九年义务教育全日制初级中学数学教学大纲

合集下载

九年级数学课程纲要

九年级数学课程纲要

初中数学九年级上册课程纲要课程名称:《义务教育课程标准实验教科书.数学》(九年级上册)课程类型:义务课程教学材料:北京师范大学出版社授课时间:51—63课时一、课程目标本学期是初中学习的关键时期,这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。

本册书的主要内容主要有:特殊的平行四边形、一元二次方程、概率的进一步认识、图形的相似、投影与视图、反比例函数。

代数部分包括《一元二次方程》、《反比例函数》的学习。

是刻画现实世界的一个重要数学模型,是第三学段的核心内容之一。

通过该内容的学习,让学生进一步领会“方程、函数”的数学意义。

几何部分包括《特殊的平行四边形》、《图形的相似》、《投影与视图》的学习,可以使学生在原有基础上加强逻辑推理的训练,了解相关几何结论之间的逻辑关系,进一步感受公理化思想和演绎推理的意义与价值,增强科学理性精神,提高准确表达论证过程的技能。

概率统计部分包括《概率的进一步认识》的学习。

进一步通过有趣的实例、操作活动考察事件发生的频率与概率的关系。

学科思想1、转化思想:即将所要研究和解决的问题,通过变形、变换、转化为已经解决过的问题上来处理的一种数学思想。

九年级上册的内容主要体现在一元二次方程中。

2、方程思想:就是把所要解决的问题通过设未知数列方程(组)的方法使问题得以解决或更容易解决。

上册内容主要体现在一元二次方程中。

3、数形结合思想:就是把图形与数量关系有机地结合起来,使数学问题更直观,更容易解决。

上册内容主要体现在反比例函数中。

4、分类讨论的思想:具体地说,就是把包含多种可能情况的问题,按某一标准分成若干类,然后对每一类分别进行解决,从而达到解决整个问题的步的,分类的一般原则是:标准统一、不重不漏。

