自动控制原理仿真实验
《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。
2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。
3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。
二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。
具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。
总结比例(P)控制的规律。
2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。
总结比例积分(PI)控制的规律。
3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。
《自动控制原理》控制系统的simulink仿真实验一

《自动控制原理》控制系统的simulink仿真实验一、实验目的1.初步了解Matlab中Simulink的使用方法,熟悉simulink模块的操作和信号线的连接。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,熟悉各种典型环节的响应曲线。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验仪器Matlab7.0 , 计算机三、实验原理Simulink是MATLAB中的一种可视化仿真工具。
Simulink是一个模块图环境,用于多域仿真以及基于模型的设计。
它支持系统设计、仿真、自动代码生成以及嵌入式系统的连续测试和验证。
四、实验内容及步骤1、建立仿真模型系统1.1 运行Matlab,在命令窗口“Command Window”下键入“Simulink”后回车,则打开相应的系统模型库;或者点击工具栏上的“Simulink”图标,进入系统仿真模型库,然后点击左上角“新文件”图标,打开模型编辑窗口。
1.2 调出模块在系统仿真模型库中,把要求的模块都放置在模型编辑窗口里面。
从信号源模块包(Sources)中拖出1个阶跃信号(step)和1个白噪声信号发生器(band-limited white noise);从数学运算模块包(Math Operations)中拖出1个比例环节(gain)和1个加法器(sum);从连续系统典型环节模块包(Continuous) 中拖出1个微分环(Derivative)和3个传函环节(transfer Fcn);从信号与系统模块包(Signals Routing) 拖出1个汇流排(mux);从输出模块包(Sinks)中拖出1个示波器(scope);所有模块都放置在模型编辑窗口里面。
1.3 模块参数设置(鼠标左键双击各典型环节,则可进行参数设置)双击打开白噪声信号发生器,设定功率(Noise power)为0.0001,采样时间(Sample time)为0.05。
打开比例环节,设定比例增益为2;打开3个传函环节(transfer Fcn),通过参数设定,分别构成积分、惯性和二阶环节。
自控仿真实验报告

一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
(最新版)自动控制原理MATLAB仿真实验报告

实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。
2、;表示时间范围0---Tn。
3、;表示时间范围向量T指定。
4、;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理MATLAB分析与设计仿真实验报告(最终版)

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告学院:电气工程与信息工程学院专业班级: 13级自动化3班姓名:学号:时间: 2015年12月Step ResponseTime (seconds)A m p l i t u d e1234567891000.511.5System: sys1Rise time (seconds): 1.17System: sys1P eak amplitude: 1.41Overshoot (%): 40.6At time (seconds): 2.86System: sys1Final value: 1第三章 线性系统的时域分析法一、教材第三章习题3.5设单位反馈系统的开环传递函数为G(s)=0.41(0.6)s s s ++(1)试求系统在单位阶跃输入下的动态性能。
(2)忽略闭环零点的系统在单位阶跃输入下的动态性能。
(3)对(1) 和(2)的动态性能进行比较并分析仿真结果。
(1)A :程序如下。
B :系统响应曲线如下图。
Step Response Time (seconds)A m p l i t u d e01234567891000.20.40.60.811.21.4System: sys1Final value: 1System: sys1Settling time (seconds): 8.08System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (seconds): 3.63System: sys1Rise time (seconds): 1.64(2)A :程序如下。
B :系统响应曲线如下图。
(3) A :程序如下。
B 响应曲线如下图。
阶跃响应t (sec)c (t )0123456789100.20.40.60.811.21.4System: sysRise Time (sec): 1.46System: sys1Rise Time (sec): 1.64System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (sec): 3.63System: sys P eak amplitude: 1.18Overshoot (%): 18At time (sec): 3.16System: sys1Final Value: 1System: sys1Settling Time (sec): 8.08System: sysSettling Time (sec): 7.74120,0.1ττ==120.1,0ττ==分析:忽略闭环零点时,系统的峰值时间,调节时间,上升时间均为增大的,而超调量减小。
自动控制原理MATLAB分析与设计-仿真实验报告

