吗?
问:(1)a可能是整数吗? (2)a可能是分数吗?
a 2
2
a
点拨
a 2
2
a2=2,1<a2<4 , 得到1<a <2, a一定不是整数; 因为 a2=2,
a aa
说明数真的不够用了
所以 a一定不是分数。
在等式a 2=2中,a既不是整数, 也不是分数,那么a一定不是有理 数。
当堂训练:(15分钟) (A型)
1.若x2=8,则x是整数吗?是分数吗?是有理
数吗?
2.面积为6的长方形,长是宽的2倍,则宽为( C )
A、小数 B、分数 C、不是有理数
D、不能确定
3.在直角三角形ABC中,∠C=90°若a=2, b=3,则c满足什么条件?C是有理数吗?
C2=13
(B型)
4.如图,正三角形ABC的边长为2,高为h,h A 可能是整数吗?可能是分数吗?
第二章
实数
2.1 数怎么又不够用了
学习目标:(1分钟)
1、体会生活中确实存在着不是有理 数的数。 2、感受数真的不够用了。
自学指导1 (2分钟) 自学课本P32 做一做前的内容,动手完成拼图 活动,解决下列问题: 1.大正方形面积是多少? 2.设大正方形边长是a,a满足什么条件? 3. a可能是整数吗?为什么? 4.a可能是分数吗?为什么?
无理数的认识

2.x 2=8,则x______分数,______整数,______有理数.(填“是”或“不是”)3.a 2=2,b 2=5中的a ,b 既不是整数,也不是分数,那么它们究竟是什么数呢?其实它们它们都是无限不循环小数,即无理数.和我们原来学过的有理数有着本质的区别.你会区别它们吗?以下各数:-1,23,3.14,-π,3.⋅3,0,2,27,24,-0.2020020002……(相邻两个2之间0的个数逐次加1),其中,是有理数的是_____________,是无理数的是_______________.在上面的有理数中,分数有__________,整数有____________.4.下列说法中正确的是( )A .不循环小数是无理数B .分数不是有理数C .有理数都是有限小数D .3.1415926是有理数5.下列语句正确的是( )A .3.78788788878888是无理数B .无理数分正无理数、零、负无理数C .无限小数不能化成分数D .无限不循环小数是无理数6.下列数中是无理数的是( )A.0.12∙∙32B.2π C.0 D.722 7.在直角△ABC 中,∠C =90°,AC =23,BC =2,则AB 为( ) A.整数 B.分数 C.无理数 D.不能确定8.面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定9、下列六种说法正确的个数是 ( )(A) 1 ( B) 2 (C) 3 (D) 4○1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○4无理数与无理数的和一定还是无理数 ○5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数 10.判断题:(1)有理数与无理数的差都是有理数( )(2)无限小数都是无理数( )(3)无理数都是无限小数( )(4)两个无理数的和不一定是无理数( )11.设面积为5π的圆的半径为a ,a 是有理数吗?说说你的理由.12.已知:数-43,-∙∙24.1,π,3.1416,32,0,42,n 2)1(-,-1.424224222…, (1)写出所有有理数;(2)写出所有无理数;13.如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC=6,AD=5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗?14.在下列每一个圈里,至少填入三个适当的数.15.请你估计一下,若702=x ,x 是多少?(精确到小数点后一位)注意.“无理数”认识的几种错误(1)“无理数就是没有理由的数.”这是一种望文生义的认识.实质上,无理数在现实世界中也是有意义的.如a 2=2中的a 表示 .(2)“无理数就是无限小数.”这显然是错误的.如∙3.0就不是无理数,=∙3.0 ,它是有理数.(3)“无理数的和、差、积、商仍是无理数.”其实并非如此.如π-π= ,π÷π= .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二单元 有理数
2.1 数怎么不够用了
一、选择题
1、下面说法中正确的是( )
A 、在有理数中,0没有意义
B 、正有理数和负有理数组成全体有理数
C 、0.3既不是整数,也不是分数,因此它不是有理数
D 、0既不是正数,也不是负数
2、下列各数:9,05.0,101,32
4,65
0,76.8,1,54
--+---,,中,( )
A 、只有1,–7,+101,–9是整数
B 、其中有三个数是正整数
C 、非负数有1,8.6,+101,0,
D 、只有是负分数
3、下列说法正确的是( )
A 、3.14不是分数
B 、正整数和负整数统称为整数
C 、正数和负数统称为有理数
D 、正数和分数统称为有理数
4、下列四种说法,正确的是( )
A 、所有的正数都是整数
B 、不是正数的数一定是负数
C 、正有理数包括整数和分数
D 、0不是最小的有理数
二、填空题
1、把下列各数填入相应的集合中:
.0,722
,1,21
3,27,6.5,618.0,7----
正有理数集合:}{...;
负有理数集合:}{...;
整数集合:}{...;
自然数集合:}{...;
分数集合:}{
...; 2、若将低于海平面11022米的太平洋最深处记作:–11011米,则高出海平面 8848、13米的珠穆朗玛峰应记作_____米.
3、用正、负数表示:盈利6000元可记作_____元,亏损500元可记作_____元.
4、甲、乙两厂本月产值与上月相比,甲厂增产3%可记作_____.乙厂减产1.2%可记作____.
5、如果“–2”表示比95小2的数,那么“+1”表示的数是_____;"–5"表示的数是______.
6、如果把上升10m 记作十10 m ,那么–3m 表示______.
7、有理数中,最小的正整数是______;最大的负整数是______.
8、有理数中.是正数而不是正数的数是______;是整数向不是负数的数是______.
三、想一想
1、是否存在满足下面条件的数,存在的话,把它们写出来:
(1)最小的正有理数
(2)最小的负整数;
(3)最大的非整数;
(4)最小的整数
(5)最大的负有理数
(6)最小的有理数
2、如图2–1,家工一种轴,直径在299.5毫米到300.2毫米之间的产品都是合格品,在生产图纸上通常用2
.05.0300+-φ来表示这种轴的加工要求,这里300φ表示直径是300毫米,+0.2
表示最大限度可以比300毫米多0.2毫米,–0.5表示最大限度可以比300毫米少0.5毫米。
加工一根轴,图上标明的加工要求是03.004.045
+-φ,如果家工成的轴的直径是44.8毫米,它合格
吗?
3、如果a 表示正数,那么–a 表示什么数?如果a 表示负数,那么–a 表示什么数?字母a 除了可以表示正数和负数外,还可以表示哪些有理数?
4、处一.一班数学成绩的平均分是85分,老师将第二小组的六个人的成绩记为:为:+10, –8,+8,–4,0,–8,这六个学生的成绩分别是多少?
四、试一试
1、观察下面的每列数,按某种规律在横线上填上适当的数,并说明你的理.
(1)–1,2,–3,4, _______, ________;
(2),161
,81,41
,21
_______, ________;
(3)–11,–7,–3,1,_______, _________;
2、在适当的空格里打上号
3、测量一座公路桥的长度,各次测得的数据依次适:853米,872米,865米,868米,857米.
(1)求这五次测量得平均值;
(2)用正,负数表示出各次测量得数值与平均值得差.。