历年高考题集合汇总

合集下载

(完整版)集合历年高考题.docx

(完整版)集合历年高考题.docx

圆学子梦想铸金字品牌1.( 2013 ·重庆高考文科·T 1)已知全集U1,2,3,4 ,集合 A1,2 ,B2,3 ,则 C U A B()A .1,3,4 B.3,4 C.3 D.42、( 2013 ·四川高考文科·T 1)设集合A{1,2,3} ,集合 B {2,2} ,则A I B()A. B. {2} C. {2,2} D. {2,1,2,3}3.(2013 ·福建高考文科·T3) 若集合A=1,2,3 ,B= 1,3,4 ,,则A∩B的子集个数为()A.2B.3C.4D.164.( 2013 ·湖北高考文科·T 1)已知全集U{1,2,3,4,5} ,集合A{1,2} , B{2,3,4},则 B C u A ()A. {2} B . {3,4}C. {1,4,5} D . {2,3,4,5}5.( 2013 ·新课标Ⅰ高考文科·T 1)已知集合A{1,2,3,4} , B{ x | x n2 , n A} ,则A∩B=A. {1,4}B. { 2,3}C.{ 9,16}D. {1,2}6.( 2013 ·大纲版全国卷高考文科·T 1)设集合U1,2,3,4,5,集合A1,2 ,e u A()则C U AA.1,2B.3,4,5C.1,2,3,4,5D.7.( 2013 ·湖南高考文科)已知集合 U{2,3,6,8},A{2,3}, B{2,6,8},则(C U A)B________8.设集合A1,2,3 , B4,5, M x | x a b, a A, b B, 则 M 中元素的个数为()A.3B.4C.5D.69. (2013 江·苏高考数学科·T4) 集合 {-1,0,1} 共有个子集 .10.( 2013 ·四川高考理科·T 1)设集合A{ x | x20} ,集合 B { x | x240} ,则AI B()A. {2}B. {2}C. { 2,2}D.11.(2013 浙·江高考文科·T1) 设集合 S={x|x>-2},T={x|- 4≤ x≤ 1},则 S∩ T= ()A.[- 4,+ ∞)B.(- 2,+ ∞ )C.[ -4,1]D.(-2,1]12.( 2013 ·安徽高考文科·T2)已知A= { x|x+1>0 }, B= { -2, -1, 0, 1},则( C 错误!未找到引用源。

历届高考题

历届高考题

历届高考题
1. 2000年高考语文试题:
文人与智者的境界要求解决“烦恼”,也可以是“病灶”。

2. 2005年高考数学试题:
设函数f(x) = x² - 6x + 8,若g(x) = af(x) + b,则当g(x)恒有三个不同的零点时,a的取值范围是多少?
3. 2010年高考英语试题:
Clothes ______ the man. A. make B. have made C. makes D. are making
4. 2015年高考物理试题:
一沿直线运动物体经过一个固定点时,它的速度大小等于单位时间内通过的路程长度与此点距离的乘积。

这里“速度”是指什么速度?
5. 2020年高考化学试题:
在BaCl₂溶液中加入Na₂SO₄溶液,会发生什么反应?
这些是仅举几例的历届高考题目,每年的高考科目包括语文、数学、英语、物理、化学等。

具体的试题内容和形式可以根据年份和学科的不同而有所变化。

集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

 集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考全国Ⅱ卷·第2题
6.(2021年新高考Ⅰ卷·第1题)设集合 , ,则 ()
A. B. C. D.
【答案】B
解析:由题设有 ,故选B.
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考Ⅰ卷·第1题
7.(2020年新高考I卷(山东卷)·第1题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
【解析】 或 , ,
故 ,故选A.
【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.
本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
【题目栏目】集合\集合的基本运算
【题目来源】2019年高考数学课标全国Ⅱ卷理科·第1题
【题目栏目】集合\集合的基本运算
【题目来源】2021年高考全国甲卷理科·第1题
11.(2020年高考数学课标Ⅰ卷理科·第2题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B.–2C.2D.4
【答案】B
【解析】求解二次不等式 可得: ,
求解一次不等式 可得: .
A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
解析:由题意可得: ,则 .
故选:A
【点睛】本题主要考查并集、补集的定义与应用,属于基础题.
【题目栏目】集合\集合的基本运算
【题目来源】2020年高考数学课标Ⅱ卷理科·第1题
13.(2020年高考数学课标Ⅲ卷理科·第1题)已知集合 , ,则 中元素的个数为()

