浮头换热器浮头法兰浮头结构
浮头式换热器的检修试压方法

浮头式换热器的检修试压方法摘要:浮头式换热器的一端管板不与壳体相连,管子受热时管束连同浮头会沿轴向内伸缩,可消除温差带来的应力,可以适用于温差较大的场合,进而将自身的作用及效果展现。
然而,浮头式换热器结构复杂,涉及的零部件高达50种,在运行时极其容易存在泄漏,且试压检漏难度较大。
基于此,本文围绕浮头式换热器开展分析,并结合运行情况提出了检修试压方法。
关键词:检修试压;浮头式换热器;温差;伸缩引言:浮头式换热器浮动端换热器芯子与壳体是敞开形式,无法形成封闭盛押体的空腔,试压工作开展时,应结合实际情况做好针对性检修,制定合理的检修试压方案,如所采用的试压工装通常为钢制构件,尺寸大且安装困难,若密封效果不理想,在检修过程中会存在问题,直接影响试压效果。
因此,在浮头式换热器检修试压工作过程中,应做好前期准备工作,对检修试压的要点进行分析,科学对检修模式进行优化,保证整体检修的可靠性,提升检修试压的效率。
1浮头式换热器概述浮头式换热器作为工业领域常见换热器,其结构复杂,涉及的零部件多,如平盖、平盖管箱、接管法兰、管箱法兰、固定管板、壳体法兰、防冲板及垫片等,在检修试压工作开展时难度高。
在运用浮头式换热器的过程中,受水分冲刷、气蚀等因素影响,管板焊缝容易产生泄漏,影响换热器的换热效果,难以保证浮头式换热器的稳定运行。
因此,在实际工作开展时,应注重对浮头式换热器的检修试压,选择合理的方式,寻找泄漏区域,并制定针对性处理措施,做好综合防范,为换热器的运行提供良好条件[1]。
2浮头式换热器的检修试压方法分析2.1管板泄漏检查换热器管板支撑是浮头式换热器的列管,隔离管程和壳程的重要介质,在制作过程中,一般情况下有两种连接方式,每种连接方式所发挥的作用有所差距,可根据实际情况选择。
①胀接式管板。
胀接主要就是通过胀管器在换热管头部位的应用,插入管板内,实现管子端部的胀大,体现良好变形作用,为管板泄漏检测提供更多帮助。
胀管器取出后,管板恢复初始状态,且换热器端部与管板接触面产生挤压力,管头与管板有效衔接,可以提升密封效果,并抵抗换热管膨胀产生的拖拉力。
换热器基本知识

一、换热器的结构型式有哪些?换热器是很多工业部门广泛应用的一种常见设备,通过这种设备进行热量的传递,以满足生产工艺的需要。
可按用途、换热方式、结构型式三种不同的方法进行分类。
按结构型式分类如下:换热器分为管式换热器、板式换热器、新型材料换热器和其他型式的换热器。
管式换热器又分为:套管式换热器、管壳式换热器、沉浸式换热器、喷淋式换热器和翅片管式换热器。
板式换热器又分为:夹套式换热器、平板式换热器、伞板式换热器、螺旋板式换热器、板翅式换热器和板壳式换热器。
新型材料换热器分为:石墨换热器、聚四氟乙烯换热器、玻璃换热器和钛材及其他稀有金属材料换热器。
其他形式的换热器包括回转式换热器和热管。
二、换热器管为什么会结垢?如何除垢?因为换热器大多是以水为载热体的换热系统,由于某些盐类在温度升高时从水中结晶析出,附着于换热管表面,形成水垢。
在冷却水中加入聚磷酸盐类缓冲剂,当水的PH值较高时,也可导致水垢析出。
初期形成的水垢比较松软,但随着垢层的生成,传热条件恶化,水垢中的结晶水逐渐失去,垢层即变硬,并牢固地附着于换热管表面上。
此外,如同水垢一样,当换热器的工作条件适合溶液析出晶体时,换热管表面上即可积附由物料结晶形成的垢层;当流体所含的机械杂质有机物较多、而流体的流速又较小时,部分机械杂质或有机物也会在换热器内沉积,形成疏松、多孔或胶状污垢。
换热器管束除垢的方法主要有下列三种。
一、手工或机械方法当管束有轻微堵塞和积垢时,借助于铲削、钢丝刷等手工或机械方法来进行清理,并用压缩空气,高压水和蒸汽等配合吹洗。
