小六培优专题23-分数应用题(抓住不变量)
小学六年级数学专题《抓“不变量”试题》

抓“不变量”解决实际问题
1、有甲乙两筐水果,甲占总数的55%,若从甲筐中拿出
7.5千克放入乙筐,这时乙筐是总数的3/5,两筐共重多少千
克?
2、一本书读了3天后,已读的页数是未读页数的3/4,再
读36页,已读的是未读的4/5,这本书共有多少页?
3、学校买来彩色粉笔是白色粉笔的1/5,后来检查发现错
误的把2盒彩色粉笔当成白色粉笔,实际彩色粉笔是白色粉笔的1/4,学校共买来多少盒粉笔?
4、甲、乙二人共有科技书若干本,其中甲占总数的60%,若甲给乙14本,则甲剩下的书占总数的25%,甲、乙两人共有科技书多少本?
5、甲、乙两水泥堆,原来甲堆水泥是乙堆的5/7,若从乙堆中调出6袋给甲堆,甲堆水泥是乙堆的4/5,原来一共有多水泥多少吨?
6、甲、乙两个仓库,甲仓库存水泥是总数的56%,如果从甲仓库调6吨水泥到乙仓库,这时两仓库水泥重量相等,两仓库共有水泥多少?。
最新六年级抓不变量解答分数应用题

六年级抓不变量解答分数应用题
一、抓住和不变
1、甲乙两个仓库共有水泥180吨,如果甲把它的3
1给乙,甲还比乙多10吨,甲乙原来各
有多少吨?
练习:甲乙两个仓库共有水泥180吨,如果甲把它的31给乙,甲还比乙多5
1,甲乙原来各有多少吨?
2、某校五年级学生参加大扫除的人数是未参加的4
1,后来又有2个同学主动参加,实际
参加的人数是未参加人数的3
1,问某班五年级有学生多少人?
练习:煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的81。
如果少收2户,则没交款的户数恰好占已交款户数的6
1,这幢楼有多少住户? 2、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的2
1,原来两人各有多少元钱?
3、小明放一群鸭子,岸上的只数是水中的4
3,从水中上岸9只后,水中的只数与岸上的
只数同样多,这群鸭子有多少只?
二、抓住部分不变
1、有科技书和文艺书360本,其中科技书占总数的9
1,现在又买来一些科技书,此时科技书占总数的6
1。
又买来多少本科技书?
练习:有10千克蘑菇,它们的含水量是10099,稍经晾晒,含水量下降到100
98,晾晒后的蘑菇重多少千克?
2、现有质量分数为20%的食盐水80克。
把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克?
练习:有一堆糖果,其中奶糖占209,再放16块水果糖后,奶糖就占4
1,那么,这堆糖中奶糖有多少块?。
六年级数学分数应用题-抓不变量(2)

多种方法解决分数应用题(2)——抓不变量解题姓名_______________ 班级 _______________一、填空题1.甲仓库有粮食180吨,乙仓库有粮食120吨,甲仓库运出一部分到乙仓库后,乙仓库与甲仓库的粮食比为7:3。
甲仓库运了()吨粮食到乙仓库。
2.甲乙两车间原有人数比是3:2,甲车间调48人到乙车间后,甲车间与乙车间的人数比是2:3。
两车间原有()人。
3.一班和二班人数比是8:7,如果将一班的3名同学调到二班去,则两个班人数相等。
两个班共有学生()人。
4.某车间男女工人人数比是2:5,现调走10名女工,现在男女人数之比是4:9,原来车间男工()人,女工人有()人。
5.一个书架有上下两层。
上层放书的本书与下层的比是8:5,如果从上层拿12本放入下层,那么两层放的书同样多。
这个书架上层原有图书()本,下层原有图书()本。
二、解决问题。
1、操场上有108名同学在锻炼身体,其中女生占29,后来又来了几名女生,这时女生人数达到男生的37。
后来有来了几名女生2、第一桶柴油是第二桶的6倍,从第一桶取出12千克柴油加入第二桶,这时第一桶柴油的重量是第二桶的4倍。
原来第一桶有柴油多少千克3、两个工程队,原来甲队人员比乙队少14 ,后来甲队增加21人,这时乙队人员是甲队的89,现在甲队有多少人4、新兴小学六年级有两个班,六年一班有学生48人,六年二班有学生56人,两个班各转出相同的人数后,六年二班人数还比六年一班人数多211,两个班各转出多少人5、有两根蜡烛,一根长18cm ,另一根长16cm ,把两根蜡烛都烧掉同样的长度之后,短的长度是长的一根的56 ,求每根蜡烛都烧掉了多少厘米6、一杯盐水,盐占盐水的15 ,现在把这杯水蒸发,蒸发了20克水后,盐占盐水的14 ,原来盐和水各多少千克7、教室里有36个学生,其中女生占 59 ,后来又来了几个女生,这时候女生占总人数的1119,后来又来了多少个女生8、某科技兴趣小组中女生占712,后来又转来了15女生,这样女生占总人数的35。
“抓不变量,巧解分数应用题”专项训练4

