北京大学量子力学复习提纲
《量子力学》复习资料提纲

)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
量子力学期末复习资料教学提纲

简答第一章 绪论什么是光电效应?爱因斯坦解释光电效应的公式。
答:光的照射下,金属中的电子吸收光能而逸出金属表面的现象。
这些逸出的电子被称为光电子用来解释光电效应的爱因斯坦公式:221mv A h +=ν第二章 波函数和薛定谔方程1、如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c +=(1c ,2c 是复数)也是这个体系的一个可能状态。
答,由态叠加原理知此判断正确4、(1)如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c += (1c ,2c 是复数)是这个体系的一个可能状态吗?(2)如果1ψ和2ψ是能量的本征态,它们的线性迭加:2211ψψψc c +=还是能量本征态吗?为什么?答:(1)是(2)不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态1、 经典波和量子力学中的几率波有什么本质区别?答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变;6、若)(1x ψ是归一化的波函数, 问: )(1x ψ, 1)()(12≠=c x c x ψψ )()(13x e x i ψψδ= δ为任意实数是否描述同一态?分别写出它们的位置几率密度公式。
答:是描述同一状态。
)()()()(1*1211x x x x W ψψψ== 212*22*22)()()()()()(x x x dx x x x W ψψψψψ==⎰ 213*33)()()()(x x x x W ψψψ==第三章 量子力学中的力学量2能量的本征态的叠加一定还是能量本征态。
《量子力学》考试大纲

《量子力学》考试大纲
学院(盖章):负责人(签字):
专业代码:070201、070207、070205专业名称:理论物理、光学、凝聚态物理考试科目代码:803 考试科目名称:量子力学(一)考试内容
考试范围为理科院校物理系《量子力学》课程的基本内容。
以曾谨言著《量子力学导论》(第二版)(北京大学出版社)为篮板,内容涵盖该教材的第一至十章,波函数与薛定谔方程、一维定态问题、力学量用算符表达与表象变换、中心力场、定态问题的常用近似方法均在其中。
试题重点考查的内容:
一、波函数与薛定谔方程
1.波函数的统计诠释
2.态叠加原理
3.薛定谔方程
二、一维定态问题
1.方位势
2.一维散射问题
3.一维谐振子
三、力学量用算符表达与表象变换
1.算符的运算规则
2.厄米算符的本征值与本征函数
3.共同本征函数
4.量子力学的矩阵形式与表象变换
5.狄拉克符号
四、中心力场
1.中心力场中粒子运动的一般性质
2.球方势阱
3.氢原子
五、定态问题的常用近似方法
1.非简并态微扰论
2.简并态微扰论
(二)考试的基本要求
1.基本概念要清晰。
2.对知识要会综合运用。
3.具有必要的数学运算能力。
(三)考试基本题型
基本题型可能有:选择题、填空题、判断题、简答题、计算题和分析论述题等。
《量子力学》课程考试大纲

《量子力学》课程考试大纲
一、课程的任务、性质和作用
本课程的性质:量子力学是物理学专业的一门重要专业必修课程,是物理相关专业本科生必修的四大理论课之一,是他们今后继续提高物理专业水平的一门专业基础理论课程。
同时,量子力学是近代物理学两大支柱之一,是描述微观世界运动规律的基础理论,已成为当今科学技术的基础,凡是涉及到微观粒子(比如分子、原子、电子等)的各门学科和新兴技术,都必须掌握量子力学。
本课程的任务是:(1)使学生了解微观世界的特殊性,了解经典物理不能正确描述微观粒子的运动规律,认识到创立微观世界的理论——量子力学的必然性。
(2)使学生初步掌握量子力学的基本概念、原理和基本方法,能求解量子力学的一些基本问题。
(3)使学生熟悉量子力学在现代科学技术中各种重大应用。
二、教材
周世勋.量子力学.高等教育出版社,1979年
三、试卷结构与题型
1.试题类型
填空题、选择题、证明题、计算题。
2.试卷难易比例
容易题约占40%,中等难度题约占40%,难题约占20%。
3.试卷内容比例
填空题约占15%,选择题约占15%,证明题约占20%,计算题约占50%。
四、考核的知识点及参考题型。
量子力学复习提纲