当管子结垢比较严重或全部堵死时,可用管式冲水钻(又称为捅管机)进行清理。
二、冲洗法冲洗法有两种。
第一种是逆流冲洗,一般是在运动过程中,或短时间停车时采用,可以不拆开装置,但在设备上要预先设置逆流副线,当结垢情况并不严重时采用此法较为有效。
第二种方法是高压水枪冲洗法。
对不同的换热器采用不同的旋转水枪头,可以是刚性的,也可以是绕性的,压力从10MPa至200MPa自由调节。
浅析浮头式换热器设计

156研究与探索Research and Exploration ·工艺与技术中国设备工程 2018.06 (上)浮头式换热器应按照标准GB150-2011《压力容器》、GB/T151-2014《热交换器》的要求进行选材、设计、制造、检验、验收及安装和使用。
浮头式换热器一端管板与壳体固定,另一端管板可以在壳体内自由浮动;其优点如下。
(1)因这种结构管束和壳体之间不会产生温差应力,因此管壳程介质温差不受限制。
(2)浮头盖和钩圈可以拆卸,管束可以抽出,方便设备的维修和管束的清洗。
(3)可用于结垢比较严重的场合。
(4)可用于管程易腐蚀场合。
但浮头式换热器结构比较复杂,而且在浮头盖和浮动管板密封垫处发生泄漏(无法知道泄漏情况);因此,如果管壳程介质成分要求比较严格时,尽量不要选用浮头式换热器。
浮头式换热器如图1所示,是为宁波某化工企业节能降耗项目而设计的一台双壳程双管程浮头式换热器。
该换热器主要是将塔侧采出的成品热二氯乙烷(~97℃)与裂解炉进料冷二氯乙烷进行充分热交换后,达到降低成品二氯乙烷的温度,提高裂解炉进料端二氯乙烷的温度,从而减少系统中蒸汽消耗和循环水的使用量,以减少生产成本。
图1 浮头换热器1 浮头式换热器设计计算1.1 工艺计算换热器的工艺计算有三种计算模式,即设计、模拟和校核计算。
常用的是设计与校核计算模式;设计计算的目的是根据给定的工艺参数选择换热器类型并计算热负荷,确定换热面积和部分换热器结构尺寸;校核计算的目的是对已有的换热器,校核它是否满足预定的换热要求,这是属于换热器的性能计算问题。
我们选择设计计算模式对浮头式换热器进行工艺计算,工艺参数详见表1。
表1 工艺参数壳程管程介质二氯乙烷二氯乙烷介质特性中毒危害、易爆中毒危害、易爆流量/(kg/ h)102995.6116006进/出口温度/℃9759.314077进口压力/MPa 0.892.12换热面积/㎡306进出口接管/mmDN150DN150DN150DN150程数22设备的结构数据如下:换热器型式BFS,材质为碳钢,换热器直径1000mm,换热管选用φ19×2。
浮头式换热器的结构设计透析

浮头式换热器的结构设计透析本文主要介绍了浮头式换热器的结构特点、工作原理及使用寿命所影响的因素,同时也对浮头部分做了具体的设计与结构的阐述。
标签:浮头式冷却器;浮头结构特点;浮头设计计算0 引言换热器是广泛应用于化工、石油化工、动力、医药、冶金、制冷、轻工等行业的一种通用设备。
在众多类型的换热器结构中,管壳式换热器是用得最为广泛的一种换热设备类型。
管壳式换热器制造容易,生产成本低,选材范围广,清洗方便,适应性强,处理量大,工作可靠,且能适应高温高压,虽然它在结构紧凑性、传热强度和单位金属消耗方面无法与板式或板翅式换热器相比,但它由于具有前述的一些优点,因而在化工、石油、能源等行业的应用中仍处于主导地位。
其它的结构一般是把管子与管板连接,再用壳体固定。
它的型式大致分为固定管板式,釜式浮头式,U型管式,滑动管板式、填料函式及套管式等几种,其中浮头式换热器受到广泛的应用主要特点是浮头端,其实形式可分为填料函式、钩圈式、带有套环的填料函式三種:①填料函式浮头是为解决温差膨胀而设计的。
②钩圈式浮头中,管板夹在可拆卸的部分环和盖板之间。
③带有套环的填料函浮头,其套环填料由后端封头的螺栓压紧,管束与壳体之间的间隙比较小。
