四种命题的真假关系
s和p外延关系的四种命题的真假情况表

s和p外延关系的四种命题的真假情况表1. 引言s和p外延关系是数理逻辑中的一个重要概念。
在逻辑学领域,s和p分别代表两个集合,s是主语集合,p是谓词集合。
s和p的外延关系描述了一个命题在s和p 之间的真假关系。
本文将会对s和p外延关系中的四种命题进行详细的讨论和分析。
2. s和p外延关系在介绍四种命题之前,我们先来了解一下s和p外延关系的基本概念。
s和p分别代表两个集合,s是主语集合,p是谓词集合。
s和p之间的外延关系描述了一个命题在s和p之间的真假关系。
外延关系可以分为四种情况:反例外延关系、包含外延关系、相等外延关系和特指外延关系。
2.1 反例外延关系反例外延关系表示命题的真值为假,即命题在主语集合中的所有元素都不满足谓词集合的条件。
2.1.1 真值为假的命题命题:所有狗都会飞。
狗飞小狗否大狗否……在这个例子中,主语集合是所有狗的集合,谓词集合是会飞的集合。
根据现实情况,我们可以得出结论:所有狗都不会飞,因此命题的真值为假。
2.1.2 反例外延关系的特点•命题的真值为假。
•主语集合中的所有元素都不满足谓词集合的条件。
2.2 包含外延关系包含外延关系表示命题的真值为真,即命题在主语集合中的所有元素都满足谓词集合的条件。
2.2.1 真值为真的命题命题:所有狗都有尾巴。
狗尾巴小狗是大狗是……在这个例子中,主语集合仍然是所有狗的集合,谓词集合是有尾巴的集合。
根据现实情况,我们可以得出结论:所有狗都有尾巴,因此命题的真值为真。
2.2.2 包含外延关系的特点•命题的真值为真。
•主语集合中的所有元素都满足谓词集合的条件。
2.3 相等外延关系相等外延关系表示命题的真值为真假都有,在主语集合中有满足谓词集合的元素,也有不满足谓词集合的元素。
2.3.1 真值为假和真值为真的命题命题:所有狗都会叫。
狗叫小狗是大狗否……在这个例子中,主语集合仍然是所有狗的集合,谓词集合是会叫的集合。
根据现实情况,我们可以得出结论:有些狗会叫,有些狗不会叫,因此命题的真值既为真又为假。
命题及其关系

命题及其关系、充分条件与必要条件专项训练自主梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p⇒q);逆命题:若q则p(q⇒p);否命题:若綈p则綈q(綈p⇒綈q);逆否命题:若綈q则綈p(綈q⇒綈p).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p 叫做q的充要条件.自我检测1.(2010·湖南)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析对于C选项,当x=0时,03=0,因此∀x∈R,x3>0是假命题.2.(2010·陕西)“a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0 a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.(2009·浙江)“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题答案 C解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.(2011·宜昌模拟)与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉MB.若b∉M,则a∈MC.若a∉M,则b∈MD.若b∈M,则a∉M答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二充要条件的判断例2给出下列命题,试分别指出p是q的什么条件.(1)p:x-2=0;q:(x-2)(x-3)=0.(2)p:两个三角形相似;q:两个三角形全等.(3)p :m <-2;q :方程x 2-x -m =0无实根.(4)p :一个四边形是矩形;q :四边形的对角线相等.解 (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0x -2=0.∴p 是q 的充分不必要条件.(2)∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p 是q 的必要不充分条件.(3)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根m <-2.∴p 是q 的充分不必要条件.(4)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形,∴q p .∴p 是q 的充分不必要条件.变式迁移2 (2011·邯郸月考)下列各小题中,p 是q 的充要条件的是( )①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④答案 D解析 ①q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ;②当f (x )=0时,由q p ;③若α,β=k π+π2,k ∈Z 时,显然cos α=cos β,但tan α≠tan β;④p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U A ⊇∁U B .故①④符合题意.探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明 (1)必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0,则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0,两式相减可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0, 可得b 2+c 2=a 2,故∠A =90°,(2)充分性:∵∠A =90°,∴b 2+c 2=a 2,b 2=a 2-c 2.①将①代入方程x 2+2ax +b 2=0,可得x 2+2ax +a 2-c 2=0,即(x +a -c )(x +a +c )=0.将①代入方程x 2+2cx -b 2=0,可得x 2+2cx +c 2-a 2=0,即(x +c -a )(x +c +a )=0.故两方程有公共根x =-(a +c ).所以方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.证明 (1)必要性:∵a +b =1,∴a +b -1=0.∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)=0.(2)充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,∴a ≠0且b ≠0.∵a 2-ab +b 2=(a -b 2)2+34b 2>0. ∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想的应用 例 (12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.