量子力学复习提纲2008级材料物理专业《量子力学》复习提纲要点之一1. 20世纪初,经典理论在解释黑体辐射、光电效应和原子光谱的线状结构等实验结果时遇到了严重的困难。
爱因斯坦在普朗克“ 能量子”假设的启发下,提出了“光量子”的概念,认为光是由一颗颗具有一定能量的粒子组成的粒子流。
2. 描述光的粒子性的能量E 和动量P与描述其波动性的频率(或角频率)和波矢K由 Planck- Einstein 方程联系起来,即:ων ==h E ;K n h P ==λ。
3. 德布罗意提出,一切物质粒子(原子、电子、质子等)都具有粒子、波动二重性,在一定条件下,表现出粒子性,在另一些条件下体现出波动性。
4. 描述微观粒子(如原子、电子、质子等)粒子性的物理量为能量E 和动量P,描述其波动性的物理量为频率(或角频率)和波长,它们间的关系可用德布罗意关系式表示,即:ων ==h E ; K n h P==λ。
5. 微观粒子因具有波粒二象性,其运动状态不能用坐标、速度、加速度等物理量来描述,而是用波函数来描述。
描述自由粒子的波是具有确定能量和动量的平面波,即:)(),(Et r p i p Ae t r -?=ψ。
6. 波函数在空间某点的强度,即波函数模的平方,与在该点找到粒子的几率成正比例,即描写粒子的波可认为是几率波,反映了微观粒子运动的统计规律。
7. 波函数在全空间每一点应满足单值、有限、连续三个条件,该条件称为波函数的标准条件。
8. 通常将在无穷远处为零的波函数所描写的状态称为束缚态,属于不同能级的束缚定态波函数彼此正交,可表示为)(0*n m dx n m ≠=?ψψ。
9. 设G ??和F的对易关系为k i G F ?]?,?[=,且G G G F F F -=?-=,??,则G ??和F 的测不准关系式为:4)?()?(222k G F≥;如果k 不等于零,则的均方偏差不会同时为零,它们的乘积要大于一正数,这意味着F和G ?不能同时测定。
教务处量子力学复习提纲

《量子力学》总复习一. 波粒二象性---微观粒子特性(1) 态的描述经典态(),P r →量子态(态矢—一般表示)或波函数:),...,(),,(t P t x Φψ(不同的具体表象)),(t x ψ的意义:t 时刻,x 附近,单位体积内找到粒子的几率幅 ),(t x ψ的性质:1)单值,2)连续,3)归一(2) 力学量的描述QQ ˆ→,对易关系,测不准问题 (3) 德布洛意关系 k P E ==,ω (粒子量与波量)二.力学量算符(1)Qˆ 出现的场合:Q ˆ ,(2)Q ˆ的性质:1)线性性 nnn n Q CC Q ψψ∑∑=ˆˆ(态的叠加原理的要求) 2)厄米性 Q Q ˆˆ=+ 或⎰⎰=τψψτψψd Q d Q **)ˆ(ˆ (Qˆ的本征值、平均值为实数的要求) (3)Qˆ的表示:不同表象有不同的表示 x 表象中:,ˆ,ˆxi P x xx∂∂== P 表象中:,ˆ,ˆxx xP P P i x=∂∂-= n 表象中:ˆˆˆ)xaa +=+, 注:1)<Qˆ>与表象的选择无关! 2)算符相等的定义:ψ=ψB A ˆˆ(ψ为任意态),则B Aˆˆ= (4) 力学量算符的对易关系2ˆˆˆˆˆ[,],[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆ[,]0j k j kj kj k llxy z yz x zx yix P i L L i LL L i L L L i L L L i L L L δε==⎧=⎪⎪↔=⎨⎪=⎪⎩= ,其中110ijkε⎧⎪=-⎨⎪⎩当下标排列(,,)i j k 为偶排列时ijk ε值为1;为奇排列时ijk ε值为-1;当下标(,,)i j k 中有两个下标相同时ijk ε值为0 注:对易关系与表象的选择无关! (5) 测不准关系222]ˆ,ˆ[41)ˆ()ˆ(B A B A -≥∆∆ 表明:1)0]ˆ,ˆ[≠B A,B A ˆ,ˆ无共同的本征态,B A ,不可能同时测准; 2)0]ˆ,ˆ[=B A,B A ˆ,ˆ有共同的本征态,B A ,有可能同时测准,即 在它们的共同本征态上可同时测准。
量子力学复习资料

《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。
2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。
意义:解决了黑体辐射问题。
3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。
意义:解释了光电效应。
【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。
②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。
(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。
6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。
7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。
(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。
9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。
10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。
量子力学复习资料

量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京大学量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)hp n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w*=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂ (4)定态薛定谔方程()()ˆHr E r ψ=ψ (5) 其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+, ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E nμ=-,()21l l +,m.(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式 diH dtψ=ψ (22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()()()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n itn n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt iω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m n mn ωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦ (36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m k εεω=± (37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭ (39)第六章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40)2. 自旋算符的矩阵形式01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵 01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭ (42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44) (2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的. 2的奇数倍20, 1, 或2的偶数倍7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。