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( ) A .{}1,3,4 B .{}2,3,4 C .{}1,2,3,4 D .{}0,1,2,3,4,93.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1-- B .{}0,1,2 C .{}2- D .{}25.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}- 6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T?( )A .∅B .SC .TD .Z10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( ) A .{}1,4,9 B .{}3,4,9 C .{}1,2,3 D .{}2,3,52.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( )A .()U M N ðB .U N M ðC .()U M N ðD .U M N ⋃ð4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a c C .{},b d D .{},,,a b c d考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥ ”的充分条件D .“1x =-”是“//a b ”的充分条件2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-= ”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2yxx y +=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}n S n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥参考答案考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-【答案】B【详细分析】根据包含关系分20a -=和220a -=两种情况讨论,运算求解即可.【答案详解】因为A B ⊆,则有:若20a -=,解得2a =,此时{}0,2A =-,{}1,0,2B =,不符合题意;若220a -=,解得1a =,此时{}0,1A =-,{}1,1,0B =-,符合题意;综上所述:1a =.故选:B.2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详细分析】根据充分条件和必要条件的定义即可求解.【答案详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,9【答案】C 【详细分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【答案详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C3.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 【答案】A【详细分析】先化简集合,M N ,然后根据交集的定义计算.【答案详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣, 根据交集的运算可知,{|21}M N x x =-≤< .故选:A4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C 【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出. 【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--, 所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .5.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}- 【答案】B【详细分析】方法一:求出集合B 后可求A B ⋂.【答案详解】[方法一]:直接法因为{}|02B x x =≤≤,故{}1,2A B = ,故选:B.[方法二]:【最优解】代入排除法=1x -代入集合{}11B x x =-≤,可得21≤,不满足,排除A 、D ;4x =代入集合{}11B x x =-≤,可得31≤,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【详细分析】求出集合,M N 后可求M N ⋂. 【答案详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z【答案】C【详细分析】详细分析可得T S ⊆,由此可得出结论.【答案详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【详细分析】求出集合N 后可求M N ⋂. 【答案详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.11.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【详细分析】根据交集定义运算即可 【答案详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【名师点评】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【详细分析】利用交集的定义可求A B ⋂.【答案详解】由题设有{}2,3A B ⋂=,故选:B .考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <【答案】C【详细分析】直接根据并集含义即可得到答案.【答案详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【详细分析】利用并集的定义可得正确的选项.【答案详解】{}1,2,4,6A B = ,故选:D.3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【详细分析】结合题意利用并集的定义计算即可.【答案详解】由题意可得:{}|12A B x x =-<≤ .故选:B.4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【详细分析】根据集合并集概念求解.【答案详解】[1,3](2,4)[1,4)A B ==U U故选:C【名师点评】本题考查集合并集,考查基本详细分析求解能力,属基础题.考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【答案】D【详细分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【答案详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =, 则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D 2.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U【答案】A【详细分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【答案详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( ) A .()U M N ð B .U N M ðC .()U M N ðD .U M N ⋃ð【答案】A【详细分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【答案详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确; {}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( ) A .2M ∈ B .3M ∈ C .4M ∉ D .5M ∉【答案】A【详细分析】先写出集合M ,然后逐项验证即可【答案详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--【答案】D【详细分析】利用补集的定义可得正确的选项.【答案详解】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【详细分析】根据交集、补集的定义可求()U A B ⋂ð.【答案详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a cC .{},b dD .{},,,a b c d【答案】C【详细分析】利用补集概念求解即可. 【答案详解】{},U M b d =ð. 故选:C考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b ”的充分条件 【答案】C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【答案详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-=”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件详细分析判断.【答案详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- , 例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】解法一:由2xyy x +=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可. 【答案详解】解法一: 因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-, 所以112x y y yy x y y -+=+=--=--, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以必要性成立.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+-+++--+=====-, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2xyy x +=-”的充要条件. 故选:C5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【答案详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详细分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【答案详解】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【详细分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【答案详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >,所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题 D .p ⌝和q ⌝都是真命题【答案】B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【答案详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x > D .x ∀∈R ,20x ≥【答案】D【详细分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果. 【答案详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45<易知B 错误; C 项:由余弦函数性质易知cos 1≤x ,C 错误; D 项:2x 恒大于等于0,D 正确, 故选:D.。