【答题模板】解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0. [2分] 另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0, 解得m ∈[-54,1]. [6分] ∵两根为整数,故和与积也为整数, ∴⎩⎪⎨⎪⎧ 4m ∈Z 4m ∈Z 4m 2-4m -5∈Z ,∴m 为4的约数, [8分]∴m =-1或1,当m =-1时,第一个方程x 2+4x -4=0的根为非整数,而当m =1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m =1. [12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m 的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m ≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数.1.研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p 与q 是否可以相互推出的两次判断,同时还要弄清是p 对q 而言,还是q 对p 而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·天津模拟)给出以下四个命题:①若ab ≤0,则a ≤0或b ≤0;②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .④答案 C解析 对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.(2010·浙江)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵0<x <π2,∴0<sin x <1. ∴x sin x <1⇒x sin 2x <1,而x sin 2x <1x sin x <1.故 选B.3.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos 2α=12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由α=π6+2k π(k ∈Z )可得到cos 2α=12. 由cos 2α=12得2α=2k π±π3(k ∈Z ). ∴α=k π±π6(k ∈Z ). 所以cos 2α=12不一定得到α=π6+2k π(k ∈Z ). 4.(2011·威海模拟)关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真答案 D解析 本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上.因此否命题也是假命题.5.(2011·枣庄模拟)集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4,a >4a >5,但a >5⇒a >4.故选B.二、填空题(每小题4分,共12分)6.“x 1>0且x 2>0”是“x 1+x 2>0且x 1x 2>0”的________条件.答案 充要7.(2011·惠州模拟)已知p :(x -1)(y -2)=0,q :(x -1)2+(y -2)2=0,则p 是q 的 ____________条件.答案 必要不充分解析 由(x -1)(y -2)=0得x =1或y =2,由(x -1)2+(y -2)2 =0得x =1且y =2,所以由q 能推出p ,由p 推不出q, 所以填必要不充分条件.8.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.三、解答题(共38分)9.(12分)(2011·许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q <1,则方程x 2+2x +q =0有实根;(2)若ab =0,则a =0或b =0;(3)若x 2+y 2=0,则x 、y 全为零.解 (1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(4分)(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(8分)(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.(12分)10.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},(2分)B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.(4分)∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p 綈q .则{x |綈q }Ø{x |綈p },(6分)而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0},∴{x |-4≤x <-2}Ø{x |x ≤3a 或x ≥a ,a <0},(10分)则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧a ≤-4,a <0.(11分) 综上,可得-23≤a <0或x ≤-4.(12分)11.(14分)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.(2分)当n ≥2时,a n =S n -S n -1=p n -1(p -1).当n =1时也成立.(4分)于是a n +1a n =p n (p -1)p n -1(p -1)=p (n ∈N *), 即数列{a n }为等比数列.(6分)必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,p ≠1,∴a n +1a n =p n (p -1)p n 1(p -1)=p .(10分) ∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q=p , 即p -1=p +q .∴q =-1.(13分)综上所述,q =-1是数列{a n }为等比数列的充要条件.(14分)。
真假命题判断的口诀

真假命题判断的口诀
真假命题判断的口诀如下:
1、对于p且q形式的复合命题,同真则真。
2、对于p或q形式的复合命题,同假则假。
3、对于非p形式的复合命题,真假相反。
4、两个命题互为逆否命题,它们有相同的真假性。
5、两个命题为互逆命题或互否命题,它们的真假性没有关系。
6、原命题与逆否命题同真同假,逆命题与否命题同真同假。
真假命题的概念如下:
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。
高中数学教师备课必备系列(简易逻辑)专题五 四种命题及真假判断 Word版含解析

【基础回顾】
一.命题的概念
在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.