现在要介绍的就是钩圈式浮头换热器。
1 浮头式换热器结构特点1.1 浮头的结构浮头式换热器,两端管板中有一端是两个容器法兰对夹式连接的,另一端可相对管板自由移动,这端称为浮头。
浮头由浮动管板、钩圈和浮头端盖组成,结构是可以拆连接。
管束可从对夹式容器法兰那侧抽出(也有设计成不可拆的),这种结构的好处在于管束与壳体不受热变形的约束,更不会产生热应力,相对来说为检修、清洗提供了方便。
在钩圈与浮头法兰依靠凹凸密封面配合,之间钻孔并套丝或焊设多个螺柱均布,分程隔板与浮头法兰密封面相通并位于同一端面并且管板凹面相匹配,该浮头法兰与无折边球面封头组配焊接为浮头盖。
其法兰螺孔与浮头管板的螺孔或螺柱相组配,用螺栓或螺帽紧固压紧浮头管板凹型与浮头法兰凹型槽及分程凹槽及其垫片,该结构必要时可适当加在浮头自由端那部分管板的厚度,和直径及圆筒的内径,可根据热力计算确定流速来其调整。
浮头换热器结构设计要点要点

浮头换热器结构设计常用要点汇总(根据标准和手册综合整理)(碳钢、卧式、内导流)2011-11-11目录一、换热管————————————————————————————3二、筒体、隔板————————————————————————————3三、法兰——————————————————————————————3四、缠绕垫片————————————————————————————3五、双头螺柱/带肩双头螺柱/支耳————————————————————4六、管板结构————————————————————————————5七、钩圈与浮动管板——————————————————————————8八、折流板与支持板——————————————————————————9九、拉杆——————————————————————————————10十、滑道———————————————————————————————10 十一、内导流筒与防冲板———————————————————————11 十二、防短路结构—————————————————————————12 十三、排液(排气)口—————————————————————————13 十四、吊耳与顶丝——————————————————————————14附件1: Ⅰ级管束的管板管孔/折流板管孔—————————————————15 附件2 球面封头半径SR尺寸—————————————————————15 附件3 隔板槽处管孔中心距—————————————————————15 附件4 关于螺纹的一般要求—————————————————————15 附件5 关于技术要求—————————————————————15 附件6 分程隔板密封面加工——————————————————————16一、换热管(冷拔管)1.常用规格(PN≤6.4MPa):φ25x2.5 φ19x2 ;常用材料:10#、20#外径偏差:±0.3(GB/T8163-2008)------仅为Ⅱ级管束(±0.2为Ⅰ级)普通级:±0.2 高级:±0.15 (GB9948-2006)----均为Ⅰ级管束可见,GB9948中普通级已达到GB151中高精度要求2.长度L:3、4.5、5、6、7.5、9、12m3.管心距:规格φ25x2.5 φ19x2管心距32 25分程隔板处44 (转角正方形取32x2-1/2=45.25)384.换热管数据:规格质量Kg/m 外表面积m2/m 内表面积m2/m 内截面积cm2φ25x2.5 1.390 0.0785 0.0628 3.142φ19x2 0.838 0.0597 0.0471 1.7675.换热管伸出管板最小长度(强度焊):规格φ25x2.5 φ19x2长度 2 1.5二、筒体、分程隔板1.筒体规格:1)无缝钢管制筒体:DN300(φ324)2)钢板制筒体:DN400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800。