“抓不变量,巧解分数应用题”
专项训练
设计者:李红荣
训练班级:六(8)班
训练时间:2019年10月21日
“抓不变量,巧解分数应用题”
专项训练
班级:姓名:
一、总量是不变量
1、甲、乙两车间的人数之比是3:7,从乙车间抽调42人到甲车间后,甲、乙两车间的人数之比是2:3,求甲、乙两车间原来一共有多少人?
3,从水中上岸9只后,水2、小明放一群鸭子,岸上的只数是水中的
4
中的只数与岸上的只数同样多,这群鸭子有多少只?
1的同学参加夏令营,后来又有2名同学参加,这时参3、五年一班有
5
1,五年一班有多少人参加了夏令营?
加夏令营的人数是不参加的
3
4、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是
1,原来两人各有多少元钱?
乙的
2
二、其中一个量是不变量
1、五年一班女生人数是男生人数的
119,后来又转进2名女生,这时女生人数是男生人数的1110,五年一班现在共有学生多少人?
2、某厂共有职工120人,其中女职工占全厂的51,后来这个厂又从下岗女工中招收了一些人,这时女职工人数占全厂的41,这个厂现有职工多少人?新招收的女工多少人?
3、一杯盐水,盐占盐水的51,再加入16克盐后,盐占盐水的41,原来盐水有多少千克?
4、张庄小学六年级学生中女生占
127,后来又转来了15名女生,这样女生占六年级总人数的53
,六年级原来有多少名学生?。
抓不变量解答分数应用题(供参考)

抓不变量解答分数应用题一、抓住和不变1、甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原来各有多少吨?练习:甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多1/5,甲乙原来各有多少吨?2、某校五年级学生参加大扫除的人数是未参加的1/4,后来又有2个同学主动参加,实际参加的人数是未参加人数的1/3,问某班五年级有学生多少人? 练习:煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。
如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?2、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的1/2,原来两人各有多少元钱?3、小明放一群鸭子,岸上的只数是水中的3/4,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只?二、抓住部分不变1、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6。
又买来多少本科技书?练习:有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?2、现有质量分数为20%的食盐水80克。
把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克?练习:有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?2、在阅览室里,女生占全室人数的1/3,后来又进来5名女生,这时女生占全室人数的5/13,阅览室原有多少人?三、抓住差不变王叔叔和李叔叔每月工资收入比为3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,王叔叔和李叔叔每月工资各为多少元?综合练习:1.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%。
那么,原来混合糖中奶糖和巧克力各有多少个?2、现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?3、乙队原有人数是甲队的3/7。
六年级数学分数应用题-抓不变量

六年级数学分数应用题-抓不变量(总6页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March多种方法解决分数应用题(2)——抓不变量解题姓名_______________ 班级 _______________一、填空题1.甲仓库有粮食180吨,乙仓库有粮食120吨,甲仓库运出一部分到乙仓库后,乙仓库与甲仓库的粮食比为7:3。
甲仓库运了()吨粮食到乙仓库。
2.甲乙两车间原有人数比是3:2,甲车间调48人到乙车间后,甲车间与乙车间的人数比是2:3。
两车间原有()人。
3.一班和二班人数比是8:7,如果将一班的3名同学调到二班去,则两个班人数相等。
两个班共有学生()人。
4.某车间男女工人人数比是2:5,现调走10名女工,现在男女人数之比是4:9,原来车间男工()人,女工人有()人。
5.一个书架有上下两层。
上层放书的本书与下层的比是8:5,如果从上层拿12本放入下层,那么两层放的书同样多。
这个书架上层原有图书()本,下层原有图书()本。
二、解决问题。
1、操场上有108名同学在锻炼身体,其中女生占29,后来又来了几名女生,这时女生人数达到男生的37。
后来有来了几名女生?2、第一桶柴油是第二桶的6倍,从第一桶取出12千克柴油加入第二桶,这时第一桶柴油的重量是第二桶的4倍。
原来第一桶有柴油多少千克?3、两个工程队,原来甲队人员比乙队少14,后来甲队增加21人,这时乙队人员是甲队的89,现在甲队有多少人?4、新兴小学六年级有两个班,六年一班有学生48人,六年二班有学生56人,两个班各转出相同的人数后,六年二班人数还比六年一班人数多211,两个班各转出多少人?5、有两根蜡烛,一根长18cm,另一根长16cm,把两根蜡烛都烧掉同样的长度之后,短的长度是长的一根的56,求每根蜡烛都烧掉了多少厘米?6、一杯盐水,盐占盐水的15,现在把这杯水蒸发,蒸发了20克水后,盐占盐水的14,原来盐和水各多少千克?7、教室里有36个学生,其中女生占 59 ,后来又来了几个女生,这时候女生占总人数的1119 ,后来又来了多少个女生?8、 某科技兴趣小组中女生占712 ,后来又转来了15女生,这样女生占总人数的35 。
小学六年级奥数抓住不变量--分数应用题知识讲解