二.四种命题及其关系
.四种命题
即:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;
如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;
如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。
.四种命题间的逆否关系
.四种命题的真假关系
()两个命题互为逆否命题,它们有相同的真假性;
()两个命题为互逆命题或互否命题,它们的真假性没有关系.
【典型例题】
例.已知是两个命题,若“”是假命题,则()
.都是假命题.都是真命题
.是假命题,是真命题.是真命题,是假命题
【答案】
【解析】
例.给出下列命题:其中正确命题的序号是()
①已知,若,则,
②不存在实数,使
③是函数的一个对称轴中心
④已知函数.
.①②.②④.①③.④
【答案】
【解析】
试题分析:
④因为在锐角三角形中,,所以,;则有
,;又因为函数
在上为减函数,所以.故正确.
考点:向量的线性运算;三角函数的基本关系式;函数的图像和性质.
例.下列说法中正确的是()
()“”是“函数是奇函数”的充要条件。
四种命题的真假-P

分析:“当c>0时”是大前提,写其它命题时应该保留。
原命题的条件是“a>b”,结论是“ac>bc”。
解:逆命题:当c>0时,若ac>bc, 则a>b. 否命题:当c>0时,若a≤b, 则ac≤bc. 逆否命题:当c>0时,若ac≤bc, 则a≤b.
(真) (真) (真)
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、否命题、 逆否命题,并分别指出其真假。
布置作业:33页 3、4两题 。 课外延拓:各小组自编命题并判断真假。
练一练
1.判断下列说法是否正确。 1)一个命题的逆命题为真,它的逆否命题不一定为真;(对) 2)一个命题的否命题为真,它的逆命题一定为真。 (对) 3)一个命题的原命题为假,它的逆命题一定为假。 (错) 4)一个命题的逆否命题为假,它的否命题为假。 (错)
2.四种命题真假的个数可能为( 答:0个、2个、4个。
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。
解:逆命题:若m+n≤0,则m≤0或n≤0。 否命题:若m>0且n>0, 则m+n>0. 逆否命题:若m+n>0, 则m>0且n>0.
(真) (真) (假)
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
(假)
逆命题:若ac2>bc2, 则a>b。 否命题:若a≤b,则ac2≤bc2。 逆否命题:若ac2≤bc2,则a≤b。 4) 原命题:若a > b, 则 a2>b2。
逆命题:若a2>b2, 则a>b。 否命题:若a≤b,则a2≤b2。 逆否命题:若a2≤b2,则a≤b。
1.2 命题及其关系、充分条件与必要条件

§1.2命题及其关系、充分条件与必要条件1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念概念方法微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⃘B且A⊉B,则p是q的既不充分也不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“对顶角相等”是命题.(√)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)当q是p的必要条件时,p是q的充分条件.(√)(4)已知集合A,B,则A∪B=A∩B的充要条件是A=B.(√)题组二教材改编2.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题答案 A3.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等4.已知△ABC的三边分别为a,b,c,那么“a2+b2+c2=ab+bc+ca”是“△ABC为等边三角形”的________条件.答案充要题组三易错自纠5.设S n为数列{a n}的前n项和,“{a n}是递增数列”是“{S n}是递增数列”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析若a n=2n-10,则S4<S3,∴充分性不成立.若a n=1,则{S n}递增,此时{a n}递减,n∴必要性不成立.6.(多选)设x∈R,则x>2的一个必要不充分条件是()A.x<1 B.x>1 C.x>-1 D.x>3答案BC命题及其关系1.命题“若xy =0,则x =0”的逆否命题是( ) A .若xy =0,则x ≠0 B .若xy ≠0,则x ≠0 C .若xy ≠0,则y ≠0 D .若x ≠0,则xy ≠0答案 D解析 “若xy =0,则x =0”的逆否命题为“若x ≠0,则xy ≠0”. 2.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的方差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是________. 答案 ①③3.