沪科版 全等三角形归类复习学习资料
沪科版八年级数学上册期末复习-三角形

沪科版八年级数学上册期末复习 2一、三角形1、三角形的分类:(1)按边分类:( 2)按角分类:不等边三角形直角三角形三角形三角形锐角三角形等腰三角形(等边三角形是特例)斜三角形钝角三角形2、三角形三边的关系:三角形中任何两边的和大于第三边;任何两边的差小于第三边 .3、三角形内角和定理、外角及其推论:(1)三角形内角和定理:三角形三个内角的和等于 180° .(2)推论 1:直角三角形的两个锐角互余 .(3)三角形的外角:由三角形的一边与另一边的延长线组成的角,叫做三角形的外角 . 三角形的外角与它相邻的内角互补 .(4)推论 2:三角形的一个外角等于与它不相邻的两个内角的和.(5)推论 3:三角形的一个外角大于与它不相邻的任何一个内角.4、三角形中的重要线段(1)在三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线 .(2)在三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线 .(3)从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高 .注意:①一个三角形有三条中线、三条角平分线、三条高,并且它们都是线段;②三角形的三条中线、三条角平分线都在三角形内部,且交于一点;而三角形的高未必在三角形内部 .5、命题(1)凡是可以判断出真(正确)、假(错误)的语句叫做命题 .(2)命题分为真命题和假命题 .( 3)命题的组成:每个命题都由条件和结论两部分组成 .(4)几何推理中,把那些从长期实践中总结出来,不需要再作证明的真命题叫做公理 .如:经过两点,有且只有一条直线;两点之间,线段最短;两直线平行,同位角相等;同位角相等,两直线平行;平行公理:过直线外一点,有且只有一条直线与已知直线平行;经过直线外或直线上一点,有且只有一条直线与已知直线垂直 . (5)正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理 .如:对顶角相等;内错角相等,两直线平行;在平面内,垂直于同一条直线的两直线互相平行.二、全等三角形1、能够完全重合的两个图形,叫做全等形;能够完全重合的两个三角形,叫做全等三角形2、全等三角形的性质:全等三角形的对应边相等,对应角相等;对应边上的中线、对应边上的高、对应的角平分线分别相等;全等三角形的周长相等,面积相等 .注:用全等符号“≌” 表示两个全等三角形时,通常把表示对应顶点的字母写在对应位置上∴△ ABC ≌△ DEF三、轴对称图形1、 轴对称图形 :如果一个图形沿一条直线折叠, 图形叫做 轴对称图形 . 这条直线叫做 对称轴 .2、 轴对称 :如果一个图形沿着一条直线折叠,它能够与另一个图形重合,那么称这两个图 形成 轴对称 . 这条直线叫做 对称轴 . 折叠后重合的点叫做 对称点 .3、全等三角形的 判定(1)“边角边”定理 : 两边和它对应相等的两个三角形全等 .(SAS ) 在△ ABC 和△ DEF 中, 2)“角边角”定理 : 两角和它们的夹边对应相等的两个三角形全等 . (ASA ) 在△ ABC 和△ DEF 中,BE ∵ BC EFCF3)“角角边”定理 : 两个角和其中一个角的对边∴△ ABC ≌△ DEF 对应相等的两个三角形全等 . ( AAS ) 在△ ABC 和△ DEF 中,另外, 边边边”定理 :三边 对应相等的两个三角形全等 BE AB DE∴△ ABC ≌△ DEF. (SSS ) 在△ ABC 和△ DEF 中,AB DE ∵BC EF AC DF∴△ ABC ≌△ DEF判定两个直角三角形全等还有另一种方法 . :斜边和一条直角边 对应相等的两个直角三角形全等 .(HL ) 在 Rt △ABC 和 Rt △DEF 中,AB DEAC DF∴ Rt △ ABC ≌Rt △DEF直线两旁的部分能够完全重合,那么这个 AB DE ∵ BEBC EF3、轴对称性质与判定:(1)如果两个图形关于某直线对称,那么对称轴垂直平分任意一对对应点的所连线段(2)如果两个图形各对对应点的所连线段被同一条直线垂直平分,那么这两个图形关于这条直线对称 .4、轴对称和轴对称图形的区别与联系四、线段的垂直平分线1、经过线段的中点,并且垂直于这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线 .2、线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端距离相等 .3、线段垂直平分线的判定定理:与线段两端距离相等的点在这条线段的垂直平分线上 .4、三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等 .五、等腰三角形1、定义:有两边相等的三角形叫做等腰三角形 .2、性质:(1)等腰三角形两个底角相等 .简称“ 等边对等角”.(2)等腰三角形顶角的平分线垂直平分底边 .(等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一)3、判定定理:如果一个三角形有两个角相等,那么这两个角所对的边相等. 