抓
白兔只数不变
120×(1-40%)= 72(只)------白兔 72÷1/2=144(只)------现在兔的总数
144-120=24(只)------又买来黑兔的只数
4、某食堂三天用完一桶油。第一天用去6千克,第二天 用去余下的4/11,第三天用去的正好是这桶油的一半, 第二、三两天共用去油多少千克?
甲筐 乙筐
25% ?千克
10千克
100千克
(100-10)÷[(1-25%)×2] =90÷1.5
=60(千克) ------甲筐 100-60=40(千克)-------乙筐
9、小明有一盒糖,巧克力占糖总数2/5,吃了90粒奶糖, 巧克力占总数的5/8,原来有多少粒糖?
10、在学生阅览室里,女生占全室人数的4/9,后来又进 来两名女生,这时女生占全室人数的9/19。问阅览室里原 来2、某班男生人数占女生人数的3/4,又转来2名男 生,这时男生人数占女生人数的4/5。这个班原有 学生多少人?
抓
女生人数不变
2÷(4/5-3/4)
=2÷1/20
=40(人)
3、某专业户黑兔和白兔共120只,其中黑兔占总数的 40%,又买来黑兔若干只,这时黑兔占总数的一半。又 买来的黑兔是多少只?
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
第二天(1-1/4)×40%=3/10
54÷(1-1/4-3/10×2) 54页 =
?页
6、仓库里有一批钢材,用去1/5后,又运进5.4吨,现存 的钢材比原来还多1/4。用去钢材多少吨?
1/5 ?吨 1/4
5.4吨
7、某班学生缺席人数是出席人数的1/15,又知出席人数 比缺席人数多42人。这个班有多少人?
抓住不变量,解分数应用题的方法