历年高考试题及答案word版

历年高考试题及答案word版

历年高考试题及答案word版一、单项选择题(每题2分,共20分)1. 下列关于细胞结构的描述,错误的是:A. 细胞核是细胞内遗传物质储存和复制的场所B. 线粒体是细胞内的能量转换器C. 细胞壁是植物细胞特有的结构D. 细胞膜的主要功能是控制物质进出细胞2. 光合作用中,光能转化为化学能的过程发生在:A. 叶绿体基质B. 叶绿体类囊体膜C. 线粒体基质D. 线粒体内膜3. 下列关于DNA复制的描述,正确的是:A. DNA复制是半保留的B. DNA复制是全保留的C. DNA复制是半不连续的D. DNA复制是连续的4. 人体免疫系统中,负责特异性免疫的是:A. 第一道防线B. 第二道防线C. 第三道防线D. 第四道防线5. 下列关于生态系统的描述,错误的是:A. 生态系统由生物群落和无机环境组成B. 生态系统的稳定性取决于物种多样性C. 生态系统中能量流动是单向的D. 生态系统中物质循环是可逆的6. 下列关于遗传规律的描述,错误的是:A. 孟德尔的分离定律描述了等位基因的分离B. 孟德尔的自由组合定律描述了非同源染色体上的基因自由组合C. 连锁和交换定律描述了同源染色体上的基因连锁和交换D. 孟德尔的分离定律适用于所有生物7. 下列关于酶的描述,错误的是:A. 酶是生物催化剂B. 酶的活性受温度和pH值的影响C. 酶的催化效率比无机催化剂高D. 酶的催化作用是不可逆的8. 下列关于细胞周期的描述,正确的是:A. 细胞周期包括间期和有丝分裂期B. 细胞周期只包括有丝分裂期C. 细胞周期包括间期和减数分裂期D. 细胞周期不包括间期9. 下列关于基因突变的描述,错误的是:A. 基因突变可以是自发的B. 基因突变可以是诱发的C. 基因突变总是有害的D. 基因突变可以是碱基对的增添、缺失或替换10. 下列关于生物进化的描述,错误的是:A. 自然选择是生物进化的主要驱动力B. 物种形成是生物进化的最终结果C. 共同祖先是所有生物进化的起点D. 生物进化是随机的,没有方向性二、多项选择题(每题3分,共15分)1. 下列哪些因素会影响光合作用的效率?A. 光照强度B. 二氧化碳浓度C. 温度D. 土壤湿度2. 下列哪些是细胞凋亡的特征?A. 细胞核凝聚B. 细胞膜破裂C. 细胞体积缩小D. 细胞内容物释放3. 下列哪些是遗传病的类型?A. 单基因遗传病B. 多基因遗传病C. 染色体异常遗传病D. 线粒体遗传病4. 下列哪些是生态系统服务的功能?A. 物质循环B. 能量流动C. 生物多样性维持D. 气候调节5. 下列哪些是生物技术的应用领域?A. 基因工程B. 细胞工程C. 发酵工程D. 酶工程三、填空题(每空1分,共10分)1. 细胞呼吸过程中,有机物氧化分解产生的能量主要用于__________。

2024全国高考真题数学汇编:集合

2024全国高考真题数学汇编:集合

2024全国高考真题数学汇编集合一、单选题1.(2024全国高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-2.(2024天津高考真题)集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}13.(2024全国高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,94.(2024北京高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A .{}11x x -≤<B .{}3x x >-C .{}|34x x -<<D .{}4x x <5.(2024全国高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5参考答案1.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C4.C【分析】直接根据并集含义即可得到答案.【详解】由题意得{}|34M x x N ⋃=-<<.故选:C.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D。

高考数学专题《集合》习题含答案解析

高考数学专题《集合》习题含答案解析
【解析】
分析:由题意首先求得 CR B ,然后进行交集运算即可求得最终结果.
详解:由题意可得: CR B x | x 1 ,
结合交集的定义可得: A CR B 0 x 1 .
本题选择 B 选项.
8.(2017·全国高考真题(理))已知集合 A={x|x<1},B={x| 3x 1 },则(
故选:C
8.(2019·北京临川学校高二期末(文))已知集合 = { ―1,3}, = {2,2},若 ∪ = { ―1,3,2,9},则实数

的值为(
A. ± 1
B. ± 3
C. ― 1
D.3
【答案】B
【解析】
∵ 集合 = { ―1,3}, = {2,2},且 ∪ = { ―1,3,2,9}, ∴ 2 = 9,因此, =± 3,
对③: {0,1, 2} 是集合, {1, 2, 0} 也是集合,由于一个集合的本身也是该集合的子集,故③正确.
对④: 0 是元素, 是不含任何元素的空集,所以 0 ,故④错误.
对⑤: 0 是元素, 是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.
故选:C.
3.(2021·浙江高一期末)已知集合 M 0,1, 2,3, 4 , N 2, 4, 6 , P M N ,则满足条件的 P 的非
则集合 A B 的所有元素之和为(
A.16
B.18

C.14
D.8
【答案】A
【解析】
由题设,列举法写出集合 A B ,根据所得集合,加总所有元素即可.
【详解】
由题设知: A B {1, 2,3, 4, 6} ,
∴所有元素之和 1 2 3 4 6 16 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考试题分类解析汇编:集合
一、选择题
.(新课标)已知集合 ;,则 中所含元素的个数为( )
A. B. C. D.
.()设集合A={x|1<x<4},B={x|x2-2x-3≤0},则A∩( RB)=( )
A.(1,4)B.(3,4)C.(1,3)D.(1,2)
.()集合 , ,则 ( )
A. B. C. D.
.()已知全集 ,集合 ,则 为( )
A. B. C. D.
.()已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则 ( )
A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}
.()设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )
【答案】 .
【考点】集合的概念和运算.
【分析】由集合的并集意义得