常见一般换热器结构、优缺点及适用范围

一般常见换热器结构、优缺点及适用范围浮头换热器结构:两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。
浮头由浮头管板,钩圈和浮头盖组成,是可拆连接,管束可从壳体中抽出。
管束与壳体的热变形互不约束,不会产生热应力。
优点:可抽式管束,当换热管为正方形或转角正方形排列时,管束可抽出进行机械清洗,适用于易结垢及堵塞的工况。
一端可自由浮动,无需考虑温差应力,可用于大温差场合。
缺点:结构复杂,造价高,设备笨重,材料消耗大。
浮头端结构复杂影响排管数。
浮头密封面在操作时,易产生内漏。
适用范围:适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
浮头换热器在炼油行业或乙烯行业中应用较多,由于内浮头结构限制了使用压力和温度一般情况Pmax≤6.4MPa,Tmax≤400℃。
固定管板换热器结构:管束连接在管板上,管板与壳体相焊。
优点:结构简单紧促,能承受较高压力,造价低,管程清洗方便,管子损坏时方便堵管或更换。
排管数比U 形管换热器多。
缺点:管束与壳体的壁温或材料的线胀系数相差较大时,壳体和管束中将产生较大热应力,为此应需要设置柔性元件(如膨胀节)。
不能抽芯无法进行机械清洗。
不能更换管束,维修成本较高。
适用范围:壳程侧介质清洁不易结垢,不能进行清洗,管程与壳程两侧温差不大或温差较大但壳侧压力不高的场合。
管壳式换热器的管子是换热器的基本构件,它为在管内流过一种流体和穿越管外的另一种流体之间提供传热面。
根据两侧流体的性质决定管子材料,将具有腐蚀性,水质差的海水放在管内流动,水质较好的除盐水放在管子外壳侧,这样管子只需采用耐海水腐蚀的钛管,同时清洗污垢较为方便,管径从传热流体力学角度考虑,在给定壳体内使用小直径管子,可以得到更大的表面密度但大多数流体会在管子表面上沉积污垢层,尤其管内冷却水水质较差,泥沙和污物及海生物的存在,都可能会在管壁上形成沉积物,将传热恶化并使定期的清洗工作成为必要,管子清洗限制管径最小约为20 mm,钛管一般采Φ25 mm,对给定的流体,污垢形成主要受管壁温度和流速的影响,为得到合理的维修周期,管内侧水的流速应在2 m/s左右(视允许压降的要求)。
浮头盖的设计要点
4球 冠 形 封 头
球 冠 形 封 头 球 面 内半 径 按 G 5 表 4 的规 定 B1 1 6 取 值 ,根 据 公 式 ( 5 即可 得 出计 算 厚 度 ,然 后 4) 根 据计 算 厚 度取 一 个适 当 的名 义厚 度 6l 。此 时注 ' l 意 浮 头 法 兰 计 算 时 ,球 冠 形 封 头 的名 义 厚 度 应 输 入 实 际厚 度 ,腐 蚀 裕量 输 入 0 ,并考 虑 腐 蚀前 、腐 蚀后 两种 工 况 。 腐 蚀 前 : 实 际 厚度 = 义 厚 度 一 名 厚度 负偏 差 一 成 型减 薄量 腐 蚀 后 :实 际 厚度 = 义 厚 度 . 度 负偏 差 一 名 厚 成 型减 薄量 一 蚀裕 量 腐 如 果 球 冠 形 封 头 的名 义 厚 度 与 实 际 厚度 对 应 的材 料 许 用 应 力 不 一 样 , 则还 需 计 算 一种 工 况 , 主 要 是核 算 球 冠 形封 头 厚度 是 否 合格 ,球 冠 形封 头 的名 义 厚度 输 入 名 义 厚度 , 腐蚀 裕 量 输 入 实 际 腐 蚀裕 量 加厚 度 负偏 差 。
67 ~ mm  ̄ 可 。 O
2双 头 螺 柱