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级:电气工程及其自动化四班姓名:学号:时间:年月日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2014) 一、仿真实验内容及要求 1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。
2.各章节实验内容及要求1)第三章 线性系统的时域分析法∙ 对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;∙ 对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同控制器的作用;∙ 在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析; ∙ 在MATLAB 环境下完成英文讲义P153.E3.3;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<3250,510s ss t ms d -≤<⨯等指标。
2)第四章 线性系统的根轨迹法∙ 在MATLAB 环境下完成英文讲义P157.E4.5; ∙ 利用MATLAB 绘制教材第四章习题4-5;∙ 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析;∙ 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。
3)第五章 线性系统的频域分析法∙ 利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正∙ 利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能;∙ 利用MATLAB 完成教材第六章习题6-22控制器的设计及验证;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD控制并优化控制器参数,使系统性能满足给定的设计指标ms t s 150%,5%<<σ。
自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)对教材P136.3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;原系统的动态性能仿真:忽略闭环零点的系统动态性能与原系统进行比较:分析:由图可以看出,在忽略系统的闭环零点之后,系统上升时间和调节时间增大,响应变慢,但超调量减小,系统的阻尼程度增大。
2)对教材P136.3-9系统的动态性能及稳态性能通过的仿真进行分析,说明不同控制器的作用;取τ1=0,τ2=0.1时系统的动态性能:取τ1=0.1,τ2=0时系统的动态性能:二者进行比较:分析:从控制系统稳定性的角度来考察,比较表明系统的稳定性与前馈控制无关;微分反馈使系统的性能得到了改善。
3)在MATLAB环境下完成英文讲义P153.E3.3。
4)在MATLAB环境下完成英文讲义P157.E4.5程序:G=tf([1],[1 -1]);figure(1)pzmap(G);figure(2)rlocus(G);根轨迹:由根轨迹所选闭环极点 0.5017 + 0.2907i 对应K值为 0.33455)利用MATLAB绘制教材P181.4-5-(3);程序:G=tf([1],[1 10.5 43.5 58.5 45.5 ]);figure(1)pzmap(G);figure(2)rlocus(G);-15-10-551015Root LocusReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)根轨迹:6)教材第四章习题4-10程序:1=zpk([],[0 0 -2 -5 ],1);G2=zpk([-0.5],[0 0 -2 -5],1); figure(1) rlocus(G1); figure(2) rlocus(G2);根轨迹:-25-20-15-10-50510-20-15-10-55101520Root LocusReal AxisI m a g i n a r y A x i s分析:在(1)的件下由根轨迹分析知,系统不稳定;在(2)条件下,闭环系统根轨迹往左拧,系统的稳定性也将变好,也即该反馈通道函数增加了系统的闭环零点,提高系统的稳定性。
7)教材第五章习题5-10程序:G=tf([1,1],conv([0.5,1,0],[1/9,1/3,1])); bode (G);grid如图示转折频率在3左右,剪贴频率在1.96左右,相角裕度在60度左右8)教材第五章习题5-22程序:wn=3;keth=0.7;G=tf([wn^2],conv([1,0],[1,2*keth*wn])); margin(G);grid程序:>> K=6;G0=tf(K,[conv([0.2,1,0],[0.5,1])]); Gc=tf([0.4,1],[0.08,1]); G=series(Gc,G0); G1=feedback(G0,1);10-110101102-270-225-180-135-90-45P h a s e (d e g )Frequency (rad/s)-100-50050M a g n i t u d e (d B )G11=feedback(G,1); figure(1);margin(G0);grid figure(2);margin(G);grid figure(3);step(G1);grid figure(4);step(G11);grid如图所示,可得其截至频率为1.92,相角裕度在65度左右。