命题“若a<0,则一元二次方程x2+x+a=0有实根”与其逆命题、否命题、逆否命题中真命题的个数是________.答案 2解析当a<0时,Δ=1-4a>0,所以方程x2+x+a=0有实数根,故原命题为真;根据原命题与逆否命题真假一致,可知其逆否命题为真;逆命题为:“若方程x2+x+a=0有实根,,显然a<0不一定成立,则a<0”,因为方程有实根,所以判别式Δ=1-4a≥0,所以a≤14故逆命题为假;根据否命题与逆命题真假一致,可知否命题为假.故真命题的个数为2. 4.给出以下命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③若ab是正整数,则a,b都是正整数;④若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递减.其中为真命题的是________.(写出所有真命题的序号)答案①解析①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②否命题为“不全等三角形的面积不相等”,但不全等的三角形的面积也可能相等,故②为假命题;③若ab是正整数,则a,b不一定都是正整数,例如a =-1,b=-3,故③为假命题;④构造函数f(x)=x,g(x)=-x,则f(x)-g(x)=2x,显然f(x)-g(x)单调递增,故④为假命题.综上①为真命题.思维升华(1)写一个命题的其他三种命题时,需注意①对于不是“若p,则q”形式的命题,需先改写.②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,需要推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.充分、必要条件的判定例1 (1)(2019·皖南八校联考)“1x >1”是“e x -1<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 ∵1x >1,∴x ∈(0,1).∵e x -1<1,∴x <1.∴“1x>1”是“e x -1<1”的充分不必要条件.(2)若集合A ={x |x 2-5x +4<0},B ={x ||x -a |<1},则“a ∈(2,3)”是“B ⊆A ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 A ={x |1<x <4},B ={x |a -1<x <a +1}.∵B ⊆A ,∴⎩⎪⎨⎪⎧a -1≥1,a +1≤4,即2≤a ≤3,∵(2,3)[2,3],∴“a ∈(2,3)”是“B ⊆A ”的充分不必要条件.(3)已知条件p :x >1或x <-3,条件q :5x -6>x 2,则綈p 是綈q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由5x -6>x 2,得2<x <3,即q :2<x <3. 所以q ⇒p ,p ⇏q ,所以綈p ⇒綈q ,綈q ⇏綈p , 所以綈p 是綈q 的充分不必要条件,故选A. 思维升华 充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 对应的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.跟踪训练1 (1)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的( ) A .充要条件 B .既不充分也不必要条件 C .充分不必要条件 D .必要不充分条件答案 D解析 非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件. (2)设p :⎝⎛⎭⎫12x<1,q :log 2x <0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 B解析 由⎝⎛⎭⎫12x <1知x >0,所以p 对应的集合为(0,+∞),由log 2x <0知0<x <1,所以q 对应的集合为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.充分、必要条件的应用例2 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件, 即所求m 的取值范围是[0,3].本例中,若x ∉P 是x ∉S 的必要条件,求m 的取值范围.解 若x ∉P 是x ∉S 的必要条件,则x ∉S ⇒x ∉P , ∴x ∈P ⇒x ∈S ,∴P ⊆S , 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,∴m ≥9,故m 的取值范围是[9,+∞).若本例条件不变,问是否存在实数m ,使x ∈P是x ∈S 的充要条件.解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意 (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练2 (1)已知p :1≤x ≤2,q :(x -a )(x -a -1)>0,若p 是綈q 的充要条件,则实数a 的值为________. 答案 1解析 綈q :(x -a )(x -a -1)≤0,∴a ≤x ≤a +1.