简称“ 等角对等边”.六、等边三角形1、定义:三边都相等的三角形叫做 等边三角形 .2、性质 :等边三角形的三边相等;三个角都相等,每一个内角等于 60°3、判定 :(1)定义法:三边都相等的三角形是等边三角形 .(2)推论 1:三个角都相等的三角形是等边三角形 .(3)推论 2:有一个角是 60°的等腰三角形是等边三角形 .七、直角三角形含 30°角的直角三角形性质: 在直角三角形中, 如果一个锐角等于 30 ° ,那么 它所对的 直角边等于斜边的一半 .八、角平分线1、性质 定理:角平分线上任意一点到角的两边的 距离相等 .2、 判定 定理:在一个角的内部,到角的两边 距离相等 的点在这个角的平分线上 .3、 三角形三条角平分线的性质 :三角形三条内角平分线相交于一点,这点到三角形三边的 距离 相等.【考点习题】 一、选择题1、三角形的三边分别为 3,1 2a , 8,则 a 的取值范围是( ) A . 6 a 3 B . a 5 或 a 2 C . 2a5 D . 5 a 2 2、如图所示, 在△ ABC 中, 已知点 D 、E 、 F 分别为边 BC 、 AD 、 CE 的中点,且S ABC = 4cm,则 S 阴影 等于 ( )221 21 2A . 2cB . 1 2C. cm D .cm243、如图, a ∥ b ,∠ 1=65° ,∠2 =140° ,则∠ 3=( )A 、B 、C 110°D 、(第 2 题) (第 3题)4、若△ ABC 的三个内角满足关系式∠ B +∠ C=3∠A ,则这个三角形( )A .一定有一个内角为 45°B .一定有一个内角为 60°C .一定是直角三角形D .一定是钝角三角形5、下列命题中正确的是( )A .三角形可分为斜三角形、直角三角形和锐角三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形外角一定是钝角D .△ ABC 中,如果∠ A>∠ B>∠C ,那么∠ A>60°,∠ C<60°6、如图,点 D 在 AB 上,点 E 在 AC 上,且∠ B=∠C ,那么补充一个条件后, 仍无法判断△ ABE ≌△ ACD 的是( )A. AD=AEB.∠AEB=∠ADC C. BE=CD7④∠ OFD=∠OFE 。
沪科版八年级数学上册第14章 全等形和全等三角形 专题复习(解析版)

八年级数学全等形和全等三角形专题复习考点总结【思维导图】【知识要点】知识点1全等三角形及其性质全等图形概念:能完全重合的图形叫做全等图形.特征:①形状相同。
②大小相等。
③对应边相等、对应角相等。
全等三角形概念:两个能完全重合的三角形叫做全等三角形.小结:把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:全等用符号“≌”,读作“全等于”。
书写三角形全等时,要注意对应顶点字母要写在对应位置上。
全等变换定义:只改变图形的位置,而不改变图形的形状和大小的变换。
变换方式(常见):平移、翻折、旋转。
全等三角形的性质:对应边相等,对应角相等。
1.(2017·四川中考模拟)已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3 B.5 C.6 D.10【答案】D【详解】∵四边形OPEF≌四边形ABCD∴PE=BC=10,故选D.2.(2019·福建中考模拟)如图,若△MNP≌△MEQ,则点Q应是图中的()A.点A B.点B C.点C D.点D【答案】D【详解】∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.(2018·广西中考模拟)下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【答案】D【详解】根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确.故选D.考查题型一利用全等三角形性质求线段与角1.(2019·武冈市第七中学中考模拟)如图,三角形纸片ABC,AB=10CM,BC=7CM,AC=6CM,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9CM B.13CM C.16CM D.10CM【答案】A【解析】解:由折叠的性质知,CD=DE,BC=BE=7CM.∵AB=10CM,BC=7CM,∴AE=AB﹣BE=3CM.△AED的周长=AD+DE+AE=AC+AE=6+3=9(CM).故选A.2.(2017·江苏南京溧水孔镇中学中考模拟)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5CM,BF=7CM,则EC长为()A.1CM B.2CM C.3CM D.4CM【答案】C【详解】解:∵△ABC≌△BAD,∴EF=BC=5CM,∵BF=7CM,BC=5CM,∴CF=EF-CF=3 CM,故选C.3.(2016·广东中考模拟)如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°【答案】B【详解】∵△ACB≌△A′CB′,∴∠ACB=∠A′C′B′,∴∠ACB-∠A′CB=∠A′C′B′-∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,故选:B.4.