上册的内容主要体现在第一章。

5、整体思想:上册内容在一元二次方程中有所体现。

6、概率统计的思想:主要体现在频率与概率这一章。

在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。

九年义务教育数学教学大纲

九年义务教育数学教学大纲

九年义务教育数学教学大纲九年义务教育数学教学大纲是我国教育体系中的一项重要文件,旨在规范和指导中小学数学教学工作。

本文将从教学目标、教学内容、教学方法和评价方式等方面来探讨九年义务教育数学教学大纲的重要性和实施效果。

首先,九年义务教育数学教学大纲明确了教学目标。

数学作为一门基础学科,对于学生的思维能力和逻辑思维能力的培养起着至关重要的作用。

教学大纲明确了学生在九年义务教育阶段需要掌握的基本数学知识和技能,既包括数的概念和运算,也包括几何图形和代数方程的应用等。

这些目标的设定,有助于教师在教学中明确教学重点,使学生能够逐步提高数学素养。

其次,九年义务教育数学教学大纲规定了教学内容。

教学内容的确定是教学大纲的核心部分,它涵盖了数学的各个领域和层次。

教学大纲将数学内容划分为必修和选修两部分,这样既保证了学生的基本数学能力的培养,也为有特长的学生提供了更广阔的发展空间。

此外,教学大纲还规定了数学教学的基本原则和方法,指导教师如何根据学生的实际情况进行教学,提高教学效果。

再次,九年义务教育数学教学大纲提供了多种教学方法。

教学方法是教学过程中的重要环节,它直接关系到学生对数学知识的掌握和理解。

教学大纲鼓励教师采用多种教学方法,如讲授法、实验法、讨论法等,以激发学生的学习兴趣和主动性。

同时,教学大纲还提倡教师在教学中注重培养学生的问题解决能力和创新思维,通过启发式教学等方法培养学生的数学思维能力和解决实际问题的能力。

最后,九年义务教育数学教学大纲规定了评价方式。

评价方式的确定是教学大纲的重要组成部分,它对于教学效果的评估和提高具有重要意义。

教学大纲规定了定期考试和平时成绩的综合评价方式,既考察学生对数学知识的掌握程度,也考察学生的数学思维和解决问题的能力。

这样的评价方式有助于教师及时了解学生的学习情况,及时调整教学策略,提高教学效果。

总之,九年义务教育数学教学大纲对于我国中小学数学教育具有重要的指导作用。

它明确了教学目标,规定了教学内容,提供了多种教学方法,规定了评价方式。

初中数学大纲及教案

初中数学大纲及教案

初中数学教学大纲及教案示例如下:一、教学大纲1. 教学目标初中数学教学旨在让学生掌握必要的数学知识,培养学生的逻辑思维、创新意识和解决问题的能力。

通过教学,使学生能够熟练运用数学知识解决实际问题,为高中阶段的学习打下坚实基础。

2. 教学内容初中数学教学内容包括:数与代数、几何、统计与概率、综合与应用四个方面。

(1) 数与代数:有理数、整式、分式、方程、不等式、函数等。

(2) 几何:平面几何、立体几何、几何变换、几何证明等。

(3) 统计与概率:数据收集、数据分析、概率计算等。

(4) 综合与应用:数学阅读、数学建模、数学探究等。

3. 教学方法采用启发式教学、情境教学、分组合作学习等方法,激发学生的学习兴趣,培养学生的动手操作能力和团队合作精神。

4. 教学评价采用课堂表现、作业完成情况、考试成绩等多种方式进行评价,关注学生的全面发展。

二、教案示例课题:勾股定理教学目标:1. 理解勾股定理的表述;2. 学会运用勾股定理解决实际问题;3. 培养学生的逻辑思维和解决问题的能力。

教学内容:1. 介绍勾股定理的发现历程;2. 讲解勾股定理的表述及证明;3. 运用勾股定理解决直角三角形的相关问题。

教学过程:1. 导入:通过讲解古代数学家毕达哥拉斯的故事,引导学生思考勾股定理的发现过程。

2. 新课:介绍勾股定理的表述,讲解勾股定理的证明方法。

3. 练习:让学生运用勾股定理解决一些直角三角形的问题,如求边长、面积等。

4. 拓展:引导学生思考勾股定理在现实生活中的应用,如测量、建筑设计等。

5. 小结:对本节课的主要内容进行总结,强调勾股定理的重要性。

6. 作业:布置一些有关勾股定理的练习题,巩固所学知识。

教学评价:通过课堂讲解、练习题完成情况、学生提问等方式,评价学生对勾股定理的理解和运用能力。

关注学生在解决问题时的思维过程,培养学生的逻辑思维和创新能力。

以上仅为初中数学教学大纲和教案的简要示例,实际教学中需根据学生的实际情况进行调整。

九年义务教育全日制初级中学数学教学大纲.doc

九年义务教育全日制初级中学数学教学大纲.doc

九年义务教育全日制初级中学数学教学大纲(试用修订版)1.三角形三角形。

三角形的角平分线、中线、高。

三角形三边间的不等关系。

三角形的内角和。

三角形的分类。

具体要求:(1)理解三角形,三角形的顶点、边、内角、外角、角平分线、中线和高等概念。

了解三角形的稳定性。

会画出任意三角形的角平分线、中线和高。

(2)理解三角形的任意两边之和大于第三边的性质。

会根据三条线段的长度判断它们能否构成三角形。

(3)掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角的性质。

(4)会按角的大小和边长的关系对三角形进行分类。

2.全等三角形全等形。

全等三角形及其性质。

三角形全等的判定。

具体要求:(1)了解全等形、全等三角形的概念和性质,能够辨认全等形中的对应元素。

(2)能够灵活运用”边、角、边””角、边、角""角、角、边""边、边、边”等来判定三角形全等;会证明”角、角、边”定理。

(3)会用三角形全等的判定定理来证明简单的有关问题,并会进行有关的计算。

3.等腰三角形等腰三角形的性质和判定。

等边三角形的性质和判定。

具体要求:(1)掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质以及它的判定定理:有两个角相等的三角形是等腰三角形。