螺 柱 的规 格 和 数 量 可 参照 设备 法 兰 的螺 栓 规 格 , 由于 浮数 量 可 根 据情 况 适 当减 少 。 当浮 头 端 空 间尺 寸 不 够 时 ,可 采 用减 小 螺栓 尺 寸 而 增 加 螺 栓 数量 的方 法 ,此 时应 注 意 核 算 螺栓 间距 是 否 满 足 GB1 0 表 5
当2 >l 2 时 ,法 兰 计 算 厚度 开始 转 为 由正 6 >0 压 工 况 决 定 ,并 在 这 个 区 间 内计 算 厚 度 保 持 不 变
当Di 7 0 n 0,b = < 0 ,b >1 l 3;
换热器试压方案(4篇)
换热器试压方案一、浮头式换热器的概述浮头式换热器的一端管板是固定的。
与壳体刚性连接,另一端管板是活动的,与壳体之间并不相连。
活动管板一侧总称为浮头,浮头式换热器的管束可从壳体中抽出,故管外壁清洗方便,管束可在壳体中自由伸缩,所以无温差应力;但结构复杂、造价高,且浮头处若密封不严会造成两种流体混合。
浮头式换热器适用于冷热流体温差较大(一般冷流进口与热流进口温差可达110℃),介质易结垢需要清洗的场合。
二、浮头式换热器的总体结构三、浮头式换热器的特点1、浮头式换热器的优点(1)管束可以抽出,以方便清洗管、壳程。
(2)介质间温差不受限制。
(3)可在高温、高压下工作,一般温度小于等于450°,压力小于等于____mpa。
(4)可用于结垢比较严重的场合。
(5)可用于管程易腐蚀场合。
2、浮头式换热器的缺点(1)小浮头易发生内漏。
(2)金属材料耗量大,成本高____%。
(3)结构复杂。
三、浮头式换热器的应用浮头式换热器适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
四、浮头式换热器的导流结构为使壳程进口段管束充分传热,浮头式换热器可采用内导流或外导流结构。
1、内导流浮头式换热器内导流筒换热器是在换热器的壳程筒体内设置了内导流筒使换热器的前或后端未加导流筒前难以利用换热的换热管得以充分利用,从而增大换热器的有效换热面积。
2、外导流浮头式换热器外导流式换热器是在原换热器的壳程筒体上增加一个放大筒节用以扩散壳程流体,并使流体从换热器壳程的两端进入壳程,从而避免了在换热器布管时考虑布管弓形的高,而使增加了同规格上换热器的布管数目并有效利用了换热器前后端的换热管从而增大了有效换热面积。
换热器试压方案(二)【关键词】换热器____【论文摘要】依据:《石油化工换热器设备施工及验收规范》sh3532-95《中低压化工设备施工与验收规范》hgj209-83《现场设备、工业管道焊接工程施工及验收规范》gb50236-98《石油化工施工安全规程》sh3505-99换热器设备装配图;业主提供的施工程序文件;一、依据:《石油化工换热器设备施工及验收规范》sh3532-95《中低压化工设备施工与验收规范》hgj209-83《现场设备、工业管道焊接工程施工及验收规范》gb50236-98《石油化工施工安全规程》sh3505-99换热器设备装配图;业主提供的施工程序文件;二、施工工艺程序:三、方法:1、施工准备:1-1、施工现场的“三通一平”已具备,设备基础已中交合格;1-2、施工方案已编制,并已审批;1-3、施工所需的机具、人员已经到位;1-4、所有用于测量的仪器已进行校核,并在使用合格周期内。
浮头式换热器(过程设备设计课程设计说明书)
目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。
换热器工作原理
管壳式换热器的三种分类管壳式换热器按照应力补偿的方式不同,可以分为以下三个种类:1、固定换热器管板式换热器固定管板式换热器是结构最为简单的管壳式换热器,它的传热管束两端管板是直接与壳体连成一体的,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。