(2019·沂源县中庄中学初一月考)如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.(1)求△ABC的周长;(2)求△ACE的面积.【答案】(1)24;(2)50【详解】解:(1))∵△ABC≌△CDE∴AC=CE∴△ABC的周长=AB+BC+AC=24(2)∵△ABC≌△CDE∴AC=CE,∠ACB=∠CED,∠BAC=∠DCE又∠B=90°∴∠ACB+∠BAC=90°∴∠ACB+∠DCE=90°∴∠ACE=180°-(∠ACB+∠DCE)=90°×AC×CE=50∴△ACE的面积=12考查题型二利用全等三角形性质证明线段、角相等1.(2019·湖北黄石十四中初二期中)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.【答案】见解析【详解】∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.2.(2018·颍上县第五中学初二期中)若△ABC≌△DCB,求证:∠ABE=∠DCE.【答案】见解析【详解】证明:∵△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴∠ABC-∠DBC=∠DCB-∠ACB即∠ABE=∠DCE知识点2:全等三角形的判定(重点)注:①判定两个三角形全等必须有一组边对应相等;②全等三角形周长、面积相等.证题的思路(重点):考查题型三 已知一边一角(若边为角的对边,找任意角AAS )1.(2018·四川中考模拟)如图,AB=AE ,∠1=∠2,∠C=∠D .求证:AC=AD .【答案】见解析【解析】详解:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC∴∠BAC=∠EAD在ΔABC 和ΔAED 中{∠BAC =∠EAD∠C =∠D AB =AE∴ΔABC ≌ΔAED (AAS)∴AC=AD2.(2014·北京中考模拟)已知:如图,E 是AC 上一点,AB=CE ,AB ∥CD ,∠ACB =∠D .求证:BC =ED .【答案】证明见解析.【详解】∵AB∥CD,∴∠A=∠ECD.在△ABC和△ECD中,∵∠A=∠ECD,∠ACB=∠D,AB=CE,∴△ABC≌△ECD(AAS).∴BC=DE.3.(2018·四川中考模拟)已知,如图,E、F分别为□ABCD的边BC、AD上的点,且∠1=∠2,.求证:AE=CF.【答案】详见解析【详解】∵四边形ABCD为平行四边形∴∠B=∠D,AB=CD在△ABE与△CDF中,∠1=∠2,∠B=∠D,AB=CD∴△ABE≌△CDF∴AE=CF4.(2016·福建中考模拟)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.求证:△ACD≌△CBE.【答案】证明详见解析.【详解】∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵∠B+∠BCE=90°,∴∠B=∠ACD,在△BEC和△CDA中,∠ADC=∠E=90°,∠B=∠ACD,AC=BC,∴△ACD≌△CBE(AAS).考查题型四已知一边一角(边为角的邻边(找已知角的另一边SAS))1.(2016·四川中考真题)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【答案】见解析【详解】∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,∵AC=CB,∠ACD=∠B,CD=BE,∴△ACD≌△CBE(SAS),∴∠D=∠E.2.(2018·云南中考模拟)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:∠C=∠D.【答案】证明见解析【详解】证明:∵AE=BF,∴AE+EF =BF+EF ,∴AF =BE ,在△ADF 与△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCE (SAS ),∴∠C =∠D .3.(2019·辽宁中考真题)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:AF =DE .【答案】见解析;【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,在ΔABF 和ΔDCE 中,{AB =DC∠B =∠C BF =CE,∴ΔABF ≌ΔDCE (SAS)∴AF =DE .考查题型五 已知一边一角(边为角的邻边(找已知边的对角AAS ))1.(2013·浙江中考真题)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数。
沪教版七年级下全等三角形复习

二、应用
【适时小结】 要说明线段或角相等,只要说明线段或角所在的 两个三角形全等.
