集合历年高考真题知识讲解
《精品》2017-2019三年高考真题专题01集合与常用逻辑用语-数学(文)分项汇编(解析版)

{ }专题 01 集合与常用逻辑用语1 .【 2019 年高考全国Ⅰ卷文数】已知集合 U = {1,2,3,4,5,6,7 },A = {2,3,4,5 },B = {2,3,6,7 },则B ð A =UA . {1,6}C . {6,7}B . {1,7}D . {1,6,7}【答案】C【解析】由已知得 ð A = {1,6,7 },U所以 B ð A = {6,7} .U故选 C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019 年高考全国Ⅱ卷文数】已知集合 A={x | x > -1} , B = {x | x < 2},则 A ∩B =A .(-1,+∞)C .(-1,2)B .(-∞,2)D . ∅【答案】C【解析】由题知, AB = (-1,2) .故选 C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019 年高考全国Ⅲ卷文数】已知集合 A = {-1,0,1,2}, B = {x | x 2 ≤ 1} ,则 AB =A . {-1,0,1}C . {-1,1}B . {0,1}D . {0,1,2}【答案】A【解析】∵ x 2 ≤ 1,∴ -1 ≤ x ≤ 1 ,∴ B = x-1 ≤ x ≤ 1 ,又 A = {-1,0,1,2} ,∴ A故选 A .B = {-1,0,1}.1【解析】∵ ðU A = { - 1,3} ,∴ ð A【【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019 年高考北京文数】已知集合 A={x|–1<x<2},B={x|x>1},则 A ∪B =A .(–1,1)C .(–1,+∞)B .(1,2)D .(1,+∞)【答案】C【解析】∵ A = {x | -1 < x < 2}, B = {x |> 1} ,∴ A B = (-1,+∞) .故选 C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019 年高考浙江】已知全集U = {-1,0,1,2,3 },集合 A = {0,1,2}, B = {-1,0,1},则 (ð A) UB =A . {-1}C . {-1,2,3}【答案】AB . {0,1}D . {-1,0,1,3}( )UB = {-1} .故选 A.【名师点睛】注意理解补集、交集的运算.6. 2019 年高考天津文数】设集合 A = {-1,1,2,3,5}, B = {2,3,4}, C = {x ∈ R |1 ≤ x < 3},则 ( AC ) B =A . {2}C . {-1,2,3}【答案】D【解析】因为 A B . {2,3}D . {1,2,3,4 }C = {1,2} ,所以 ( A C ) B = {1,2,3,4} .故选 D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019 年高考天津文数】设 x ∈ R ,则“ 0 < x < 5 ”是“ | x - 1| < 1 ”的A .充分而不必要条件B .必要而不充分条件2C.充要条件D.既不充分也不必要条件【答案】B【解析】由|x-1|<1可得0<x<2,易知由0<x<5推不出0<x<2,由0<x<2能推出0<x<5,故0<x<5是0<x<2的必要而不充分条件,即“0<x<5”是“|x-1|<1”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x的取值范围. 8.【2019年高考浙江】若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件【答案】A【解析】当a>0,b>0时,a+b≥2ab,则当a+b≤4时,有2ab≤a+b≤4,解得a b≤4,充分性成立;当a=1,b=4时,满足ab≤4,但此时a+b=5>4,必要性不成立,综上所述,“a+b≤4”是“ab≤4”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取a,b的特殊值,从假设情况下推出合理结果或矛盾结果.9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行C.α,β平行于同一条直线B.α内有两条相交直线与β平行D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是α∥β的充分条件;由面面平行的性质定理知,若α∥β,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是α∥β的必要条件.31 1故 α∥β 的充要条件是 α 内有两条相交直线与 β 平行.故选 B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019 年高考北京文数】设函数 f (x )=cosx +b sinx (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件【答案】C【解析】当 b = 0 时, f ( x ) = cos x + b sin x = cos x , f ( x ) 为偶函数;当 f ( x ) 为偶函数时, f (- x ) = f ( x ) 对任意的 x 恒成立,由 f (- x ) = cos(- x ) + b sin(- x ) = cos x - b sin x ,得 cos x + b sin x = cos x - b sin x ,则 b sinx = 0 对任意的 x 恒成立,从而 b = 0 .故“ b = 0 ”是“ f ( x ) 为偶函数”的充分必要条件.故选 C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2018 年高考浙江】已知全集 U={1,2,3,4,5},A={1,3},则UA =A . ∅C .{2,4,5}B .{1,3}D .{1,2,3,4,5}【答案】C【解析】因为全集,,所以根据补集的定义得.故选 C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018 年高考全国Ⅰ卷文数】已知集合 A = {0 ,2}, B = {-2 ,- 1,0 , ,2},则 AA . {0 ,2}B . { ,2}4B =1C.{0}D.{-2,-1,0,,2}【答案】A【解析】根据集合的交集中元素的特征,可以求得.故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合A={1,3,5,7},B={2,3,4,5},则A B=A.{3} C.{3,5}B.{5} D.{1,2,3,4,5,7}【答案】C【解析】,.故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用V enn图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合A={x|x-1≥0},B={0,1,2},则A B=A.{0}C.{1,2}【答案】C【解析】易得集合A={x|x≥1},所以AB.{1}D.{0,1,2} B={1,2}.故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A.{0,1}C.{–2,0,1,2}【答案】A【解析】,,因此A B=.B.{–1,0,1}D.{–1,0,1,2}5(.故选 A.【名师点睛】解决集合问题时,认清集合中元素的属性是点集、数集或其他情形)和化简集合是正确求 解的两个先决条件.16 .【 2018 年高考天津文数】设集合A = {1, 2, 3, 4},B = {-1,0,2,3} ,C = {x ∈ R | -1 ≤ x < 2} ,则( A B) C =A .{ - 1,1}C .{ - 1,0,1}B .{0,1}D .{2,3,4}【答案】C【解析】由并集的定义可得:,结合交集的定义可知:.故选 C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力17.【2018 年高考浙江】已知平面 α,直线 m ,n 满足 m ⊄ α,n ⊂ α,则“m ∥n ”是“m ∥α”的A .充分不必要条件C .充分必要条件B .必要不充分条件D .既不充分也不必要条件【答案】A【解析】因为,所以根据线面平行的判定定理得 .由不能得出 与 内任一直线平行,所以是的充分不必要条件.故选 A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若 则 ”、“若 则 ”的真假.并注意和图示相结合,例如“⇒”为真,则 是 的充分条件.(2)等价法:利用⇒ 与非⇒ 非 ,⇒ 与非⇒ 非 ,⇔ 与非⇔ 非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则 是 的充分条件或 是 的必要条件;若 = ,则 是 的充要条件.18.【2018 年高考天津文数】设 x ∈ R ,则“ x 3 > 8 ”是“ |x |> 2 ”的 A .充分而不必要条件 B .必要而不充分条件6.A.A B=⎨x|x<2⎭C.A B=⎨x|x<⎩D.A 2⎭C.充要条件D.既不充分也不必要条件【答案】A【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“”的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分而不必要条件C.充分必要条件B.必要而不充分条件D.既不充分也不必要条件【答案】B【解析】当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件.