固定管板式换热器的热应力补偿较小,不能适应温差较大的工作。
2、浮头式换热器浮头式换热器是管壳式换热器中使用最广泛的一种,它的应力消除原理是将传热管束一段的管板放开,任由其在一定的空间内自由浮动而消除热应力。
浮头式换热器的传热管束可以从壳体中抽出,清洗和维修都较为方便,但是由于结构复杂,因此浮头式换热器的价格较高。
3、U 型管换热器U 型管换热器的换热器传热管束是呈 U 形弯曲换热器,管束的两端固定在同一块管板的上下部位,再由管箱内的隔板将其分为进口和出口两个部份,而完全消除了热应力对管束的影响。
U 型管换热器的结构简单、应用方便,但很难拆卸和清洗。
管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。
管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特殊是在高温高压和大型换热器中的应用占领绝对优势。
通常的工作压力可达 4 兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。
普通壳体直径在1800 毫米以下,管子长度在 9 米以下,在个别情况下也有更大或者更长的。
工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。
A 流体从接管 1 流入壳体内,通过管间从接管 2 流出。
B 流体从接管 3 流入,通过管内从接管 4 流出。
如果 A 流体的温度高于 B 流体,热量便通过管壁由 A 流体传递给 B 流体;反之,则通过管壁由B 流体传递给 A 流体。
壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A 流体)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浮头式换热器浮动端的结构——钩圈式浮头浮头换热器的浮头部分结构设计,除需考虑管柬能在设备内部自由伸缩,及检修、安裴、清洗方便外,还应保证浮头端盖的密封。
而钩圈对保证浮头端的密封、防止管壳间介质的串漏起重要的
作用。
一、钩圈式浮头的结构及尺寸:
5.7.1钩圈式浮头的结构及尺寸
钩圈式浮头的详细结构见图5.7盖侧法兰一
1。
外头盖法兰 B型钩圈浮头盖法兰图5. 7-1(或者GB151第82页图50)
图5. 7-1中结构尺寸及符号说明如下:
a-根据管束和壳体的伸缩量来确定;
及、b2、bn -按5.3.3的规定; (GB151第25页)
C-安装及拧紧浮头螺母所需空间尺寸,应考虑在各种情况下的热膨胀量,
宜不小于60mm;
Dfi——浮头法兰和钩圈的内直径,dfo=Di-2 (b1+ bn),mm:
Dfo——浮头法兰和钩圈的外直径,Dfo=Di+80,mm;
Di——换热器圆筒内直径,mm:
D L——布管限定圆直径,按5.5.3确定,mm:(GB151第25页)
D-外头盖内直径,~Di+100,mm:
Do——浮动管板外直径,Do=Di-2b1,mm。
图5.7.2钩圈:
钩圈对保证浮头端的密封、防止介质间的串漏起着重要的作用。
随着浮头换热器的设计、制造技术的发展、以及长期以来使用经验的积累,钩圈的结构形式也得到了不断的改进和完善。
钩圈一般都是对开式结构,要求密封可靠,结构简单、紧凑、便于制造和拆装方便。
二、钩圈分类:
5.7.2.1 A型钩圈和B型钩圈,GB151给出了两种型式的钩圈,即A型钩圈和B型钩圈。
见图5.7-2a、b。
A型钩圈在上世纪70年代及以前采用较多,由于A型钩圈的底部距浮动管板较远,使得浮头端壳程介质的死角增大,减少管束的有效传热面积。