能够灵活运用它们进行有关的论证和计算。

(2)掌握等边三角形的各角都是的性质以及它的判定定理:三个角都相等的三角形或有一个角是的等腰三角形是等边三角形。

能够灵活运用它们进行有关的论证和计算。

(3)理解等腰三角形和等边三角形的性质定理之间的联系,理解等腰三角形和等边三角形的判定定理之间的联系。

4.直角三角形余角。

直角三角形全等的判定。

逆命题,逆定理。

勾股定理。

勾股定理的逆定理。

具体要求:(1)理解余角的概念,掌握同角或等角的余角相等、直角三角形中两锐角互余等性质,会用它们进行有关的论证和计算。

(2)会用”斜边、直角边”定理判定直角三角形全等。

九年级数学上学期课程纲要

九年级数学上学期课程纲要

《九年级数学上学期》课程纲要课程名称:九年级数学(上册)教学材料:北京师范大学出版社义务教育课程标准实验教科书授课时间:50--55课时授课教师:授课对象:九年级课程目标:第一章证明(二)1.掌握综合法的证明方法,结合实例体会反证法的含义.2.了解作为证明基础的几条公理,能够证明与三角形,线段垂直平分线,角平分线等有关性质定理及判定定理.3.能够利用尺规作已知线段的垂直平分线和已知角的平分线;已知底边及底边上的高,能用尺规作出等腰三角形.第二章一元二次方程1.了解一元二次方程及其相关概念,会用配方法,公式法,分解因式法解简单的一元二次方程(数字系数).2.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果合理性.3.经历在具体情境中估计一元二次方程解的过程,发展估算能力.第三章证明(三)进一步掌握综合法的证明方法,能够证明与平形四边形,等腰梯形,矩形,菱形,以及正方形等有关性质定理及判定定理,并能够证明其它相关的结论.第四章视图与投影1.能够判断简单物体的三种视图,能够根据三种视图描述基本几何体或实物原型,实现简单物体与其三种视图之间的相互转化.2.会画圆柱、圆锥、球的三种视图.3.了解中心投影、平行投影、视点、视线、盲区的含义及其简单应用.第五章反比例函数1.体会反比例函数的意义,能根据已知条件确定反比例函数表达式.2.能画出反比例函数的图象,根据图象和解析表达式探索并理解反比例函数的性质.3.能利用反比例函数解决某些实际问题。

第六章频率与概率1.理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的数学模型.2.能运用用树状图和列表法计算简单的事件发生的概率,能用试验或模拟试验的方法估计一些复杂的随机事件发生的概率.课程内容及课时安排课程实施:(一)教学方式:以导学案为载体的课堂教学以明确目标自主学习展示成果教师点拨知识应用小组合作个人展示达标反馈归纳总结布置作业的过程展开1.问题驱动教学.教师创设问题情境,设置问题链,学生生成、探究、交流的问题.2.讲授和训练:精讲精练,少讲多练,及时掌握学情,调整教学.充分利用班班通资源,采用直观演示、启发点拨讲解、师生互动交流、讲练结合等方式进行教学。

九年义务教育全日制初级中学数学教学大纲(试用修订版)

九年义务教育全日制初级中学数学教学大纲(试用修订版)

九年义务教育全日制初级中学数学教学大纲(试用修订版)教学方法是多种多样的,每一种教学方法都有它的特点和适用范围。

在教学时要根据具体情况,合理并创造性地运用教学方法,充分调动学生的积极性。

为了提高教学质量和教学效率,要提倡广泛使用科学计算器,并按照教学的需要和各地的实际情况,积极创造条件,采用模型、投影、录像和计算机软件、多媒体等现代教育技术手段。

(六)正确组织练习。

练习是数学教学的有机组成部分,对于学生掌握基础知识、基本技能和发展能力是必不可少的,是他们学好数学的必要条件。

练习的目的是使学生进一步理解和掌握数学基础知识,训练、培养和发展学生的基本技能和能力,能够及时发现和弥补教和学中的遗漏或不足,培养学生良好的学习习惯和品质。

要注意充分发挥练习的作用,加强对解题的正确指导,应注意引导学生从解题的思想方法上作必要的概括。

为了使练习能起到应有的作用,应注意以下几点:1.目的要明确,题目要精选。

2.题量要适度,首先要保证必须的基本题。

3.习题难度要适中,布置作业要区别对待。

对学习有困难的学生,要给予必要的辅导。

4.要循序渐进,由浅入深,由单一到综合。

还要有适度的开放题。

5.要求学生在弄懂课文内容的基础上,独立完成作业。

6.在作业出现错误时,教师应及时指导学生弄清错误原因,并要求学生及时改正。

7.切实完成实习作业和探究性活动。

(七)改进教学测试和评估。

教学测试和评估必须以教学目标为依据,其目的不仅是评定学生的学习成绩,促进教师改进教学,更重要的是为了激励学生努力学习。

要注意通过课堂提问、观察、谈话、学生作业和平时测验,及时了解学生的学习状况,吸收教学的反馈信息。

要注意评估手段和方法的改革。

考试、考查既要测量学生理解和掌握基础知识、基本技能的情况,又要测量他们的数学基本能力和综合运用数学的能力,并评估他们的创新意识和实践能力发展情况。

要按照课程计划和本大纲的要求,控制考试、考查的次数,设计考题要依据教学内容和教学目标,试题要体现教学重点,难易适当,不出偏题、怪题和助长死记硬背的题目。

初三数学课程大纲

初三数学课程大纲

初三数学课程大纲一、引言初三数学课程大纲旨在为初三学生提供系统、全面的数学学习指导,帮助学生掌握数学基本概念、解题方法和数学思维,为高中数学学习奠定坚实基础。

二、课程目标1. 发展数学思维和解决问题的能力;2. 培养数学学科素养和学习兴趣;3. 掌握基本的数学知识和技能;4. 培养逻辑推理和数学证明的能力;5. 建立正确的数学价值观念和学习态度。