由p 是綈q 的充要条件知⎩⎪⎨⎪⎧a =1,a +1=2,∴a =1.(2)设p :|2x +1|<m (m >0);q :x -12x -1>0.若p 是q 的充分不必要条件,则实数m 的取值范围为__________. 答案 (0,2]解析 由|2x +1|<m (m >0),得-m <2x +1<m , ∴-m +12<x <m -12,且-m +12<0,由x -12x -1>0,得x <12或x >1.∵p 是q 的充分不必要条件, ∴m -12≤12,∴0<m ≤2.1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定答案 B解析命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.2.(2019·人大附中阶段考)命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1答案 D解析原命题的逆否命题是把条件和结论都否定后,再交换条件和结论,注意“-1<x<1”的否定是“x≥1或x≤-1”.3.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是“若a<1,则a2≥1”D.命题p的逆否命题是“若a2≥1,则a<1”答案 B解析已知命题p:若a<1,则a2<1,如a=-2,则(-2)2>1,命题p为假命题,所以A不正确;命题p的逆命题是若a2<1,则a<1,为真命题,所以B正确;命题p的否命题是若a≥1,则a2≥1,所以C不正确;命题p的逆否命题是若a2≥1,则a≥1,所以D不正确.故选B. 4.命题“若m>-1,则m>-4”以及它的逆命题、否命题、逆否命题中,假命题的个数为() A.1 B.2 C.3 D.4答案 B解析原命题为真命题,从而其逆否命题也为真命题;逆命题“若m>-4,则m>-1”为假命题,故否命题也为假命题,故选B.5.“log2(2x-3)<1”是“4x>8”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由log2(2x-3)<1⇔0<2x-3<2⇔32<x<52,4x>8⇔2x>3⇔x>32,所以“log2(2x-3)<1”是“4x>8”的充分不必要条件,故选A.6.若“x>1”是“不等式2x>a-x成立”的必要不充分条件,则实数a的取值范围是() A.a>3 B.a<3 C.a>4 D.a<4答案 A解析若2x>a-x,即2x+x>a.设f (x)=2x+x,则函数f (x)为增函数.由题意知“2x+x>a成立,即f (x )>a 成立”能得到“x >1”,反之不成立.因为当x >1时,f (x )>3,∴a >3. 7.(多选)若x 2-x -2<0是-2<x <a 的充分不必要条件,则实数a 的值可以是( ) A .1 B .2 C .3 D .4 答案 BCD解析 由x 2-x -2<0,解得-1<x <2. ∵x 2-x -2<0是-2<x <a 的充分不必要条件, ∴(-1,2)(-2,a ),∴a ≥2. ∴实数a 的值可以是2,3,4.8.(多选)下列叙述中不正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充要条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .“a <1”是“方程x 2+x +a =0有一个正根和一个负根”的必要不充分条件D .“a >1”是“1a <1”的充分不必要条件答案 AB解析 A 错误,当a =0,b =0,c <0时,满足b 2-4ac ≤0,但此时ax 2+bx +c ≥0不成立,故若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充要条件是“b 2-4ac ≤0”错误; B 错误,若a ,b ,c ∈R ,“a >c ”且b =0时,推不出“ab 2>cb 2”,故错误;C 正确,若方程x 2+x +a =0有一个正根和一个负根,则Δ=1-4a >0,x 1x 2=a <0,则a <0,又“a <1”是“a <0”的必要不充分条件,故正确;D 正确,“a >1”⇒“1a <1”但是“1a<1”推不出“a >1”,故正确.9.已知命题“非空集合M 中的元素都是集合P 中的元素”是假命题,那么下列命题中________为真命题.(填序号) ①M 中的元素都不是P 中的元素; ②M 中有不属于P 的元素; ③M 中有属于P 的元素; ④M 中的元素不都是P 中的元素. 答案 ②④10.下列命题中为真命题的是________.(填序号) ①命题“若x >1,则x 2>1”的否命题;②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若a >b ,则ac >bc ”的逆否命题. 答案 ②解析 对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若a >b ,则ac >bc ”为假命题,所以它的逆否命题为假命题.11.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.12.