二、应用
例题3 如图,在△ABC中,BE是∠ABC的平分线 AD⊥BE,
垂足为D,说明∠2=∠1+∠C的理由.
A 21 E
问1:由已知条件得到什么?
4D
53
B
F
答1:∠4=∠5 ; ∠BDA=900. C 问2:延长AD与BC相交于点F可以构
在△ABE和△CDF中, AB=DC (已证) ∠3=∠4 (已证) BE=DF (已知)
∴△ABE≌△CDF (S.A.S).
∴∠E=∠F(全等三角形对应角相等) ∴AE∥FC(内错角相等,两直线平行).
二、应用
变式二 :如图,在四边形ABCD中,∠1=∠2, ∠ADB=∠CBD,
E、F在直线BD上,且BE=DF.说明AE∥FC的理由.
A
1 B
D
问15:要添A说D明=C△BA可B以D和吗△?C为D什B么全?等,已知
2
什答么:条不件可?以,S.S.A不能说明全等.
C 答:∠1=∠2.
问2:还有什么隐含条件?
答:BD=DB(公共边) 问3:常见的隐含“条A件.A还.A有”和什“么S?.S.A”的两个三角形 答:公共角、对顶不角一.定全等,没有这些判定方法
问4:还可以添加什么条件?判定的理由是什么?
答:AB=CD(S.A.S) 或∠A=∠C(A.A.S) 或∠ADB=∠CBD(A.S.A).
二、应用
例题1 如图,在四边形ABCD中,∠1=∠2,要说明△ABD和 △CDB全等,你可以添加一个什么条件?
A
1 B
选取其中一个条件:∠ADB=∠CBD,完 D 成△ABD和△CDB全等的说明.
沪科版数学八年级上册1全等三角形判定复习课件

B
D
C
课堂练习
5.如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC
的延长线于点F,给出下列5个关系式::①AD∥BC,②,DE=EC③
∠1=∠2,④∠3=∠4,⑤AD+BC=AB。将其中三个关系式作为已知,
另外两个作为结论,构成正确的命题。请用序号写出两个正确的命
• 变式1:以上条件不变,将△ABC绕点C顺时
针旋转10度,以上的结论还成立吗?
A
E
B D
C
例3变式2
• 例4.已知,△ABC和△ECD都是等边三角形,且 点B,C,D在一条直线上求证:BE=AD
• 变式:以上条件不变,将△ABC绕点C顺时针旋
转60度,以上的结论还成立吗?
E
A
D C
例3变式3
• 例5.已知,△ABC和△ECD都是等边三
角形,当△ABC绕点C顺时针旋转ɑ时,
连接BE,DA;结论BE=AD还成立吗?