A级 基础巩固练
1.若集合A={x∈R|ax2+x+1=0}中只有一个元素,则a的值为( )
A. B.
C.0D.0或
解析:若a=0,则A={-1},符合题意;若a≠0,则Δ=1-4a=0,解得a= .综上,a的值为0或 ,故选D.
A.5B.4C.3D.2
二、填空题
.(理)已知集合 ,集合 ,且 ,则 __________, ___________.
.(理)设全集 ,集合 , ,则 _______.
.(理)若集合 , ,则 =_________ .
.(春)已知集合 若 则 ______.
.()已知集合 , ,则 ____.
高考试题分类解析汇编:集合与简易逻辑参考答案
【解析二】 集合 为即为在全集U中去掉集合A和集合B中的元素,所剩的元素形成的集合,由此可快速得到答案,选B
【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案.
【答案】B
【解析】 M={-1,0,1} M∩N={0,1}.
【点评】本题考查了集合的基本运算,较简单,易得分.先求出 ,再利用交集定义得出M∩N.
A.{x|x≥-2}B.{x|x>-1}
C.{x|x<-1} D.{x|x≤-2}
解析:∵M={x|x2+3x+2<0}={x|-2<x<-1},
N={x| x≤4}={x|x≥-2},
∴M∪N={x|x≥-2},故选A.
答案:A
4.[2014·]已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )
A.{x|-1<x<0}
B.{x|-1≤x<0}
C.{x|0<x<3}
D.{x|-3<x≤-1}
解析:由题意知,A={x|-3<x<0},∁UB={x|x≥-1},图中阴影部分表示的集合为A∩(∁UB)={x|-1≤x<0},故选B.
答案:B
7.已知集合A={x|x2-x≤0},函数f(x)=2-x(x∈A)的值域为B,则(∁RA)∩B=( )
C.[2,+∞) D.(-∞,0]
解析:由2-x>0,得x<2,∴x-1<1,∴2x-1<21.
∴A={x|x<2},B={y|0<y<2}.
∴∁R(A∩B)=(-∞,0]∪[2,+∞),故选B.
答案:B
6.设全集U=R,A={x|x2+3x<0},B={x|x<-1},则图中阴影部分表示的集合为( )
A.{x|x≥0}B.{x|x≤1}
C.{x|0≤x≤1} D.{x|0<x<1}
解析:A∪B={x|x≤0,或x≥1},所以∁U(A∪B)={x|0<x<1},故选D.
答案:D
5.若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1,x∈A},则∁R(A∩B)=( )
A.RB.(-∞,0]∪[2,+∞)
答案:D
2.[2014·课标全国Ⅱ]设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( )
A.{1}B.{2}
C.{0,1}D.{1,2}
解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.
答案:D
3.[2015·五校协作体期末]设集合M={x|x2+3x+2<0},集合N={x| x≤4},则M∪N=( )
【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法.
C 【解析】本题考查集合的概念及元素的个数.
容易看出 只能取-1,1,3等3个数值.故共有3个元素.
【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn图的考查等.
A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}
.()(集合)设集合 , ,则 ( )
A. B. C. D.
.(大纲)已知集合 ,则 ( )
A.0或 B.0或3C.1或 D.1或3
.()已知集合 , ,则 =( )
A. B. C. D.
.(理)若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为( )
解析:C. .
答案B
【命题意图】本试题主要考查了集合的概念和集合的并集运算,集合的关系的运用,元素与集合的关系的综合运用,同时考查了分类讨论思想.
【解析】【解析】因为 ,所以 ,所以 或 .若 ,则 ,满足 .若 ,解得 或 .若 ,则 ,满足 .若 , 显然不成立,综上 或 ,选B.
【答案】D
【解析】 ,利用二次不等式的解法可得 ,画出数轴易得 .
二、填空题
【答案】 ,
【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一可知 , .
[答案]{a, c, d}
[解析]∵ ; ∴ {a,c,d}
[点评]本题难度较低,只要稍加注意就不会出现错误.
[解析] , ,A∩B= .
一、选择题
【解析】选 , , , 共10个
【解析】A=(1,4),B=(-1,3),则A∩( RB)=(3,4).【答案】B
解析: , , ,故选C.
【解析】 ,所以 ,选C.
【答案】B
【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以 ,所以 为{7,9}.故选B
相关文档
最新文档