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,B ={x |-1<x <m +1,m ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________. 答案 (2,+∞)解析 因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.13.(2020·深圳模拟)对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 令x =1.8,y =0.9,满足|x -y |<1,但〈1.8〉=2,〈0.9〉=1,〈x 〉≠〈y 〉,可知充分性不成立.当〈x 〉=〈y 〉时,设〈x 〉=x +m ,〈y 〉=y +n ,m ,n ∈[0,1),则|x -y |=|n -m |<1,可知必要性成立.所以“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.故选B. 14.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 答案 A解析 (x -1)2+(y -1)2≤2表示以(1,1)为圆心,以2为半径的圆内区域(包括边界);满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1的可行域如图中阴影部分(包括边界)所示,故p 是q 的必要不充分条件,故选A.15.(2019·山西运城测试)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎝⎛⎭⎫13x 2-x -6≤1,B ={x |log 3(x +a )≥1},若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,0]解析 由⎝⎛⎭⎫13x 2-x -6≤1,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.16.(2019·南昌模拟)已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________. 答案 ⎝⎛⎦⎤0,255解析 画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d =222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝⎛⎦⎤0,255.。
四种命题间的真假关系

四种命题间的真假关系
四种命题的真假关系是:两个命题互为逆否命题,它们有相同的真假性。
两个命题为互逆命题或互否命题,它们的真假性没有关系。
原命题与逆否命题同真同假,逆命题与否命题同真同假。
原命题与逆命题互逆;否命题与原命题互否;原命题与逆否命题相互逆否;逆命题与否命题相互逆否;逆命题与逆否命题互否;逆否命题与否命题互逆。
对于p且q形式的复合命题,同真则真。
对于p 或q形式的复合命题,同假则假。
对于非p形式的复合命题,真假相反。
四种命题间的相互关系 课件

它们之间的关系为:
互逆命题
互否命题
互为逆否命题
原命题与逆命题 原命题与否命题 原命题与逆否命题 否命题与逆否命题 逆命题与逆否命题 逆命题与否命题
2.对四种命题真假关系的两点说明 (1)由于一个命题与其逆否命题具有相同的真假性,四种命题中 有两对互为逆否命题,所以四种命题中真命题的个数必须是偶 数,即真命题可能有4个、2个或0个. (2)由于原命题与其逆否命题的真假性相同,所以原命题与其逆 否命题是等价命题,因此,当直接证明原命题困难时,可以转化为 证明与其等价的逆否命题,这种证法是间接证明命题的方法,也 是反证法的一种变通形式.
【拓展提升】原命题与逆否命题等价关系的应用 (1)若一个命题的条件或结论含有否定词时,直接判断命题的真 假较为困难,这时可以转化为判断它的逆否命题的真假. (2)当证明某一个命题有困难时,可以证明它的逆否命题为真 (假)命题,来间接地证明原命题为真(假)命题.
【互动探究】若题2(2)的命题变为: 若a>1,则方程x2+2ax+a2+a-1=0无实数根,如何判断此命题的 真假? 【解析】命题“若a>1,则方程x2+2ax+a2+a-1=0无实数根” 的逆否命题为“若方程x2+2ax+a2+a-1=0有实数根,则 a≤1”,由于Δ=(2a)2-4(a2+a-1)=4(1-a)≥0,得a≤1,故原命 题是真命题.
提示:(1)错误.两个互逆命题的真假性没有关系,可能一个真命 题也没有. (2)正确.原命题的逆命题与原命题的否命题互为逆否命题,真 假性相同,为等价命题. (3)正确.一个命题的四种命题中,可能都是假命题,如若0<x<1, 则x>1,此命题的四种命题均为假命题. 答案:(1)× (2)√ (3)√
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假( )
否命题:已知a,b是实数,若a+b不是无理数,则a,b不都是无理数;假(此时两个数都不是无理数)
逆否命题:已知a,b是实数,若a,b不都是无理数,则a+b不是无理数;假
(3)逆命题:若x,y全为零,则x2+y2=0;真
否命题:若x2+y2≠0,则x,y不全为零;真
教学用具:PPT
教学内容
师生活动
备注
复习回顾
1.四种命题的形式是什么?
2.四种命题的基本关系是什么?