若成立请加以证明。
E
A
E
A
B
B
D
C
D C
例3变式4
引申:例6.已知,△ABC和△ECD都是等边三角形,且点
B交,于CN,,D试在判一定条△直C线M上N,的AC形与状BE相交于M,CE与EAD相
解:△CMN是等边三角形
A
M
课堂练习
3.已知点A,E,F,C在同一条直线上,且AE=CF,过
E F两点分别作DE⊥AC,BF⊥AC,且AB=CD,(
1)求证:BD平分 EF(2)若将△DEC的边EC沿AC方
向移动,变化为2时,其余条件不变,上述结论是否成立
,说明理由
沪科版八年级数学 14.1 全等三角形(学习、上课课件)

感悟新知
知1-练
方法点拨:确定两个图形全等的方法: 1. 条件判定法:(1)形状相同;(2)大小相等 . 是否是全 等形与位置无关 . 2. 重合判定法:通过平移、旋转、翻折等方法把两个 图形叠合在一起,看它们能否完全重合 .
感悟新知
知1-练
1-1. 下图所示的图形分割成两个全等的图形,正确的是 (B )
应边上的中线、对应边上的高、对应角的平分线、周长、 面积等.
感悟新知
知3-讲
要点提醒 1. 应用全等三角形性质时,要先确定两个条件:
(1)两个三角形全等; (2)找对应元素. 2. 全等三角形的性质是证明线段、角相等的常用方法.
感悟新知
例 4 如图14.1- 6,已知△ABC≌△EDF. (1)求证:DC=BF; (2)求证:AC∥EF. 解题秘方:利用全等三角形的 对应边相等和对应角相等解决 问题.
2. 全等变换的常见方式 平移、翻折、旋转 .
感悟新知
知1-讲
特别提醒 ◆完全重合说明两个图形周长和面积相等; ◆周长或面积相等的两个图形不一定是全等的.
感悟新知
例 1 如图14.1-1,下列图形是全等形的是( B )
知1-练
解题秘方:根据全等形的定义和特征进行判断 . 解:选项 A,C大小不同;选项 D形状不同,故选B.
②对应角的对边为对应边,两个对应角所夹的边是对应边.
③对应边的对角为对应角,两条对应边所夹的角是对应角.
(3)字母顺序法:
根据书写规范按照对应顶点确定对应边或对应角.
感悟新知
ቤተ መጻሕፍቲ ባይዱ知2-练
例 2 如图14.1-4,已知△ABD≌ △CDB,∠ABD= ∠CDB. 写出其对应边和对应角.
沪科版八年级数学 14.2 三角形全等的判定(学习、上课课件)

在△ DFH 和△ CAG 中,∵∠ DHD==C∠GC,, ∠FHD=∠AGC,
∴△DFH≌△CAG.(ASA)
感悟新知
知识点 3 基本事实“边边边”(或“SSS”)
知3-讲
1. 基本事实 三边分别相等的两个三角形全等,简记为 “边边边”或“SSS”.
感悟新知
2. 书写格式 如图14.2-5, 在△ABC和△A′B′C′中,
解题秘方:紧扣“SSS”找出两 个三角形中三边对应相等的条 件来判定两个三角形全等.
感悟新知
知3-练
证明:∵AD=FB,∴ AD+DB=FB+DB,即AB=FD.
AC=FE, 在△ABC和△FDE中,∵ቐAB=FD,
BC=DE,
∴△ABC≌△FDE. (SSS)
感悟新知
知3-练
3-1. 如图,已知AD=CE,BD=BE,B是AC的中点,求证: △ABD≌△CBE. 证明:∵B 是 AC 的中点,∴AB=CB. AD=CE, 在△ ABD 与△ CBE 中,∵BD=BE, AB=CB, ∴△ABD≌△CBE.(SSS)
AB=A′B′, 在△ABC和△A′B′C′中 ,∵ቐ∠B=∠B′,
BC=B′C′,
∴△ABC≌△A′B′C′. (SAS)
感悟新知
知1-讲
特别提醒 1. 相等的元素:两边及这两边的夹角. 2. 书写顺序:边→角→边. 3. 三角形两边和其中一边的对角不能判定两个三角形全等.