故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“⇒”以及“⇒”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题20.【2017年高考全国Ⅰ卷文数】已知集合A={x|x<2},B={x|3-2x>0},则⎧⎩3⎫⎬B.A B=∅【答案】A ⎧3⎫⎬B=R【解析】由3-2x>0得x<32,33所以A B={x|x<2}{x|x<}={x|x<}.22故选A.71 2, 3 4 123 ,4 22.【2017 年高考北京文数】已知全集U = R ,集合 A = {x | x < -2或x > 2},则 ð A ={ }【解析】因为 A = {x x < -2 或 x > 2},所以 ð A = x -2 ≤ x ≤ 2 .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017 年高考全国Ⅱ卷文数】设集合 A = {1,2,3}, B = {2,3,4} ,则 AB =A . {,3,4}C . {2,,}【答案】AB . {,,}D . {13,}【解析】由题意 AB = {1,2,3,4} .故选 A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和 V enn 图.UA . (-2,2)C . [-2,2] B . (-∞, -2) (2, +∞)D . (-∞, -2] [2, +∞)【答案】CU故选 C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017 年高考全国Ⅲ卷文数】已知集合 A={1,2,3,4},B={2,4,6,8},则 AB 中元素的个数为A .1C .3【答案】BB .2D .4【解析】由题意可得 AB = {2,4},故 A B 中元素的个数为 2.8( .x x - 1 < 1N则所以选 B.【名师点睛】求集合的基本运算时,要认清集合元素的属性 是点集、数集或其他情形)和化简集合,这 是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性24.【2017 年高考天津文数】设集合 A = {1,2,6}, B = {2,4}, C = {1,2,3,4} ,则 ( AB) C =A .{2}C .{1,2,4,6}【答案】BB .{1,2,4}D .{1,2,3,4,6}【解析】由题意可得 AB = {1,2,4,6 },所以 ( A B) C = {1,2,4 }.故选 B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017 年高考浙江】已知集合 P = {x | -1 < x < 1} , Q = {0 < x < 2} ,那么 PQ =A . (-1,2)C . (-1,0) 【答案】A【解析】利用数轴,取 P , Q 中的所有元素,得 PB . (0,1)D . (1,2)Q = (-1,2) .故选 A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017 年高考山东文数】设集合 M ={}, = {x x < 2}, MN =A . (-1,1)C . (0,2 )【答案】C【解析】由 | x - 1| < 1 得 0 < x < 2 ,B . (-1,2 )D . (1,2 )9故 MN ={x | 0 < x < 2} {x | x < 2} = {x | 0 < x < 2} .故选 C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助 V enn 图.27.【2017 年高考浙江】已知等差数列{a n }的公差为 d ,前 n 项和为 S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件C .充分必要条件B .必要不充分条件D .既不充分也不必要条件【答案】C【解析】由 S + S - 2S = 10a + 21d - 2(5a + 10 d ) = d ,46 5 1 1可知当 d > 0 时,有 S + S - 2S > 0 ,即 S + S > 2S ,46 5 4 6 5反之,若 S + S > 2S ,则 d > 0 ,465所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选 C .【名师点睛】本题考查等差数列的前 n 项和公式,通过套入公式与简单运算,可知 S + S - 2S = d ,465结合充分必要性的判断,若 p ⇒ q ,则 p 是 q 的充分条件,若 p ⇐ q ,则 p 是 q 的必要条件,该题“ d > 0 ” ⇔ “ S + S - 2S > 0 ”,故互为充要条件.46528.【2017 年高考北京文数】设 m ,n 为非零向量,则“存在负数 λ ,使得 m = λ n ”是“ m ⋅ n < 0 ”的A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件【答案】A【解析】若 ∃λ < 0 ,使 m = λn ,则两向量 m ,n 反向,夹角是180︒ ,那么 m ⋅ n = m n cos180︒ = - m n < 0 ;若 m ⋅ n < 0 ,那么两向量的夹角为 ( 90︒,180︒] ,并不一定反向,即不一定存在负数 λ ,使得 m = λn ,所以是充分而不必要条件.故选 A.10{ } { } / / /【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若 p ⇒ q ,则 p 是 q 的充分条件,若 p ⇐ q ,则 p 是 q 的必要条件.29.【2017 年高考山东文数】已知命题 p : ∃x ∈ R, x 2 - x + 1 ≥ 0 ;命题 q :若 a 2 < b 2 ,则 a <b .下列命题为真命题的是A . p ∧ qC . ⌝p ∧ qB . p ∧⌝ q D . ⌝p ∧⌝ q【答案】B【解析】由 x = 0 时, x 2 - x + 1 ≥ 0 成立知 p 是真命题;由12 < (-2)2 ,1 > -2 可知 q 是假命题,所以 p ∧⌝ q 是真命题.故选 B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假 ,逆命题与否命题同真同假 ”这一性质,当一个命题直接判断不易进行时 ,可转化为判断其等价命题的真假.30.【2017 年高考天津文数】设 x ∈ R ,则“ 2 - x ≥ 0 ”是“ | x -1|≤ 1”的A .充分而不必要条件C .充要条件B .必要而不充分条件D .既不充分也不必要条件【答案】B【解析】由 2 - x ≥ 0 ,可得 x ≤ 2 ,由 | x -1|≤ 1,可得 -1 ≤ x - 1 ≤ 1 ,即 0 ≤ x ≤ 2 ,因为 x 0 ≤ x ≤ 2 ⊂ x x ≤ 2 ,所以“ 2 - x ≥ 0 ”是“ | x -1|≤ 1”的必要而不充分条件.故选 B .【名师点睛】判断充要关系的的方法:①根据定义,若 p ⇒ q , q ⇒ p ,那么 p 是 q 的充分而不必要条件,同时 q 是 p 的必要而不充分条件,若 p ⇔ q ,那么 p 是 q 的充要条件,若 p ⇒ q , q ⇒ p ,那那么 p 是 q 的既不充分也不必要条件;11. (②当命题是以集合的形式给出时,那就看包含关系,若 p : x ∈ A , q : x ∈ B ,若 A 是 B 的真子集,那么 p 是 q 的充分而不必要条件,同时 q 是 p 的必要而不充分条件,若 A = B ,那么 p 是 q 的充要条件,若没有包含关系,那么 p 是 q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是 q ”的关系转化为“⌝q 是 ⌝p ”的关系进行判断.31.【2019 年高考江苏】已知集合 A = {-1,0,1,6} , B = {x | x > 0, x ∈ R } ,则 A【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.B = ▲ .由题意知, AB = {1,6} .【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018 年高考江苏】已知集合, ,那么 ________.【答案】{1,8}【解析】由题设和交集的定义可知:.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小33.【2017 年高考江苏】已知集合 A = {1,2} , B = {a, a 2 + 3},若 AB = {1} ,则实数 a 的值为 ▲ .【答案】1【解析】由题意1∈ B ,显然 a 2 + 3 ≥ 3 ,所以 a = 1 ,此时 a 2 + 3 = 4 ,满足题意.故答案为 1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关A虑 ∅ 时是否成立,以防漏解. B = ∅, A ⊆ B 等集合问题时,往往容易忽略空集的情况,一定要先考34.【2018 年高考北京文数】能说明“若 a ﹥b ,则 【答案】 ,(答案不唯一)121 1 < ”为假命题的一组 a ,b 的值依次为_________. a b.【解析】使“若,则 ”为假命题,则使“若 ,则 ”为真命题即可,只需取即可满足, 所以满足条件的一组的值为 (答案不唯一). 【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难35.【2017 年高考北京文数】能够说明“设 a ,b ,c 是任意实数.若 a >b >c ,则 a +b >c ”是假命题的一组整数a,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】 -1 > -2 > -3, -1 + (-2) = -3 > -3 ,矛盾,所以−1,−2,−3 可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.13。