引例1:写出下列命题的逆命题,否命题和逆否命题,并判断它们的真假:
(1)若x<y,则y>x;
(2)若a=0,则ab=0;
(3)当x∈R时,若f(x)过原点,则f(x)是奇函数。
解:(1)原命题:若x<y,则y>x;真
任课教师
白杰
授课班级
高二(9)、(10)班
授课日期
10.8
教学课题:四种命题的真假关系
教学目标:
1,正确理解四种命题之间的真假关系;
2,会应用它们之间的真假关系处理问题;
3,培养学生逻辑推理能力。
教学方法:讲授法、讲练结合、探究法、自学法
教学重点:正确理解四种命题之间的真假关系
教学难点:会应用它们之间的真假关系处理问题
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题.
其中真命题的个数是( C )
A.0个B.1个C.2个D.3个
评注:真命题为:①②
①逆命题为:三个内角为600的三角形为等边三角形;
②原命题为真,所以逆否命题为真;
③否命题为:若两个三角形不是全等三角形,则它们的面积不相等;
④否命题为:若ab=0,则a=0。
5.命题“若x=3,则x2-9x+18=0”的逆命题,否命题和逆否命题中,假命题的个数为(C)
A.0个B.1个C.2个D.3个
评注:(1)逆命题:若x2-9x+18=0,则x=3;假
(2)否命题:若x≠3,则x2-9x+18≠0;假
(3)逆否命题:若x2-9x+18≠0,则x≠3;真
课堂小结:
说明若┐q则m一定是正确的,因为我们是经过推理的;
③若m与已知条件矛盾即m=┐p,恰好就是原命题条件的否定,也就是
说我们得到的正确命题恰好是原命题的逆否命题,所以原命题正确。
(3)适宜用反证法证明的数学命题:
①结论本身是以否定形式出现的命题;
②有关结论是以“至多….”或“至少…”的形式出现的命题;
③关于唯一性,存在性的命题;
应用反证法证明的一般步骤:
(1)假设命题的结论不成立即提出命题的否定;
(2)进行一系列的推理;
(3)在推理过程中出现下列情况中的一种:
①与已知条件矛盾;
②与定义,公理矛盾;
③与已知定理,公式矛盾;
④与假设自相矛盾。
(4)由于上述矛盾的出现,可以断言,原来的假定是错误的;
(5)肯定原来命题的结论是正确的。
④结论的反面比原结论更具体更容易研究的命题。
例1:求证:若a>b>0,则 > 。
证明:假设 不大于 ,那么 < ,或者 =
因为a>b>0,所以 <
(1) < 所以 < 同时 <
所以a<b;
(2) = 所以a=b。
这些都与已知条件a>b>0矛盾,所以 > 。
评述:矛盾的出现是在推理过程中与已知条件矛盾了。
否命题:当x∈R时,若f(x)不过原点,则f(x)不是奇函数;真
逆否命题:当x∈R时,若f(x)不是奇函数,则f(x)不过原点。假
问题1:由上面3个题目,你能总结出什么结论么?