感悟新知
知1-练
例 1 [中考·宜宾] 如图14.2-2,已知OA=OC,OB=OD, ∠AOC=∠BOD. 求证:△AOB≌△COD. 解题秘方:根据条件找出两 个三角形中的两条边及其夹 角对应相等,根据“SAS” 判定两个三角形全等.
沪教版七年级下册第十四章 全等三角形单元复习 讲义

全等三角形单元复习与巩固(基础)【学习目标】1. 理解并会应用三角形三边间的关系.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.2. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;3.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;4.了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法.【知识网络】【要点梳理】要点一、三角形的有关概念和性质三角形三边的关系:定理:三角形任意两边之和大于第三边。
推论:三角形任意两边的之差小于第三边。
要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.三角形的分类:按“角”分类: ⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.三角形的内角和与外角和:三角形内角和定理:三角形的内角和为180°.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.三角形的外角和: 三角形的外角和等于360°.要点二、全等三角形的判定与性质全等三角形对应边相等,对应角相等.全等三角形判定1——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)全等三角形判定4——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、等腰三角形等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【典型例题】类型一、三角形的有关概念和性质1、如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40° B.45° C.50° D.55°【思路点拨】首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.【答案】A;【解析】解:∵∠B=67°,∠C=33°,∴∠BAC=180°-∠B-∠C=180°-67°-33°=80°∵AD是△ABC的角平分线,∴∠CAD=12∠BAC=12×80°=40°【总结升华】本题考查了三角形的内角和定理,属于基础题,比较简单.类型二、全等三角形的性质和判定2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE ≌△ACD;通过全等三角形的性质,通过导角可证垂直.【答案与解析】解:(1)△ABE≌△ACD证明:∠BAC=∠EAD=90°∠BAC +∠CAE=∠EAD +∠CAE即∠BAE=∠CAD又AB=AC,AE=AD,△ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA,又∠COE=∠AOD∠BEA+∠COE =∠CDA+∠AOD=90°则有∠DCE=180°- 90°=90°,所以DC⊥BE.【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型三、巧引辅助线构造全等三角形3、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.4、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x 的取值范围是( )A.1 <x < 6B.5 <x < 7C.2 <x < 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.类型四、全等三角形动态型问题5、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了。
沪科版八年级数学上册《全等三角形》知识总结和经典例题

沪科版八年级上册数学全等三角形复习[知识要点] 一、全等三角形 一般三角形直角三角形判定 边角边(SAS )、角边角(ASA ) 角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS 找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形归纳复习
常见辅助线的作法有以下几种:
(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维
模式是全等变换中的“对折”.
(2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三
角形,利用的思维模式是全等变换中的“旋转”.
(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思
维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理
或逆定理.
(4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全
等变换中的“平移”或“翻转折叠”
(5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,
或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以
说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的
线段连接起来,利用三角形面积的知识解答.
顺口溜:
人人都说几何难,难就难在辅助线;辅助线,如何添?构造全等很关键.
图中有角平分线,可向两边作垂线;三角形中有中线,延长中线造全等;
角平分线加平行,构造等腰三角形;角平分线加垂线,三线合一试试看;
线段垂直平分线,常向两端把线连;还要刻苦加钻研,找出规律凭经验.
一、倍长中线法
A
BCD.
A
BC D
边中线AD是BC△ABC中,
BE. ,连接,使DE=AD 延长AD到E1 方式:
A A
M F DC C B BD N E
:间接倍长方式2MD到N,使DN=MD,连接延长的延长线于,作AD于FBE⊥ADE, CN. ⊥作CF连接BE.
例1、已知:如图,△ABC中,AB=5,AC=3,求中线AD的取值范围.
A BCD
例2、如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC 于F,求证:AF=EF.
A FEBCD
F. 、E、AC于点ADB为△ABC的中线,∠和∠ADC的平分线分别交ABAD例3、如图所示, MF.,)M,使DM=DE,连接 CMEDBE+CF求证:>EF.(提示:延长至
DF=EF.,且于点交的延长线上,在上,在,中,、已知在△例4ABCAB=ACDABEACDEBCFBD=CE.