抓住不变量解分数应用题的方法例1、甲乙两个班,甲班的人数是乙班的54,现在从甲班调2位男生到乙班,这时甲班的人数是乙班的43。
甲班原有多少人?分析与解答:解决这道题的关键就是抓住两班的总人数不变,由于甲班的人数是乙班的54,则甲班人数是两班总人数的454+=94,同理从甲班调2位男生到乙班,这时甲班的人数是两班总人数的433+=73,这时乙班男生人数比甲班男生人数多了总数的73-94=631,则总人数的631就是从甲班调2位男生到乙班的人数所对应的分率,那么两班的总人数就是2÷631=126(人),再由甲班的人数是乙班的54可知,甲班人数占总人数的94,因此甲班有126×94=56(人)。
例2、六(1)班男生是女生的54,后来又招来2名女生,现在男生是女生的43。
六(1)原来有多少人?分析与解答:解决这道题的关键是抓住招聘前后的男生人数不变,由于招聘前男生是女生的54,则女生人数是男生人数的45,后来又招来2名女生后女生人数是男生人数的34,这时女生人数就比男生人数多了34-45=121,那么男生人数有2÷121=24(人),由男生是女生的54可知,男生人数是全班人数的454+=94,所以六(1)原来有24÷94=54(人)。
例3、六年级男生占全年级人数的52,现在男生和女生各增加100人,这时男生人数占全年级人数的125。
现在六年级男生、女生各有多少人?分析与解答:解决这道题的关键是抓住男女生人数差不变,增加前,男女人数差占全年级的523-=51=102(差相同),增加后,男女人数差占全年级的1257-=122,因为男生和女生各增加100人,那么总人数就增加了100×2=200(人),由上面分析可知,总人数增加200人以后,总人数增加了12-10=2(份),说明每份就是200÷2=100(人),又因为男生和女生各增加100人后男生人数占全年级人数的125,说明现在男生人数占5份,女生人数占12-5=7份,所以现在男生人数有100×5=500(人),女生有100×7=700(人)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抓住不变量解分数应用题
一、夯实基础
有些分数应用题,数量变化多,分析难度大,不易列式计算。
但是,如果我们仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的“不变量”。
对于这类分数应用题,我们通常是抓住“不变量”,巧设单位“1”,把其他分率统一转化为同一个单位“1”,求出单位“1”的量,把它作为解题的中间条件,问题就迎刃而解了。
运用“量不变”的思维方法解题时,大体上有以下几种情况:
(1)分量发生变化,总量没有变化;
(2)总量发生变化,但其中有的分量没有发生变化;
(3)总量和分量都发生变化,但分量之间的差没有发生变化。
二、典型例题
例1.学校阅览室里有36名学生在看书,其中女生占
94,后来又有几名女生来看书,这时女生人数占所有看书人数的19
9。
问后来又有几名女生来看书? 分析:解这道题的关键在于抓住不变量(男生人数前后未变),根据男生人数占
原来看书总人数的1-
94=9
5,可求出原来看书的男生有多少人。
根据男生人数占现在看书人数的1-199=19
10,可求出现在看书的总人数,进而可求出新来了几名女生。
解:36×(1-94)÷(1-199)-36=38-36=2(人) 答:后来又有2名女生来看书。
例2.有两缸金鱼,如果从甲缸中取出1尾放入乙缸,则两缸的金鱼尾数相等,如果从乙缸中取出1尾放入甲缸,则乙缸是甲缸的
21。
求原来甲、乙两缸各有金鱼多少尾?
分析:本题中,甲、乙两缸金鱼的尾数都在变,但两缸中金鱼的总尾数不变,所以把两缸的金鱼总尾数作为单位“1”。
由题意可知,从甲缸中取出1尾放入乙缸时,乙缸中的金鱼是总尾数的2
1;从乙缸中取出1尾放入甲缸时,乙缸中的金鱼是总尾
数的211+=3
1 。
两种情况,乙缸中的金鱼相差1+1=2(尾),这2尾就是总尾数的21-31=61 。
所以总尾数为:2÷6
1=12(尾)。
解:2÷(21-2
11+)=12(尾) 甲缸原有:12÷2+1=7(尾)
乙缸原有:12-7=5(尾)
答:甲缸原有7尾,乙缸原有5尾。
例3.一筐香蕉,筐的重量是香蕉的
121,卖掉19千克后,剩下的香蕉重量是筐重量的2
5倍,求原来筐里有香蕉多少千克? 分析:这道题的总量是由香蕉和筐的重量两部分组成,香蕉的重量前后发生了变化,但筐的重量始终没变。
因为原来筐的重量是香蕉的
121,香蕉的重量为“1”倍量,由此我们可以求出香蕉的重量是筐重量的1÷12
1=12(倍)。
这样,筐重就转化成了“1”倍量。
而香蕉的重量先是筐重的12倍,后又是筐重的2
5倍,卖掉的19千克对应的就是两个倍数之差,因此可先求出筐重,然后再求出香蕉的重量。
解:筐重:19÷(1÷
121-25)=2(千克) 香蕉重:2÷12
1=24(千克) 答:原来筐里有香蕉24千克。
小升初培优冲刺
(抓住不变量解分数应用题)
一、熟能生巧
1.某校原有科技书和文艺书共630本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,求又进科技书多少本?
2.小芳在看一本小说,晚饭前,已看的页数是未看的
71,晚饭后,她又看了8页,这时已看的页数是未看的
6
1,这本小说有多少页?
3.某车间男工人数是女工人数的2倍,若调走21个男工,那么女工人数是男工人数的2倍。
这个车间的女工有多少人?
二、拓展演练
1.一批葡萄运进仓库时的质量是100千克,测得含水量为99%,过一段时间,测得含水量为 98%,这时葡萄的质量是多少千克?
2.有甲、乙两个粮库,原来甲粮库存粮的吨数是乙粮库的
75。
如从乙粮库调6吨到甲粮库,甲粮库存粮的吨数就是乙的
54。
原来甲、乙粮库各存粮多少吨?
3.袋中有若干个皮球,其中花皮球占
125,后来往袋中又放入了6个花皮球,这时花皮球占皮球总数的
2
1,现在袋中有多少个皮球?
三、星级挑战
★1.小强和小明各有图书若干本。
已知小强的图书本数占两人图书总数的60%,当小强借给小明20本后,小强和小明图书本数的比是2:3。
两人一共有图书多少本?
★★2.甲种手机的价格是乙种手机价格的
17
9,如果这两种手机的价格都分别下降600元,那么甲种手机的价格是乙种手机价格的3115。
甲种手机原来的价格是多少元?。