9)教材第六章习题6-1程序:>> K=6;G0=tf(K,[conv([0.2,1,0],[0.5,1])]); Gc=tf([0.4,1],[0.08,1]); G=series(Gc,G0); G1=feedback(G0,1); G11=feedback(G,1); figure(1);margin(G0);grid figure(2);margin(G);grid-80-60-40-2002040M a g n i t u d e (d B )10-110101102-180-135-90P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/s) , P m = 65.2 deg (at 1.94 rad/s)Frequency (rad/s)figure(3);step(G1);grid figure(4);step(G11);grid上图为未校正前系统的bode 图和单位阶跃响应-80-60-40-20020M a g n i t u d e (d B)10-110101102-180-135-90-450P h a s e (d e g )Bode DiagramFrequency (rad/s)01020304050600.511.52Step ResponseTime (seconds)A m p l i t u d e上图为校正后系统的bode 吐和单位阶跃响应。
校正后系统的幅值裕度变大,稳定性变好。
-150-100-50050M a g n i t u d e (d B )10102-270-225-180-135-90P h a s e (d e g )Bode DiagramGm = 9.9 dB (at 7.38 rad/s) , P m = 29.8 deg (at 3.85 rad/s010********0.51Step ResponseTime (seconds)A m p l i t u d e01234560.20.40.60.811.21.4Step ResponseTime (sec)A m p l i t u d e10)教材第六章习题6-20程序:K1=5;K2=2.5; G0=tf(10,[1,10,0]); Gc=tf([K1,K2],[1,0]); G=series(G0,Gc); G1=feedback(G,1); step(G1);grid上图中K1=5,K2=2.5时校正后系统单位阶跃响应曲线。
11)对英文讲义中的循序渐进实例“Disk Drive Read System ”,试采用PD 控制使系统的性能满足给定的设计指标ɘ<5%,ts<150ms 。
程序:K1=288;K3=3.968; Gc=tf([K3,K1],1); G1=5;G2=tf(10,[1,20,0]); Gp=tf(72.58,[1,72.58]);G3=series(Gc,G1); G=series(G3,G2); G4=feedback(G,1);G5=series(Gp,G4);G6=feedback(G2,G3); figure(1);step(G4);grid figure(2);step(G5);grid figure(3);step(G6);grid010********0.51Step ResponseTime (seconds)A m p l i t u d e10203000.20.40.60.811.2Step ResponseTime (seconds)A m p l i t u d e分析:无前置滤波器时的单位阶跃响应如图一所示,仿真结果表明闭环零点可以提升系统的上升时间,但恶化了系统的超调量;而有前置 滤波器时系统的单位阶跃时间响应如图二所示,其动态性能大为改善。
12)利用MATLAB 完成教材P383.7-20的最小拍系统设计及验证。
程序:T=1; t=0:1:10;sys=tf([0,1],[1,0],T); step(sys,t);axis(1,10,0,1.2); grid;xlabel('t'); ylabel('c(t)');13)利用MA TLAB 完成教材P385.7-25的控制器的设计及验证。
程序:T=0.1;sys1=tf([150,105],[1,10.1,151,105]);sys2=tf([0.568,-0.1221,-0.3795],[1,-1.79,1.6,-0.743],T); step(sys1,sys2,4); grid;0123456789100.10.20.30.40.50.60.70.80.91Step Responset (sec)c (t )当T=0.01时的单位响应曲线程序:T=0.1;00.51 1.52 2.53 3.540.20.40.60.811.21.41.61.8Step ResponseTime (sec)A m p l i t u d e00.51 1.52 2.53 3.540.20.40.60.811.21.41.61.8Step ResponseTime (sec)A m p l i t u d et=0:0.1:2; u=t;sys=tf([0.568,-0.1221,-0.3795],[1,-1.79,1.6,-0.743],T) lsim(sys,u,t,0); grid;单位斜坡响应曲线:00.20.40.60.81 1.2 1.4 1.6 1.820.20.40.60.811.21.41.61.82Linear Simulation ResultsTime (sec)A m p l i t u d e。