求证:
,于点交AEF过DE=EC,D作DF∥BA上,、≠在△练习1、如图,ABC中,ABAC,DE在BC且BAC. 求证:AE平分∠DF=AC.
2AD.
AB+AC>的中线,求证:、如图,练习2AD为△ABC
BAE.
平分∠ADDCEBD=DC=ACABC3练习、如图,△中,,是的中点,求证:AECDB
二、借助角平分线造全等
例1、已知,如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.
求证:∠BAD+∠BCD=180°.
OE=OD. 求证:相交于点O,CEB=60°,△ABC的角平分线AD、∠如图,例2、已知在△ABC中,
A
EO
BCD
.)(有和角平分线垂直的线段时,通常把这条线段延长,∠BAC=90°,∠1=∠2,CE⊥中,△、已知:如图所示,在例3RtABCAB=ACBD的延长于 E.求证:BD=2CE.
三、截长补短
例1、如图,△ABC中,AB=2AC,AD平分∠BAC,且AD=BD,求证:CD⊥AC.
AD+BC.
=E,求证:AB,EB分别平分∠DAB,∠CBACD过点,、如图,例2AD∥BCEA,
的ABCBAC的平分线,且AC=AB+BD,求∠°,、如图,在△练习1ABC中,∠BAC=60AD是∠. 度数
AC=AE+CD.
,求证:ACB、∠BAC分别平分∠CE、AD°,ABC=60中,∠ABC、如图,在△2练习.
.
四、连接已知点,构造全等三角形D.
∠求证:∠A=O相交于点,且AB=DC,AC=BD.AC例、已知:如图所示,、BD
五、取线段中点构造全等三角形DCB.
求证:∠ABC=∠∠例、已知:如图所示,AB=DC,∠A=D.
六、证明线段不等关系AB+AC>AD+AE.
,求证:BD=CE,且E、D的边上取两点ABC如图,在△例、.
AEDBC
七、旋转. EAF的度数CD上的一点,BE+DF=EF,求∠F1例、正方形ABCD中,E为BC上的一点,为AD
F
CBE
1)?ABAD?AE(,⊥作过BADACABCD如图,2例、在四边形中,平分∠,CCEAB并且,于E2. ABC+求∠∠的度数ADC
八、直角三角形的全等问题
[知识]:①直角三角形特有的HL判定定理;②SAS、AAS、ASA、SSS(转化为HL)也是完全适用直角三角形的,不要忘记;③同(等)角的余角相等应用非常广泛(重点).
例1、如图,已知DO⊥BC,OC=OA,OB=OD,求证:△BCE是直角三角形.
的延长线AD、AD,°角的直角三角板如图放置,点45D在BC上,连结BE例2、把两个含有 BE.AF 于点F.求证:⊥BE交
ACDBHDAD=BD.HBEADABC3例、如图,在△中,高与相交于点,且问△≌△?
九、等腰三角形、等边三角形的全等问题
[知识]:①等腰三角形腰相等且底角相等,等边三角形三边相等
且三个底角都是60度,即“等边对等角,等角对等边”;
②如右图,由∠1=∠2,可得∠CBE=∠DBA;反之也成立.
例、如图1、2、3,过点A分别作两个个大小不一样的等边三角形,连接BD,CE.求证BD=CE.
AD与M,CGCGAE、CG,AE与相交于点DEFG练习、如图,四边形ABCD、都是正方形,连接AE=CG. .求证:相交于点N
GF A
B ED C
题型:全等三角形在实际生活中的应用
同一时刻两个建筑物在太阳下的影子一样长,太阳光线1 例如图所示,ACA′C′和是平行的,太阳光线可看成是平那么建筑物是否一样高?说明理由.(注:
行的).
巩固1某游乐场有两个长度相同的滑梯,要想使左边滑梯BC的高度AC与右边滑梯EF的水平方向的长度DF相等,则两个滑梯的倾斜角∠ABC与∠DFE的大小必须满足什么关系?说明理由.。