专题01 集合与常用逻辑用语专项高考真题总汇(带答案与解析)

专题01集合与常用逻辑用语1.【2021·浙江高考真题】设集合{}1A x x =≥,{}12B x x =-<<,则A B = ()A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【解析】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.2.【2021·全国高考真题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【解析】由题设有{}2,3A B ⋂=,故选:B .3.【2021·全国高考真题(理)】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【解析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.4.【2021·全国高考真题(理)】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.5.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【解析】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.6.【2021·全国高考真题(理)】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .7.【2021·全国高考真题(理)】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .8.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.9.【2020年高考全国Ⅱ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B = ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.10.【2020年高考全国Ⅲ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为A .2B .3C .4D .6【答案】C 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.11.【2020年高考天津】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩ðA .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知{}2,1,1U B =--ð,则(){}U 1,1A B =- ð.故选C .【点睛】本题主要考查补集运算,交集运算,属于基础题.12.【2020年高考北京】已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】【分析】根据交集定义直接得结果.【详解】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D .【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.13.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选A .【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.14.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U .故选C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.15.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则P I Q =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<【答案】B 【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)P Q ==I I .故选B.【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.16.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选B.【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.17.【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得π(1)k k αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)k k αβ=+-.所以,“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的充要条件.故选C .【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.18.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<,则{|22}M N x x =-<< .故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分.19.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞ .故选A .【名师点睛】本题考点为集合的运算,为基础题目.20.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =- .故选A .【名师点睛】本题考查了集合交集的求法,是基础题.21.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B = A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C = ,所以(){1,2,3,4}A C B = .故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.22.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =- ð.故选A.【名师点睛】注意理解补集、交集的运算.23.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.24.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<,易知由05x <<推不出02x <<,由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围.25.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.26.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件.故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.27.【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =,∴{}0,2A B =I .故答案为{}0,2.【点睛】本题考查了交集及其运算,是基础题型.28.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.29.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B = .【名师点睛】本题主要考查交集的运算,属于基础题.。
集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

【题目来源】2021年新高考全国Ⅱ卷·第2题
6.(2021年新高考Ⅰ卷·第1题)设集合 , ,则 ()
A. B. C. D.
【答案】B
解析:由题设有 ,故选B.
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考Ⅰ卷·第1题
7.(2020年新高考I卷(山东卷)·第1题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
【解析】 或 , ,
故 ,故选A.
【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.
本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
【题目栏目】集合\集合的基本运算
【题目来源】2019年高考数学课标全国Ⅱ卷理科·第1题
【题目栏目】集合\集合的基本运算
【题目来源】2021年高考全国甲卷理科·第1题
11.(2020年高考数学课标Ⅰ卷理科·第2题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B.–2C.2D.4
【答案】B
【解析】求解二次不等式 可得: ,
求解一次不等式 可得: .
A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
解析:由题意可得: ,则 .
故选:A
【点睛】本题主要考查并集、补集的定义与应用,属于基础题.
【题目栏目】集合\集合的基本运算
【题目来源】2020年高考数学课标Ⅱ卷理科·第1题
13.(2020年高考数学课标Ⅲ卷理科·第1题)已知集合 , ,则 中元素的个数为()
2024全国高考真题数学汇编:集合的基本运算

2024全国高考真题数学汇编集合的基本运算一、单选题1.(2024北京高考真题)已知集合{|31}M x x ,{|14}N x x ,则M N ()A . 11x x B . 3x x C . |34x x D . 4x x 2.(2024天津高考真题)集合 1,2,3,4A , 2,3,4,5B ,则A B ()A . 1,2,3,4B . 2,3,4C . 2,4D . 13.(2024全国高考真题)若集合 1,2,3,4,5,9A , 1B x x A ,则A B ()A . 1,3,4B . 2,3,4C . 1,2,3,4D . 0,1,2,3,4,94.(2024全国高考真题)已知集合 355,{3,1,0,2,3}A x x B ∣,则A B ()A .{1,0} B .{2,3}C .{3,1,0} D .{1,0,2}5.(2024全国高考真题)已知集合 1,2,3,4,5,9,A B A ,则 A A B ð()A . 1,4,9B . 3,4,9C . 1,2,3D .2,3,5参考答案1.C【分析】直接根据并集含义即可得到答案.【详解】由题意得 |34M x x N .故选:C.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合 1,2,3,4A , 2,3,4,5B ,所以 2,3,4A B ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x ,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B ,于是{1,2,3,4}A B .故选:C4.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为 |,3,1,0,2,3A x x ,且注意到12 ,从而A B 1,0 .故选:A.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为1,2,3,4,5,9,A B A ,所以 1,4,9,16,25,81B ,则 1,4,9A B ,2,3,5A A B ð故选:D。
高考数学十年真题专题汇总—集合概念与运算

高考数学十年真题专题汇总—集合概念与运算年份题号考点考查内容2011文1集合运算两个离散集合的交集运算,集合的子集的个数2012理1与集合有关的新概念问题由新概念确定集合的个数文1集合间关系一元二次不等式解法,集合间关系的判断2013卷1理1集合间关系一元二次不等式的解法,集合间关系的判断文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算个连续集合与一个离散集合的交集运算2014卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷2理2集合元素一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合元素一元二次方程解法,两个离散集合的交集运算2015卷1文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算两个连续集合的并集2016卷1理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合交集运算文1集合运算一个连续集合与一个离散集合的交集运算卷2理1集合运算一元二次不等式解法,两个离散集合并集运算文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个离散集合的补集运算2017卷1理1集合运算指数不等式解法,两个连续集合的并集、交集运算文1集合运算一元一次不等式解法,两个连续集合的并集、交集运算卷2理2集合运算一元二次方程解法,两个离散集合交集运算文1集合运算两个离散集合的并集运算卷3理1集合概念与表示直线与圆的位置关系,交集的概念.文1集合运算两个离散集合的交集运算2018卷1理1集合运算一元二次不等式解法,补集运算文1集合运算两个离散集合的交集运算卷2理2集合概念与表示点与圆的位置关系,集合概念文1集合运算两个离散集合的交集运算卷3文理1集合运算一元一次不等式解法,一个连续集合与一个离散集合的交集运算2019卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文2集合运算三个离散集合的补集、交集运算卷2理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷3文理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算2020卷1理2集合运算一元二次不等式的解法,含参数的一元一次不等式的解法,利用集合的交集运算求参数的值文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷2理1集合运算两个离散集合的并集、补集运算文1集合运算绝对值不等式的解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算二元一次方程及二元一次不等式混合组的整数解的解法,一个连续集合与一个离散集合的交集运算文1集合运算一个连续集合与一个离散集合的交集运算考点出现频率2021年预测集合的含义与表示37次考2次在理科卷中可能考查本考点集合间关系37次考2次可能在试卷中考查两个几何关系的判定或子集的个数问题集合间运算37次考32次常与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算与集合有关的创新问题37次考1次考查与集合有关的创新问题可能性不大考点1集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .52.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A .2B .3C .4D .63.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .04.【2018新课标2,理1】已知集合 = ,2+ 2≤3, ∈ , ∈ ,则 中元素的个数为()A .9B .8C .5D .45.【2013山东,理1】已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .96.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或47.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为()A .5B .4C .3D .28.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .19.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则A .i ∈SB .2i ∈SC .3i ∈SD .2i∈S 10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.考点2集合间关系1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .A BÜB .B AÜC .A B=D .A B =∅2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则()A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =BB .A B =∅∩C .A BÜD .B AÜ4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是()A .N M⊆B .M N M= C .M N N= D .{2}M N = 5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则()A .P Q⊆B .Q P⊆C .R C P Q⊆D .R Q C P⊆6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P = ,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1] [1,+∞)7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则()A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆BB .C ⊆BC .D ⊆C D .A ⊆D9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为()A .1B .2C .3D .4考点3集合间的基本运算1.【2011课标,文1】已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有(A)2个(B)4个(C)6个(D)8个2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N=A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N=()(A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1}4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A∩B=()(A){1,4}(B){2,3}(C){9,16}(D){1,2}5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=()A .{1}B .{2}C .{0,1}D .{1,2}7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N = ()A.)1,2(-B .)1,1(-C .)3,1(D .)3,2(-8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B = ()A.∅B .{}2C .{0}D .{2}-9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ()A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,210.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为()(A)5(B)4(C)3(D)211.【2015新课标2,文1】已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B = ()A .()1,3-B .()1,0-C .()0,2D .()2,312.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂=(A)3(3,2--(B)3(3,2-(C)3(1,2(D)3(,3)213.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()(A){1}(B){12},(C){0123},,,(D){10123}-,,,,14.【2016新课标3,理1】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=>,则T S ⋂=(A)[2,3](B)(-∞,2]U [3,+∞)(C)[3,+∞)(D)(0,2]U [3,+∞)15.【2016新课标2,文1】已知集合{123}A =,,,2{|9}B x x =<,则A B = ()(A){210123}--,,,,,(B){21012}--,,,,(C){123},,(D){12},16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ()(A){1,3}(B){3,5}(C){5,7}(D){1,7}17.【2016新课标3,文1】设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}A B x x => D .A B =∅19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则()A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,521.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =()A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为()A .1B .2C .3D .423.【2018新课标1,理1】已知集合 = 2− −2>0,则∁ =A . −1< <2B . −1≤ ≤2C . | <−1∪ | >2D . | ≤−1∪ | ≥224.【2018新课标3,理1】已知集合 = | −1≥0, =0,1,2,则 ∩ =A .0B .1C .1,2D .0,1,225.【2018新课标1,文1】已知集合,,则()A .B .C .D .26.【2018新课标2,文1】已知集合,,则A .B .C .D .27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=()A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A =()A .{}1,6B .{}1,7C .{}6,7D .{}1,6,729.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,232.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,434.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x <<36.【2017山东,理1】设函数24y x =-的定义域A ,函数ln(1)y x =-的定义域为B ,则A B = ()A .(1,2)B .(1,2]C .(2,1)-D .[2,1)-37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()A B C = A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)39.【2016年山东,理1】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =A .{1}B .{4}C .{1,3}D .{1,4}41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A B = A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则A B 等于()A .{}1-B .{}1C .{}1,1-D .∅44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N = A .{}1,4B .{}1,4--C .{}0D .∅45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U A B =ðA .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,847.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A A .[0,2]B .(1,3)C .[1,3)D .(1,4)48.【2014浙江,理1】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U A .∅B .}2{C .}5{D .}5,2{49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<50.【2013山东,】已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B = ð,{1,2}B =,则U A B =ðA .{3}B .{4}C .{3,4}D .∅51.【2013陕西,理1】设全集为R ,函数()f x =的定义域为M ,则C M R 为A .[-1,1]B .(-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-52.【2013湖北,理1】已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则()R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N⋃B .M N⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B = ,则实数a 的值为_.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .458.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B =ð()A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<<则P Q =()A .{|12}x x <≤B .{|23}x x <<C .{|23}x x <≤D .{|14}x x <<61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A B A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B = ð()A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则A B = .65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则A B =.考点4与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为()A .3B .6C .8D .102.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为()A .77B .49C .45D .303.【2013广东,理8】设整数4n ≥,集合{}1,2,3,,X n = ,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S∈D .(),,y z w S ∉,(),,x y w S∉4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是()A .1B .2C .3D .45.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,kii i a a a },定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ==== ,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1)子集{135,,a a a }的“特征数列”的前三项和等于;(2)若E 的子集P 的“特征数列”12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;E 的子集Q 的“特征数列”12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈= .对于集合A中的任意元素12(,,,)n x x x α= 和12(,,,)n y y y β= ,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++-- .(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.。
高考数学必刷真题分类大全-专题01-集合与常用逻辑用语

【答案】D
【试题解析】由题意, B= x x2 4x 3 0 1,3,所以 A B 1,1, 2,3 ,
所以 ðU A B 2, 0 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算. 【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本 运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解 及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力. 常见的命题角度有: (1)求交集或并集;(2)交、并、补的混合运算;(3)新定义集合问题. 【得分要点】 解集合运算问题应注意如下三点:
”的(
)
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
7.(2022·青海·海东市第一中学模拟预测(文))设
m,
n
为实数,则“
0.1m
0.1n
”是“
lg
1 m
lg
1 n
”的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(2022·上海虹口·二模)已知 l1 ,l2 是平面 内的两条直线,l 是空间的一条直线,则“ l ”是“ l l1 且 l l2 ”
CU A _____.
13.(2022·广东·华南师大附中三模)当 x a 时, x 1 0 成立,则实数 a 的取值范围是____________. x
14.(2022·山东聊城·三模)命题“ x R ,a2 4 x2 a 2 x 1 0 ”为假命题,则实数 a 的取值范围为______.
专题01 集合-十年(2012-2021)高考数学真题分项详解(全国通用)(解析版)

专题01 集合【2021年】1.(2021年全国高考乙卷数学(文)试题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A.2.(2021年全国高考乙卷数学(理)试题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则ST ( )A .∅B .SC .TD .Z【答案】C【分析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,ST T =.故选:C.3.(2021年全国高考甲卷数学(文)试题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【分析】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.4.(2021年全国高考甲卷数学(理)试题)设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤< D .{}05x x <≤【答案】B【分析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.5.(2021年全国新高考Ⅰ卷数学试题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【分析】由题设有{}2,3A B ⋂=,故选:B .【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【分析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B【分析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.3.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合A ={x ||x |<3,x ⅠZ },B ={x ||x |>1,x ⅠZ },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.4.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.5.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3C .4D .5【答案】B【分析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B6.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C【分析】由题意,AB 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.7.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B AA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【分析】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 8.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【分析】【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .9.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D .∅【答案】C 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)A B =-,故选C .10.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A【分析】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .11.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【分析】21,x ≤∴11x -≤≤,Ⅰ{}11B x x =-≤≤,则{}1,0,1AB =-,故选A .12.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 【答案】A 【分析】详解:根据集合交集中元素的特征,可以求得{}0,2AB =,故选A.13.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤C .}{}{|12x x x x <-⋃ D .}{}{|1|2x x x x ≤-⋃≥【答案】B【详解】:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.14.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 【详解】详解:{1,3,5,7},{2,3,4,5}A B ==,{3,5}A B ∴⋂=,故选C15.(2018年全国卷Ⅰ文数高考试题)已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【分析】:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C.16.(2018年全国普通高等学校招生统一考试理数(全国卷II ))已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为( )A .9B .8C .5D .4【答案】A 【分析】223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.17.(2018年全国卷Ⅰ理数高考试题)已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 【答案】C【解析】详解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.18.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【详解】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=<,选A . 19.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B R = C .{|1}AB x x =>D .AB =∅【答案】A【解析】Ⅰ集合{|31}x B x =<Ⅰ{}0B x x =<Ⅰ集合{|1}A x x =<Ⅰ{}0A B x x ⋂=<,{}|1A B x x ⋃=<故选A20.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【详解】由题意{1,2,3,4}A B ⋃=,故选A.21.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C【详解】Ⅰ 集合{}124A =,,,{}2|40B x x x m =-+=,{}1A B =Ⅰ1x =是方程240x x m -+=的解,即140m -+= Ⅰ3m =Ⅰ{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C22.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为 A .1 B .2C .3D .4【答案】B【详解】由题意可得{}2,4AB =,故A B 中元素的个数为2,所以选B.23.(2017年全国普通高等学校招生统一考试文科数学)已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x=相交于两点22⎛ ⎝⎭,22⎛-- ⎝⎭,则A B 中有2个元素.故选B. 24.(2016年全国普通高等学校招生统一考试文科数学)设集合{}1,3,5,7A =,{|25}B x x =≤≤,则A B ⋂=A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】试题分析:集合与集合的公共元素有3,5,故,故选B.25.(2016年全国普通高等学校招生统一考试文科数学)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)2【答案】D【详解】:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.26.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷)已知集合{}1,2,3,A =2{|9}B x x =<,则A B ⋂=A .{2,1,0,1,2,3}--B .{2,1,0,1,2}--C .{1,2,3}D .{1,2}【答案】D【解析】试题分析:由29x <得33x -<<,所以{|33}B x x =-<<,因为{}1,2,3A =,所以{}1,2A B ⋂=,故选D.27.(2016年全国普通高等学校招生统一考试文科数学)已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃=A .{1}B .{12},C .{0123},,,D .{10123}-,,,, 【答案】C 【详解】试题分析:集合{}{|12,}0,1B x x x Z =-<<∈=,而{}1,2,3A =,所以{}0,1,2,3A B ⋃=,故选C. 28.(2016年全国普通高等学校招生统一考试文科数学(新课标3卷))设集合{}{}0,2,4,6,8,10,4,8A B ==,则AB =A .{4,8}B .{02,6},C .{026,10},, D .{02468,10},,,, 【答案】C 【详解】试题分析:由补集的概念,得{}0,2,6,10AB =,故选C .29.(2016年全国普通高等学校招生统一考试理科数学(新课标3))设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S ⋂T=A .[2,3]B .(−∞,2]⋃[3,+∞)C .[3,+∞)D .(0,2]⋃[3,+∞)【答案】D【详解】:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x ⋂=<≤≥或,故选D .30.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合{}{|32,},6,8,10,12,14A x x n n N B ==+∈=,则集合A B ⋂中的元素个数为A .5B .4C .3D .2【答案】D 【详解】由已知得A B ⋂中的元素均为偶数,n ∴ 应为取偶数,故{}8,14A B ⋂= ,故选D.31.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合{}{}|12,|03,A x x B x x =-<<=<<则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A【详解】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.AB x x =-<<故选A.32.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A【详解】已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .33.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N ⋂=A .B .C .D .【答案】B【详解】试题分析:根据集合的运算法则可得:{}|11M N x x ⋂=-<<,即选B .34.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ卷))已知集合,则A .B .C .D .【答案】A【详解】试题分析:由已知得,{|1A x x =≤-或3}x ≥,故{}|21A B x x ⋂=-≤≤-,选A .35.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设集合{}22,0,2,{|20}A B x x x =-=--=,则A B ⋂=A .∅B .C .{}0D .{}2-【答案】B 【详解】:由已知得,{}21B =-,,故{}2A B ⋂=,选B .36.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A∩B=A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【分析】依题意,,故{}1,4A B ⋂=. 37.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知集合A ={x |x 2-2x >0},B ={x |x ,则( ).A .A ∩B =B .A ⅠB =RC .B ⊆AD .A ⊆B 【答案】B 【详解】依题意{}|02A x x x =或,又因为B ={x |x ,由数轴可知A ⅠB =R ,故选B.38.(2013年全国普通高等学校招生统一考试文科数学)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1 } 【答案】C【详解】因为集合M=,所以M∩N={0,-1,-2},故选C.39.(2013年全国普通高等学校招生统一考试理科数学)已知集合M ={x|(x -1)2<4,xⅠR},N ={-1,0,1,2,3},则M∩N =A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 【答案】A【详解】:由(x ﹣1)2<4,解得:﹣1<x <3,即M={x|﹣1<x <3},ⅠN={﹣1,0,1,2,3},ⅠM∩N={0,1,2}.故选A40.(2012年全国普通高等学校招生统一考试文科数学)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则 A . B . C .A=B D .A∩B=Æ【答案】B 【详解】集合,又,所以B 是A 的真子集,选B.41.(2012年全国普通高等学校招生统一考试理科数学)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .10 【答案】D【详解】列举法得出集合()()()()()()()()()(){}2,1314151324252435354B =,,,,,,,,,,,,,,,,,,,共含10个元素.故答案选D .。
专题01 集合-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)

专题01 集合【2021年】一、【2021·浙江高考】设集合{}1A x x =≥,{}12B x x =-<<,则AB =( ) A. {}1x x >- B. {}1x x ≥ C. {}11x x -<< D. {}12x x ≤< 【答案】D【解析】【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:{}|12AB x x =≤<.故选:D.二、【2021·江苏高考】设集合A ={x|−2<x <4},B ={2,3,4,5},则A ∩B =( ) A. {2}B. {2,3}C. {3,4}D. {2,3,4}【答案】B 【知识点】交集及其运算【解析】解:∵A ={x|−2<x <4},B ={2,3,4,5},∴A ∩B ={x|−2<x <4}∩{2,3,4,5}={2,3}.故选:B .直接利用交集运算得答案.本题考查交集及其运算,是基础题.【2020年】一、【2020·北京高考】已知集合A ={−1,0,1,2},B ={x|0<x <3},则A ∩B =( )A. {−1,0,1}B. {0,1}C. {−1,1,2}D. {1,2}【答案】D 【知识点】交集及其运算【解析】【分析】根据交集的定义写出A∩B即可.本题考查了交集的定义与运算问题,是基础题目.【解答】解:集合A={−1,0,1,2},B={x|0<x<3},则A∩B={1,2},故选:D.二、【2020·浙江高考】已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A. {x|1<x≤2}B. {x|2<x<3}C. {x|3≤x<4}D. {x|1<x<4}【答案】B【知识点】交集及其运算【解析】【分析】直接利用交集的运算法则求解即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.【解答】解:集合P={x|1<x<4},Q={x|2<x<3},则P∩Q={x|2<x<3}.故选:B.三、【2020·天津高考】设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则A∩(∁U B)=()A. {−3,3}B. {0,2}C. {−1,1}D. {−3,−2,−1,1,3}【答案】C【知识点】补集及其运算、交集及其运算【解析】【分析】本题主要考查列举法的定义,以及补集、交集的运算,属于基础题.先求出集合B的补集、再与集合A求交集.【解答】解:全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则∁U B={−2,−1,1},∴A∩(∁U B)={−1,1},故选:C.四、【2020·上海高考】已知集合A={1,2,4},集合B={2,4,5},则A∩B=.【答案】{2,4}【知识点】交集及其运算【解析】【分析】本题考查交集及其运算,属于基础题.由交集的定义可得出结论.【解答】解:因为A={1,2,4},B={2,4,5},则A∩B={2,4}.故答案为:{2,4}.【2019年】一、【2019·北京高考(文)】已知集合A=(x|−1<x<2},B={x|x>1},则A∪B=()A. {x|−1<x<1}B. {x|1<x<2}C. {x|x>−1}D. {x|x>1}【答案】C【知识点】并集及其运算【解析】【分析】本题考查并集及其运算,是基础题.直接由并集运算得答案.【解答】解:∵A={x|−1<x<2},B={x|x>1},∴A∪B={x|x>−1}.故选C.二、【2019·浙江高考】已知全集U={−1,0,1,2,3},集合A={0,1,2},B={−1,0,1},则(∁U A)∩B=()A. {−1}B. {0,1}C. {−1,2,3}D. {−1,0,1,3}【答案】A【知识点】交、并、补集的混合运算【解析】【分析】本题主要考查集合的基本运算,属于基础题.由全集U以及A求A的补集,然后根据交集定义得结果.【解答】解:∵∁U A={−1,3},∴(∁U A)∩B={−1,3}∩{−1,0,1}={−1},故选:A.三、【2019·天津高考】设集合A={−1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A. {2}B. {2,3}C. {−1,2,3}D. {1,2,3,4}【答案】D【知识点】交、并、补集的混合运算【解析】【分析】本题主要考查集合的交集、并集运算,比较基础.根据集合的基本运算即可求A∩C,再求(A∩C)∪B.【解答】解:设集合A={−1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.四、【2019·上海高考】已知集合A={1,2,3,4,5},B={3,5,6},则A∩B=______.【答案】{3,5}【知识点】交集及其运算【解析】【分析】本题考查集合的交集运算,属于基础题.利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4,5},B={3,5,6},∴A∩B={3,5}.故答案为:{3,5}.【2018年】一、【2018·北京高考】已知集合A={x||x|<2},B={−2,0,1,2},则A∩B=()A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【知识点】交集及其运算【解析】【分析】本题考查交集及其运算,属于基础题.根据题意,进行求解即可.解:A={x||x|<2}={x|−2<x<2},B={−2,0,1,2},则A∩B={0,1},故选:A.二、【2018·浙江高考】已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A. ⌀B. {1,3}C. {2,4,5}D. {1,2,3,4,5}【答案】C【知识点】补集及其运算【解析】解:根据补集的定义,∁U A是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.∁U A={2,4,5}故选:C.根据补集的定义直接求解:∁U A是由所有属于集合U但不属于A的元素构成的集合.本题考查了补集的定义以及简单求解,属于简单题.三、【2018·天津高考(理)】设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A. {x|0<x≤1}B. {x|0<x<1}C. {x|1≤x<2}D. {x|0<x<2}【答案】B【知识点】交、并、补集的混合运算【解析】【分析】本题考查了集合的运算问题,是基础题.根据补集、交集的定义即可求出.【解答】解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1},【2018·天津高考(文)】设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C= ()A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}【答案】C【知识点】并集及其运算、交集及其运算【解析】【分析】本题考查交集、并集及其运算,属于基础题.直接利用交集、并集运算得答案.【解答】解:∵A={1,2,3,4},B={−1,0,2,3},∴A∪B={1,2,3,4}∪{−1,0,2,3}={−1,0,1,2,3,4},又C={x∈R|−1≤x<2},∴(A∪B)∩C={−1,0,1}.故选:C.四、【2018·上海高考】已知α∈{−2,−1,−12,12,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=______.【答案】−1【知识点】函数的奇偶性、函数的单调性与单调区间、幂函数【解析】【分析】本题主要考查幂函数的性质,函数的奇偶性,单调性,属于基础题.由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到α<0,由此分析能求出α的值.【解析】解:∵α∈{−2,−1,−12,12,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴α<0,当α是整数时,α是奇数,∴α=−1满足.时,f(x)=xα不是奇函数,不满足题意,当α为−12故答案为−1.【2017年】一、【2017·北京高考(理)】若集合A={x|−2<x<1},B={x|x<−1或x>3},则A∩B=()A. {x|−2<x<−1}B. {x|−2<x<3}C. {x|−1<x<1}D. {x|1<x<3}【答案】A【知识点】交集及其运算【解析】【分析】本题考查集合的交集运算,属于基础题.根据已知集合A和B,结合集合交集的定义,可得答案.【解答】解:∵集合A={x|−2<x<1},B={x|x<−1或x>3},∴A∩B={x|−2<x<−1}.故选A.【2017·北京高考(文)】已知全集U=R,集合A={x|x<−2或x>2},则∁U A=()A. (−2,2)B. (−∞,−2)∪(2,+∞)C. [−2,2]D. (−∞,−2]∪[2,+∞)【答案】C【知识点】补集及其运算【解析】解:∵集合A={x|x<−2或x>2}=(−∞,−2)∪(2,+∞),全集U=R,∴∁U A=[−2,2],故选:C.根据已知中集合A和U,结合补集的定义,可得答案.本题考查的知识点是集合的补集及其运算,难度不大,属于基础题.二、【2017·浙江高考】已知集合P={x|−1<x<1},Q={x|0<x<2},那么P∪Q=()A. {x|−1<x<2}B. {x|0<x<1}C. {x|−1<x<0}D. {x|1<x<2}【答案】A【知识点】并集及其运算【解析】解:集合P={x|−1<x<1},Q={x|0<x<2},那么P∪Q={x|−1<x<2}.故选:A.直接利用并集的运算法则化简求解即可.本题考查集合的基本运算,并集的求法,考查计算能力.三、【2017·天津高考】设集合A={1,2,6},B={2,4},C={x∈R|−1≤x≤5},则(A∪B)∩C=()A. {2}B. {1,2,4}C. {1,2,4,5}D. {x∈R|−1≤x≤5}【答案】B【知识点】并集及其运算、交集及其运算【解析】【分析】本题考查交、并的混合运算,是基础题.由并集概念求得A∪B,再由交集概念得答案.【解答】解:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6},又C={x∈R|−1≤x≤5},∴(A∪B)∩C={1,2,4}.故选:B.四、【2017·上海高考】已知集合A={1,2,3,4},集合B={3,4,5},则A∩B=______ .【答案】{3,4}【知识点】交集及其运算【解析】【分析】本题考查交集的求法,是基础题.利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习 好资料 精品资料 高考集合历年真题 题型1集合的基本概念 一一暂无 题型2集合间的基本关系——暂无 题型3集合的运算
AI B () Al ©B)(). 电(AUB)() A• {x | x>0} B. {x | x<1} C. {x | 0< x< 1} D. {x 10 x 1}
2 5. (2014陕西文 1)设集合 M x|x>0, x R,N x|x 1, x R,则
M I N ().
1. (2014新课标I文 1)已知集合M {x| 1 x 3},N {x| 2 x 1},则
A. ( 2,1) B.( 1,1) C. (1,3) D.
( 2,3)
2. (2014新课标U文 1)已知集合A 2,0,2 , B x|x2 x 2 0,则
A. B. 2 C. 0 D. 2 3 (2014江西文2)设全集为 集合 {x|x2
9 0}, B {x| 1 xW5}
,则
A.( 3,0) B.( 3, 1) C.( 3, 1] D.( 3,3)
4 (2014辽宁文1) 已知全集 {x | x< 0} , B {x |x>1},则集合 学习 好资料
精品资料 A. O'1 B. O'1 C. O'1 D. O'1
6. (2014四川文1)已知集合A x x 1 x 2,0,集合B为整数集,则 AI B (). A. 1,0 B. 0,1 C. 2, 1,0,1 D. 1,0,1,2 7. (2014北京文 1)若集合 A 0,1,2,4 , B 1,2,3,则 AI B ()
A. 0,1,2,3,4 B. 0,4 C. 1,2 D. 3 8. ( 2014大纲文 1)设集合 M {1,2,4,6,8} N {1,2,3,5,6,7},贝U M I N 中元素的 个数为(). A. 2 B. 3 C. 5 D. 7 9. (2014福建文1)若集合P x2W x 4 ,Q xx\3 ,则PIQ等于()
A. x 3< x 4 B. x 3 x 4 C. x 2< x 3 D. x 2< x< 3
10. (2014广东文1) 已知集合M 2,3,4 ,N 0,2,3,5 ,则Ml N ( A. 0,2 B 2,3 C. 3,4 D. 3,5 11. (2014湖北文1) 已知全集U 1,2,3,4,5,6,7 , 集合A 1,3 ,5,6 , 则ej A
( ). A. 1,3,5,6 B. 2,3,7 C. 2,4,7 D . 2 ,5 ,7
12. (2014湖南文2) 已知集合A {x|x 2} , B ;{x|1 x 3}, 则AI B
( ). A.{ x | x 2} B. {: x | x 1} C.{x |2 x 3} D. {x|1 x 3}
13. (2014江苏1)已知集合A 2, 1,3,4 , B 1,2,3 ,贝U AI B .
14 (2014 重庆文 11) 已知集合A {3 ,4,512,13}, B {2 ,3,5,813},则 AI B
15. (2015重庆文1) 已知集合A 1,2,3 , B 1,3 , 则AI B (). 学习 好资料 精品资料 A. {2} B. {1,2} C. {1,3} D. {1,2,3} 学习 好资料
精品资料 集合AI B中元素的个数为( 5x3 AI B ()
16. (2015广东文1)若集合M 1,1,N 2,1,0 ,贝U M I N (). A. 0, 1 B 0 C 1 D .
1,1
17. (2015天津文 1) 已知全集U 1,2,3,4,5,6 ,集合A 2,3,4 「集合
B 1,3,4,6, 则集合AI eUB ( ). A. 3 B. 2,5 C. 1,4,6 D. 2,3,5 18. (2015安徽文2) 设全集U 1,2,3,4,5,6 , A 1,2, B 2,3,4,贝U AI Qj B ( ). A. 1,2,5,6 B. 1 C. 2 D. 1,2,3,4
19. (2015全国I文1)已知集合A {xx 3n 2,n N}, B {6,8,10,12,14},则
A. 5 B. 4 C. 3 D. 2 20. (2015北京文
1)若集合A x 3,则 AI
A. 3x2 B. 2 C. D.
21. (2015全国 II
文1) 已知集合
A {x| 1 x 2},
A. 1,3 B. 1,0 C. 0,2 D. 2,3
22. (2015山东文1)已知集合A x|2 x x|(x 1)(x 3) 0 ,则 学习 好资料
精品资料 A. (1,3) B. (1,4) C. (2,3) D. (2 ,4)
23. (2015四川文 1
) 设集合
1 x 2,集合
x1 x 3
,
则 AUB ( ).
A. x B. C. x1 D. x2 x 3 24. (2015浙江文
1
) 已知集合
2
x 2x …3 ,
PI A. 3,4 B. 2,3 C. 1,2 D. 13
25. (2015湖南文
11)已知集合
123,4 1,3 1,3,4
,则
AU ejB
26.( 2015江苏1)已知集合A 1,2,3 2,4,5,则集合AUB中元素的 个数
27. ( 2016北京文 1)已知集合A x2
AI B ( ). A. B. C.
D. 28. (2016全国丙文
1)
设集合 A {0,2,4,6,8,10},
B {4,8},则 EAB (
A. 4,8 B. 0,2,6 C. 0,2,6,10 D. 0,2,4,6,8,10 29. (2016全国甲文
1) 已知集合A 1,2,3 ,
B
2
x|x 9,则
AI B 学习 好资料 精品资料 A. 2, 1,0,1,2,3 B. 2, 1,0,1,2 C. 1,2,3 D. 1,2
30. (2016山东文 1
) 设集合U {1,2,3,4,5,6} A {13,5} B {3,4,5},
eu(AUB)=( A.{2,6} B. {3,6} C. {1,3,4,5} D.{1,2,4,6} 31. (2016浙江文 1) 已知全集 1,2,345,6 , 集合 13,5 , Q 12,4
,
则 euP UQ ( A. B. 3,5 C. 1,2,4,
6 D.
1,2,3,4,5
32. (2016 江苏卷 )已知集
合
A 1,2,3,6
AI 33. (2016上海文1)设 R,则不等式 1的解集
为
34. (2017全国1文1)
已知集合A 2 , B x 3 2x
0,则(
AI B x B. AI B C. AU B x D. AU B
35. (2017全国2文1) 设集合A 1,2,3 , 2,3,4,贝U U B=(). A. 1,2,3,4 B. 1,2,3 C. 2,3,4 D. 1,,
36 (2017全国3文1) 已知集合A
1,2,3,4 ,
2,4,6,8 ,贝U AI B中元素的
个数为(). B. 2 C. 3
D.
37. (2017北京文 1)已知U R,集合A {x|x 2或x 2},则 eU A ().
A.( 2,2) B.( , 2)U(2, ) C.[ 2,2] D.( , 2]U[2,) 学习 好资料 精品资料 38. (2017山东文1)设集合M x x 1 1 , N x x 2,则M I N ()
A. 1,1 B. 1,2 C. 0,2 D. 1,2 39 (2017天津文1)设集合A 1,2,6 ,B 2,4 , C 1,2,3,4 ,则 AU B I C (). A. 2 B. 1,2,4 C. 1,2,4,6 D. 1,2,3,4,6 40. (2017浙江1)已知集合P x 1 x 1 , Q x 0 x 2, 那么PUQ
().
A. 1,2 B. 01 C. 1,0 D. 1,2