且A型钩圈的厚度比B型钩圈厚一上紧双头螺柱也比B型长,稳定性差。
B型钩圈为国外引进型式,其特点是浮头管板和钩圈的斜槽采用不同倾角,浮头管板斜角采用18。
,外圈斜角2×45。
,钩圈斜角采用17。
,钩部厚度a-般在25~30mm之间,钩部宽度b的尺寸是随换热器内径的增大而增大,管板外径与钩圈内径的间隙控制在0. 2~0. 4mm之间。
这样,在上紧双头螺柱时间隙将消失而使管板对钩圈起到支撑并控制钩圈转角的作用,即保证了螺栓的弯曲变
形在允许范围内,又保证了有效密封的作用,见图5. 7-3。
本手册推荐采用B型钩圈结构。
5.7.2.2 B型钩圈和浮动管板的结构及尺寸a)GB151给出了B型钩圈与浮动管板相配合的尺寸,允许偏差以及B型钩圈的设计厚度计算形式,见图5. 7-4和式(9)。
5.7.2.3 A型钩圈的结构及尺寸计算,详见GB151的规定。
5.7.3浮头盖5.7.3.1浮头盖的结构见图5. 7-5,图5. 7-5
5.7.3.2多管程的浮头盖,其最小内侧深度应使相邻管程之间的横跨流通面积至少等于每程换热管流通面积的1.3倍。
单管程的浮头盖,其接管中心处最小内侧深度为接管内径的三分之一。
5.7.3.3分程隔板的最小厚度按5.1.7.1条的规定5.7.3.4浮头盖的设计计算球冠形封头,浮头法竺应分别按管程设计压力和壳程设计压力作用下进行内压和外压的设计计算,取其大者为计算厚度。
详细的计算方法和步骤应符合GB151的规定,设计者可用SW6计算软件进行计算。
在计算浮头法兰时,建议GB151表47中的参数计算,即球冠形封头在浮头法兰上的定位尺寸取为卢万,、+2mm。
(万。
——球冠形封头各部分厚度),见图5.7-5。
注:上述参数,(或上.)的确定系浮头法兰设计的关键,我国的专业期刊和文献对此多有论述,设计者可参阅《石
5.7.4 单程浮头换热器钩圈式浮头端结构
单程浮头换热器的管程出口处的结构可有以下两种:
1)填料函结构,见图5. 7-6。
2)带膨胀节的结构,见图5.7-7。
图5. 7-6
5.8 填料函式换热器
图5. 7-7
填料函式换热器适用于温差较大、介质腐蚀严重而经常更换管束的场合,其结构较浮头式简单,
制造方便,造价较低。
但是由于填料密封处易于泄露,所以壳程压力不能过高,也不适用于壳程内
为易挥发、易燃、易爆、有毒介质的场合。
5.8.1填料函结构型式:
填料函式换热器的结构塑式可分为外填料函浮头式,单填料函滑动管板式和双填料函滑动管板
式三种。
5.8.1.1外填料函式浮头换热器宜用于2. 5MPa以下,其结构及尺寸见图5.8-1和表5.8-1。
表5. 8-1
5.8.1.2单填料函滑动管板结构及尺寸参见图5. 8-2和表5.8-1
a) b)
图5. 8-2
图5. 8-2a)的结构不适用于管、壳程介质严禁混合的情况;图5.8-2b)的
结构可以从套环中间孔检查介质泄露的情况。
5.8.1.3双填料函滑动管板结构及尺寸见图5. 8-3。
该结构具有双重填料,内层填料对管、壳程进行密封;外层填料主要起保护作用,收集泄露的介质,并由接管引出。
此种结构用于要求比较严格的场合。
5.8.2有关填料函的一般规定
a)宜在填料函底部设置一个软金属环,见图5. 8-1的放大图I,软金属环与裙板之间的间隙应小
于管板裙和填料函之间的最小间隙。
b)浮动管板裙向外延伸,见图5. 8-2a)和图5.8-3。
当管板裙必须向内延伸时,应采取适当的方
法防止壳程与管板之间产生较大的流体停滞区。
c)凡与填料接触的管板、管板裙及填料函的表面均应进行机加工,表面粗糙度Ra≤12.5 u m。
5.8.3填料的选择
填料的选择应根据管、壳程介质、操作温度、操作压力等确定,可以采用石油浸石棉填料、橡
胶石棉填料、聚四氟乙烯浸石棉填料和柔性石墨填料。