一.四种命题之间的真假关系
(1)两个命题互为逆否命题,它们具有相同的真假性;
(2)两个命题互为否命题或互为逆命题,它们的真假性没有关系。
6.写出下列命题的逆命题,否命题和逆否命题,并判断真假。
(1)若m≤0或n≤0,则m+n≤0;
(2)已知a,b是实数,若a+b是无理数,则a,b都是无理数;
(3)若x2+y2=0,则x,y全为零。
答案:
(1)逆命题:若m+n≤0,则m≤0或n≤0;真
否命题:若m>0且n>0,则m+n>0;真
逆否命题:若m+n>0,则m>0且n>0;假
不大(小)于
是
不是
全为
不全为
都是
不都是
有
无
任何
某些
所有的
有一个
至少一个
一个也没有
至多一个
至少两个
均为
不均为
p或q
┐p且┐q
p且q
┐p或┐q
引例2:证明:若x2+y2=0,则x=y=0。
分析:将“若x2+y2=0,则x=y=0”视为原命题,要证明原命题为真命题,则可以证明它的逆否命题“若x和y至少有一个不等于0,则x2+y2≠0”是真命题,因此我们可以由“若x和y至少有一个不等于0”出发,经过正确的推理得到一个结论m,此时逆否命题是我们经过严格推理得到的,因此一定是正确的,若m与x2+y2=0矛盾的结论,恰好我们得到的是逆否命题,又因为逆否命题一定是正确的,所以原命题也正确。
逆否命题:若x,y不全为零,则x2+y2≠0;真
评注:“全为零”的否定应该是“不全为零”,而不是“全不为零”;“都是”的否定为“不都是”,而不是“都不是”;“均为”的否定是“不均为”。注意掌握一些关键词的否定。(如图所示,x,y全为零的否定即是它的补集,不全为零。)
二.关键词的否定
关键词
否定
大(小)于
(4)若一个命题的逆否命题是假命题,则它的逆命题与否命题都是假命题;
(5)一个命题的否命题为真,它的逆命题一定为假。
其中正确的个数有( B )
A.1个B.2个C.3个ห้องสมุดไป่ตู้.4个
评注:正确的是:(1)(3)
(1)真命题的个数为:0,2,4个;
(2)逆命题和否命题之间互为逆否命题,所以真假相同;
(3)利用四种命题之间的关系;
证明:假设x,y至少有一个不等于0,不妨设x≠0,则x2>0,所以
x2+y2>0,
这与已知条件矛盾,所以x=y=0。
小结:
(1)应用间接法证明的原理:
证明原命题的逆否命题是真命题。
(2)应用间接法证明的一般步骤:
求证:若p则q。
①假设原命题的结论不成立即┐q,作为逆否命题的条件;
②从逆否命题的条件┐q出发进行一系列的推理,得到某个结论m,此时
关键词的否定关键词否定不是全为不全为都是不都是任何某些所有的有一个至少一个一个也没有至多一个至少两个均为不均为0则xy0视为原命题要证明原命题为真命题则可以证明它的逆否命题若x至少有一个不等于0出发经过正确的推理得到一个结论m此时逆否命题是我们经过严格推理得到的因此一定是正确的若m矛盾的结论恰好我们得到的是逆否命题又因为逆否命题一定是正确的所以原命题也正确
(4)不一定,因为它们之间真假没有必然联系;
(5)错误,同第(2)命题的原理。
3.命题“两条对角线不相等的四边形不是平行四边形。”是命题“平行四边形的两条对角线相等。”的(B)
A.逆命题B.逆否命题C.否命题D.非四种命题关系
评注:写成若p则q的形式。
4.下列命题:
①“等边三角形的三内角均为60o”的逆命题;
逆命题:若y>x,则x<y;真
否命题:若x≥y,则y≤x;真
逆否命题:若y≤x,则x≥y。真
(2)原命题:若a=0,则ab=0;真
逆命题:若ab=0,则a=0;假
否命题:若a≠0,则ab≠0;假
逆否命题:若ab≠0,则a≠0。真
(3)原命题:当x∈R时,若f(x)过原点,则f(x)是奇函数;假
逆命题:当x∈R时,若f(x)是奇函数,则f(x)过原点;真
课堂练习
1.若命题p的否命题为r,命题r的逆命题为s,则命题p的逆命题t与s的关系是(B)
A.互为逆命题B.互为否命题C.互为逆否命题D.同一个命题
评注:利用四种命题之间的关系解答。
2.下列说法:
(1)四种命题中真命题的个数一定是偶数;
(2)若一个命题的逆命题是真命题,则它的否命题不一定是真命题;
(3)逆命题与否命题之间是互为逆否关系;
说明:
1.上面的间接法就是以前的反证法;
2.针对若p则q的命题,利用反证法证明时,由┐q推出┐p很明显,也很能说明反证法的原理就是逆否命题和原命题同真的原理;
3.但是对于一些诸如“证明 是无理数”这些命题,没有明显的若p则q的形式,也可以利用反证法证明,同时原理也是逆否命题的原理,只不过我们看不到明显的条件和结论,此时我们将反证法的一般步骤可以推广如下: