高考数学概率统计汇编

合集下载

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(无答案)排列与组合1. (2023甲卷理科T9)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A.120B.60C.40D.302. (2023乙卷理科T7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种3. (2023新一卷T7)记S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列:乙:{nn S }为等差数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件4. (2023新一卷T13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有 种(用数字作答)5. (2023新二卷T3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同抽样结果共有( )A.1520045400C C ⋅种 B.4020020400C C ⋅种 C.3020030400C C ⋅种 D.2020040400C C ⋅种 6. (2023上海卷T10)已知(1+2023x )100+(2023−x )100=a 0 +a 1x +a 2x 2+…+a 100x 100,其中a 0,a 1,a 2…a 100∈R若0≤k ≤100且k ∈N,当a k <0时,k 的最大值是 .7. (2023上海卷T12)空间内存在三点A 、B 、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A 、B 、C 可以组成正四棱锥,求方案数为 .8. (2023天津卷T11)在(2x 3-x1)6的展开式中,x 2项的系数为 . 概率与统计1. (2023甲卷理科T6)有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.12. (2023甲卷文科T4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为3. (2023乙卷理科T5,文科T7)设O 为平面坐标系的坐标原点,在区域{(x,y)|1≤x 2+y 2≤4}内随机取一点,记该点为A,则直线OA 的倾斜角不大于4的概率为 ( )4. (2023乙卷文科T9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A. B. C. D.5. (2023新一卷T 9)有一组样本数据x 1,x 2,…,x 6,其中x 1是最小值,x 6是最大值,则A.x 2,x 3,x 4,x 5的平均数等于x 1,x 2,…,x 6的平均数B.x 2,x 3,x 4,x 5的中位数等于x 1,x 2,…,x 6的中位数C.x 2,x 3,x 4,x 5的标准差不小于x 1,x 2,…,x 6的标准差D.x 2,x 3,x 4,x 5的极差不大于x 1,x 2,…,x 6的极差6. (2023新二卷T12)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码:三次传输时,收到的信专中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.(2023上海卷T9)国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为8.(2023上海卷T14)根据身高和体重散点图,下列说法正确的是( )A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.(2023天津卷T7)调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数r ,下列说法正确的是( )0.8245A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是0.824510.(2023天津卷T13)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.11.(2023甲卷理科T19)为探究某药物对小鼠的生长作用,将40只小鼠均分为两组,分别为对照组(不药物)和实验组(加药物)(1)设其中两只小鼠中对照组小鼠数目为X,求X的分布到和数学期望:(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.2,14.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i)求40只小鼠体重的中位数m,并完成下面2×2列联表:(i)根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用参考数据:12.(2023甲卷文科T19)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g)试验,结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数(2)(i)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表(∈)根据(∈)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()()22n ad bc a b c d a c b d χ-=++++13. (2023乙卷理科T17文科T17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,y(i=1,2,…10),试验结果如下记zi=xi -yi(i=1,2,…,10),记z 1,z 2,…,z 1的样本平均数为z ,样本方差为s 2,(1)求z ,s 2 (2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2102s ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)14. (2023新一卷T21)甲、两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮,无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率:(3)已知:若随机变量x 服从两点分布,且P(x i =1)=1−P(x i =0)=q i,i=1,2,…,n,则∑∑=n i ni i i q X )(E ,.记前n 次(即从第1次到第n 次)投篮中甲投篮的次数为Y ,求E(Y)15. (2023新二卷T19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将患者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的概率作为相应事件发生的概率(1)当漏诊率p(c)=0.5%时,求临界值c 和误诊案q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值16.(2023上海卷T19)21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到的模型为红色外观,事件B取到模型有棕色内饰,求P(B)、P(B/A),并据此判断事件A和事件B是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望。

高考数学概率统计专题题库

高考数学概率统计专题题库

高考数学概率统计专题题库概率统计是高考数学中的一大重点,对于学生来说是一个难点。

为了帮助同学们更好地掌握概率统计的知识,我们特地整理了一套专题题库,旨在提高同学们的题目解答能力。

以下是该题库中的一些典型题目,供同学们参考。

1. 事件A与事件B相互独立,且P(A)=0.2,P(B)=0.3,求P(A∩B)。

解析:由于事件A与事件B相互独立,所以P(A∩B) = P(A) * P(B)= 0.2 * 0.3 = 0.06。

2. 已知事件A的概率为0.6,事件B的概率为0.4,事件A与事件B相互独立,求事件A或事件B发生的概率。

解析:由于事件A与事件B相互独立,所以P(A或B) = P(A) + P(B) - P(A∩B) = 0.6 + 0.4 - (0.6 * 0.4) = 0.76。

3. 有一批产品,其中80%是合格品,20%是次品。

从中随机抽取3个产品进行检验,求恰好有1个次品的概率。

解析:使用组合数的知识,可以知道从总共的产品中选择1个次品和2个合格品的方法有C(1,1) * C(2,0) = 1种。

所以恰好有1个次品的概率为P = (0.2 * 0.8 * 0.8) = 0.128。

4. 某市共有100辆出租车,其中60辆汽车是空车,40辆汽车是有客人的。

一名乘客拦出租车时,随机选择一辆,发现是空车,求另一辆是空车的概率。

解析:由于已经知道选择的出租车是空车,所以可以将问题简化为从剩下的99辆车中选择一辆是空车的概率。

根据全概率公式,可知选择一辆是空车的概率为P = (60/100) * (59/99) = 0.3636。

5. 有一个罐子,里面有红球、黄球、蓝球各20个。

将这些球随机取出2个,求取出的两个球颜色相同的概率。

解析:首先计算红球颜色相同的概率,即取出两个红球的概率为P1 = (20/60) * (19/59) = 0.1153。

同理,黄球颜色相同的概率为P2 = (20/60) * (19/59) = 0.1153,蓝球颜色相同的概率为P3 = (20/60) * (19/59) =0.1153。

高考数学试题分类汇编概率统计与排列组合二项式定理

高考数学试题分类汇编概率统计与排列组合二项式定理

概率统计及排列组合二项式定理安徽理(12)设()x a a x a x a x 2122101221-1=+++,则 .(12)1120C 【命题意图】本题考查二项展开式.难度中等. 【解析】101110102121(1)a C C =-=-,111011112121(1)a C C =-=,所以 a a C C C C C C 1110101110111011212120202120+=-=+-=.(20)(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。

现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,,p p p 123,,p p p 123,假设,,p p p 123互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。

若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,,q q q 123,其中,,q q q 123是,,p p p 123的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ;(Ⅲ)假定p p p 1231>>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。

(20)(本小题满分13分)本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理及演绎推理,分类读者论论思想,应用意识及创新意识.解:(I )无论以怎样的顺序派出人员,任务不能被完成的概率都是)1)(1)(1(321p p p ---,所以任务能被完成的概率及三个被派出的先后顺序无关,并等于.)1)(1)(1(1321133221321321p p p p p p p p p p p p p p p +---++=----(II )当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是.23)1)(1(3)1(2212121211q q q q q q q q q EX +--=--+-+=(III )(方法一)由(II )的结论知,当以甲最先、乙次之、丙最后的顺序派人时,.232121p p p p EX +--=根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于321,,p p p 的任意排列321,,q q q ,都有≥+--212123q q q q ,232121p p p p +--……………………(*)事实上,)23()23(21212121p p p p q q q q +---+--=∆.0)]())[(1())((1())(2()()()()(2)()(221211221112221211221121212211≥+-+-≥--+--=-----+-=+--+-=q q p p q q p q q p p q p q p q p q p q p q q p p q p q p即(*)成立.(方法二)(i )可将(II )中所求的EX 改写为,)(312121q q q q q -++-若交换前两人的派出顺序,则变为,)(312121q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减小均值.(ii )也可将(II )中所求的EX 改写为212123q q q q +--,或交换后两人的派出顺序,则变为313123q q q q +--.由此可见,若保持第一个派出的人选不变,当23q q >时,交换后两人的派出顺序也可减小均值. 综合(i )(ii )可知,当),,(),,(321321p p p q q q =时,EX 达到最小. 即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于 (A )110(B) 18 (C) 16 (D) 15(9)D 【命题意图】本题考查古典概型的概率问题.属中等偏难题. 【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D.(20)(本小题满分10分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份 2002 2004 2006 2008 2010 需求量(万吨)236 246257276286(Ⅰ)利用所给数据求年需求量及年份之间的回归直线方程y bx a =+;(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。

2024高考数学精选概率统计真题历年汇编

2024高考数学精选概率统计真题历年汇编

2024高考数学精选概率统计真题历年汇编2024年高考数学考试,概率统计部分是考生们关注的重点。

为了帮助大家更好地复习备考,本文将汇编2024年高考数学概率统计部分的精选真题。

以下是真题内容及解析。

一、选择题1. 设随机变量X的概率分布列为X 0 1 2 3 4P(X) a 2a 4a 6a 8a则a的取值范围是:A. [0, 1/20]B. [0, 1/8]C. [0, 1/6]D. [0, 1/4]解析:根据概率分布列的性质,各事件的概率之和应为1,即a + 2a + 4a + 6a + 8a = 1。

解得a = 1/42。

所以,a的取值范围是[0, 1/42],选项A与答案一致。

2. 设事件A、B相互独立,已知P(A) = 1/3,P(B) = 1/4,P(A∪B) = 5/12,那么P(A∩B)的值为:A. 1/12B. 1/16C. 1/18D. 5/12解析:由概率的加法定理,有P(A∪B) = P(A) + P(B) - P(A∩B)。

代入已知条件,得5/12 = 1/3 + 1/4 - P(A∩B)。

解得P(A∩B) = 1/12,选项A与答案一致。

3. 甲、乙两个工人分别负责两台机器的维修,他们各自独立地对机器进行维修,设甲在任意一天修好机器的概率为0.7,乙在任意一天修好机器的概率为0.6,那么工作两天后,有且仅有一台机器被修好的概率是:A. 0.39B. 0.42C. 0.45D. 0.48解析:根据题意,只有甲在第一天修好乙在第二天修好或甲在第二天修好乙在第一天修好这两种情况满足条件。

所以,设事件A表示甲在第一天修好,事件B表示乙在第一天修好,则所求概率为P(A)×P(B') + P(A')×P(B),计算得0.7×0.4 + 0.3×0.6 = 0.42,选项B与答案一致。

二、解答题4. 某家超市进行促销活动,消费者购买该超市某种商品的概率为0.3。

高考数学概率统计题型归纳

高考数学概率统计题型归纳

高考数学概率统计题型归纳高考数学中的概率统计是一个重要的考点,其题型多样,涵盖了众多知识点。

为了帮助同学们更好地应对高考中的概率统计题目,下面对常见的题型进行归纳和分析。

一、古典概型古典概型是概率统计中最基本的题型之一。

其特点是试验中所有可能的结果有限,且每个结果出现的可能性相等。

例如,从装有 5 个红球和 3 个白球的袋子中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解决这类问题的关键是要准确计算基本事件的总数和所求事件包含的基本事件数。

在上述例子中,基本事件的总数可以通过组合数计算,即从 8 个球中取出 2 个球的组合数;所求事件包含的基本事件数为从 5 个红球中取出 2 个球的组合数。

然后用所求事件包含的基本事件数除以基本事件的总数,即可得到所求概率。

二、几何概型几何概型与古典概型的区别在于试验的结果是无限的。

通常会涉及到长度、面积、体积等几何度量。

比如,在区间0, 5上随机取一个数,求这个数小于 2 的概率。

解决几何概型问题时,需要确定几何区域的度量,并计算出所求事件对应的几何区域的度量,最后用所求事件对应的几何区域的度量除以总的几何区域的度量,得到概率。

三、相互独立事件与条件概率相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。

例如,甲、乙两人分别独立射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求两人都击中目标的概率。

条件概率则是在已知某个事件发生的条件下,求另一个事件发生的概率。

比如,已知某班级男生占 60%,女生占 40%,男生中优秀的比例为30%,女生中优秀的比例为 20%,现从班级中随机抽取一名学生为优秀,求这名学生是男生的概率。

对于相互独立事件,其概率的计算使用乘法公式;对于条件概率,使用条件概率公式进行计算。

四、离散型随机变量离散型随机变量是指取值可以一一列出的随机变量。

常见的离散型随机变量有二项分布、超几何分布等。

二项分布是指在 n 次独立重复试验中,某事件发生的次数 X 服从二项分布。

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。

在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。

为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。

1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。

2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。

连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。

3) 某音乐社有男生40人,女生60人。

从中随机抽取一人,求抽到女生的概率。

2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。

现从中不放回地连续抽取3个产品,求至少有一个次品的概率。

2) 某餐厅的饭菜有4个主食和6个副食。

现从中选择2个饭菜,求至少有一个主食的概率。

3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。

求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。

现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。

(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。

在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。

祝同学们取得优异的高考成绩!。

历年(2020-2023)全国高考数学真题分类(概率统计)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(概率统计)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(概率统计)汇编【2023年真题】1.(2023·新课标II 卷 第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有 A. 4515400200C C ⋅种B. 2040400200C C ⋅种C. 3030400200C C ⋅种D. 4020400200C C ⋅种2. (2023·新课标I 卷 第9题)(多选)一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差3.(2023·新课标II 卷 第12题)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1;α-发送1时,收到0的概率为(01)ββ<<,收到1的概率为1.β-考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A. 采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ--B. 采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C. 采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D. 当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率4. (2023·新课标I 卷 第21题)甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率. (2)求第i 次投篮的人是甲的概率.(3)已知:若随机变量i X 服从两点分布,且111(1)1(0)P X P X q ==-==,1i =,2, ,n ,则11().nni i i i E X q ===∑∑记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求().E Y5.(2023·新课标II 卷 第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为().q c 假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()().f c p c q c =+当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.【2022年真题】6.(2022·新高考I 卷 第5题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A.16B.13C.12D.237.(2022·新高考II 卷 第13题)随机变量X 服从正态分布2(2,)N σ,若(2 2.5)0.36P x <=…,则( 2.5)P X >=__________.8.(2022·新高考I 卷 第20题)一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好 病例组 40 60 对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为.R()i 证明:(|)(|.;(|)(|)P A B P A B R P A B P A B =()ii 利用该调查数据,给出(|)P A B ,(|)P A B 的估计值,并利用()i 的结果给出R 的估计值.附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k …0.050 0.010 0.001 k 3.8416.63510.8289.(2022·新高考II 卷 第19题)在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄;(同一组数据用该区间的中点值作代表) (2)估计该地区以为这种疾病患者年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口数占该地区总人口数的16%,从该地区选出1人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(精确到0.0001).【2021年真题】10.(2021·新高考I 卷 第8题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球、甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立11.(2021·新高考II 卷 第6题)某物理量的测量结果服从正态分布,下列结论中不正确的是( )A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等12.(2021·新高考I 卷 第9题)(多选)有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中(1,2,,)i i y x c i n =+= ,c 为非零常数,则A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同13.(2021·新高考II 卷 第9题)(多选)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( ) A. 样本12,,,n x x x 的标准差 B. 样本12,,,n x x x 的中位数 C. 样本12,,,n x x x 的极差D. 样本12,,,n x x x 的平均数14.(2021·新高考I 卷 第18题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分。

2024_2025年高考数学真题分类汇编专题14概率与统计填空题文

2024_2025年高考数学真题分类汇编专题14概率与统计填空题文

专题14概率与统计(填空题)近三年高考真题1.(2024•上海)现有某地一年四个季度的GDP (亿元),第一季度GDP 为232(亿元),第四季度GDP 为241(亿元),四个季度的GDP 逐季度增长,且中位数与平均数相同,则该地一年的GDP 为 (亿元) .【答案】946(亿元).【解析】设其次季度GDP 为x 亿元,第三季度GDP 为y 亿元,则232241x y <<<,中位数与平均数相同, ∴23224124x y x y ++++=, 473x y ∴+=,∴该地一年的GDP 为232241946x y +++=(亿元).故答案为:946(亿元).2.(2024•上海)某校抽取100名学生测身高,其中身高最大值为186cm ,最小值为154cm ,依据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为 .【答案】7.【解析】极差为18615432-=,组距为5,且第一组下限为153.5,32 6.45=,故组数为7组, 故答案为:7.3.(2024•天津)甲、乙、丙三个盒子中装有肯定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为 ;将三个盒子混合后任取一个球,是白球的概率为 . 【答案】120;35. 【解析】设盒子中共有球15n 个,则甲盒子中有黑球2n 个,白球3n 个,乙盒子中有黑球n 个,白球3n 个,丙盒子中有黑球3n 个,白球3n 个, 从三个盒子中各取一个球,取到的三个球都是黑球的概率为23154620n n n n n n ⨯⨯=; 将三个盒子混合后任取一个球,是白球的概率93155n n =.故答案为:120;35.4.(2024•乙卷(文))从甲、乙等5名同学中随机选3名参与社区服务工作,则甲、乙都入选的概率为.【答案】3 10【解析】设5人为甲、乙、丙、丁、戊,从5人中选3人有以下10个基本领件:甲乙丙,甲乙丁,甲乙戊,甲丙丁,甲丙戊,甲丁戊,乙丙丁、乙丙戊,乙丁戊,丙丁戊;甲、乙被选中的基本领件有3个:甲乙丙,甲乙丁,甲乙戊;故甲、乙被选中的概率为310.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计
二、应知应会知识
1.(1)一篇英文短文中,共使用了6000个英文字母(含重复使用),其中E共使用了900次,则字母E在这篇短文中的使用频率为.
(2
计算表中各次比赛进球的频率;这位运动员投篮一次,进球的概率约为.
了解概率的频率定义,知道概率是随机事件在大量重复试验时该事件发生的频率的稳定值,会用事件发生的频率估算概率.
2.(1)一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( )
A.1 B.1
2
C.
1
3
D.
1
4
(2)盒子内有10个大小相同的小球,其中有6个红球、3个绿球和1个黄球,从中任意摸出1个球,则它不是红球的概率为( )
A.3
5
B.
2
5
C.
1
5
D.
7
10
(3)5个零件中,有一个不合格品,从中任取3个,全是合格品的概率为( )
A.3
5
B.
2
5
C.
3
10
D.
1
5
(4)6件产品中有2件次品,任取2件都是次品的概率为( )
A.
1
15
B.
2
15
C.
4
15
D.
1
5
(5)一个角的一边上有5个点,另一边上有4个点,连同顶点共10个点,从中任取3个点,可组成三角形的概率为()
A.
7
12
B.
11
12
C.
2
5
D.
3
4
(6)先后投两个骰子,正面向上的点数之和为2的概率是;正面向上的点数之和为6的概率是.
(7)从1到9的自然数中,任取两个相加,它们的和为奇数的概率为.
(8)从0、1、2、……、9这10个数字中任取5个组成没有重复数字的5位数,这个5位数恰好是25的倍数的概率为.
若一个试验的n个结果(基本事件)是等可能的,则每个基本事件发生的概率均为1
n

若事件A包含其中的m种基本事件,则()m
P A
n
.解题过程中首先要弄清楚是什么试验,它的基本事件是否等可能,然后才是利用排列组合的知识求n和m.
3.(1)从装有2个红球和2个白球的袋内任取2个球,则是互斥而不对立的两个事件是( ) A.至少有1个红球和全是白球B.至少有1个白球和至少有1个红球
C.恰有1个白球和恰有2个白球D.至少有1个白球和全是红球
(2)罐头10个,其中3个等外品,其余全是正品,从中任取3个检验,则至少有一件是等外品的概率为()
A.
3
10
B.
7
24
C.
21
40
D.
17
24
(3)一个口袋里有10个白球,8个黑球,从中取出4个球,则其中至多有两个白球的概率为()
A.21
34
B.
13
15
C.
17
25
D.
19
34
(4)3个小球各自随机地放入5个盒子中,假设每个球进入每个盒子的可能性是相等的,则至少有两个球进入同一盒子的概率为.
(5)从5名男生和4名女生中任选3名代表,则代表中至少有一名男生和一名女生的概率为.
(6)从集合{1,2,3,4,5}中任取两个数相乘,积是偶数的概率为.
对一个较复杂的事件,我们常把该事件分解成若干互斥事件的和,或通过对立事件来把握该事件.
4.(1)甲坛子里有3个白球、2个黑球,乙坛子里有2个白球、2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是.
(2)在一次问卷调查中,订阅《金陵晚报》的概率为0.6,订阅《扬子晚报》的概率为0.3,则至多订阅其中一份报纸的概率为.
(3)甲、乙、丙三人各自进行一次射击,若三人击中目标的概率依次为0.5、0.8、0.9,则
三人都击中目标的概率为 .
(4)甲、乙两人分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率是0.9,求:
①两人都击中的概率;
②两人中有1人射中的概率; ③两人中至少有1人射中的概率; ④两人中至多有1人射中的概率.
了解当两个、三个事件相互独立时,综合考虑这几个事件的发生情况,分别有4、8种结果,学会用字母表示较复杂事件.
5.(1)将一枚硬币连掷3次,出现2次正面朝上的概率为( )
A .
18 B .14 C .38 D .5
8
(2)在人寿保险事业中,如果1个投保人能活到65岁的概率为0.6,则3个投保人恰好有
2人活到65岁的概率为( )
A .0.144
B .0.216
C .0.288
D .0.432 (3)某人投篮的命中率为
2
3
,现连续投5次,则“至多投中4次”的概率为( ) A .211243 B .112243 C .80243 D .32243
(4)某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中没有
影响,则他第二次没有击中,其它3次都击中的概率是 .
(5)袋中有3个白球和2个黑球,每次摸一个,摸后放回,连摸5次.则5次中有2次摸得白球的概率是 .
若某事件在一次试验中发生的概率为P ,则在n 次独立重复试验中该事件发生k 次的
概率为()(1)k k n k
n P A C P P -=-.注意该类问题的前提条件是独立和重复,要了解该公式的
实际意义.
6.(1)为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )
A .1000名运动员是总体
B .每个运动员是个体
C .抽取的100名运动员是样本
D .样本容量是100
(2)一个总体中共有10个个体,用简单随机抽样的方法从中抽取一容量为3的样本,则某特定个体入样的概率是( )
A .
310
C 3
B .
89103⨯⨯ C .10
3
D .
10
1
(3)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则比较合适的抽样方法是___________.
(4)某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n =___________.
了解常用的抽样方法(简单随机抽样,分层抽样),体会统计的意义. 7.(1)一个容量为n 的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n
的值为( )
A .640
B .320
C .240
D .160
(2)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读
所用时间的数据,结果用右侧的条形图表示. 根据
条形图可得这50名学生这一天平均每人的课外阅
读时间为 ( )
A .0.6小时
B .0.9小时
C .1.0小时
D .1.5小时 (3)在样本的频率分布直方图中,共有11个小长
方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的
1
4
,且样本容量为160,则中间一组的频数为 .
(4)x 是12
100,,x x x 的平均数,a 是1240,,x x x 的平均数,b 是4142
100,,x x x 的平均
数,则x ,a ,b 之间的关系为 .
了解用样本频率分布估计总体分布的意义和方法,会用样本估计总体期望值和方差.
时间(小时)。

相关文档
最新文档