三、课程内容1. 数的认识与应用1.1 自然数、整数、有理数和实数的认识及其加减乘除运算;1.2 百分数、比例与比例方程;1.3 分数与分数方程;1.4 负数与负数的运算。

2. 代数的认识与应用2.1 代数基本概念与代数式的计算;2.2 一元一次方程与解方程的基本方法;2.3 一元一次不等式与解不等式的基本方法;2.4 二次根式与二次方程及应用。

3. 几何的认识与应用3.1 平面与空间图形的认识;3.2 相似与全等的判定与应用;3.3 三角形与平行线的性质;3.4 圆的性质及相关计算。

4. 统计与概率的认识与应用4.1 统计图及其应用;4.2 数据分析与概率的基本概念;4.3 事件、频率与概率的计算。

四、教学方法1. 创设情境,引发学生兴趣;2. 引导发现,激发求知欲;3. 提供示例,演示解题过程;4. 引导思考,培养逻辑推理能力;5. 多样化的练习,帮助巩固知识。

五、课程评价与考核1. 课堂作业与小测试:用于检测学生对知识的掌握程度和对解题方法的运用能力;2. 平时表现与课堂参与度:用于评估学生的学习态度和合作精神;3. 中期考试和期末考试:用于全面评价学生对数学知识的理解和应用能力。

六、教材参考《初中数学(九年级)》(人教版)、《数学参考书》、《数学习题集》等。

七、教学资源支持1. 使用电子白板、多媒体课件等教具辅助教学;2. 利用互联网资源,提供相关数学学习视频和练习资源;3. 设置数学学习小组,促进学生之间互相交流合作。

八、总结初三数学课程大纲旨在帮助学生掌握数学的基本知识和解题方法,培养学生的数学思维和解决问题的能力。

初三数学教材大纲

初三数学教材大纲

初三数学教材大纲七年级上册第一章有理数1.1正数和负数1.2 有理数(数轴|相反数|绝对值)1.3有理数的加减法1.4有理数的乘除法1.5有理数的乘方(科学计数法)第二章整式的加减2.1整式2.2整式的加减第三章一元一次方程★3.1从算式到方程3.2解一元一次方程(一)合并同类项与移项3.3解一元一次方程(二)去括号与去分母3.4实际问题与一元一次方程第四章图形认识初步4.1多姿多彩的图形4.2直线、射线、线段4.3角4.4 设计制作长方体形状的包装纸盒七年级下册第五章相交线与平行线5.1相交线(垂线|同位角|内错角|同旁内角) 5.2平行线及其判定(邻补角)5.3平行线的性质(命题|定理)5.4平移第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用第七章三角形★7.1 三角形有关的线段(高|中线|角平分线) 7.2 与三角形有关的角(稳定性|外角)7.3多边形及其内角和7.4 课题学习镶嵌第八章二元一次方程组★8.1二元一次方程组8.2消元——二元一次方程组的解法8.3实际问题与二元一次方程组*8.4三元一次方程组解法举例第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组第十章数据的收集、整理与描述10.1统计调查10.2直方图八年级上册第十一章全等三角形★11.1全等三角形11.2三角形全等的判定11.3角的平分线的性质第十二章轴对称12.1轴对称12.2作轴对称图形12.3等腰三角形第十三章实数13.1平方根13.2立方根13.3实数第十四章一次函数★14.1变量与函数14.2一次函数14.3用函数观点看方程(组)与不等式第十五章整式的乘除与因式分解15.1整式的乘法15.2乘法公式15.3整式的除法八年级下册第十六章分式16.1分式16.2分式的运算16.3分式方程第十七章反比例函数★17.1反比例函数17.2实际问题与反比例函数第十八章勾股定理★18.1勾股定理18.2勾股定理的逆定理第十九章四边形★19.1平行四边形(性质|判定|中位线定理)19.2特殊的平行四边形(矩形|菱形|正方形) 19.3梯形19.4课题学习重心第二十章数据的分析20.1 数据的代表20.2 数据的波动九年级上册第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第二十二章一元二次方程★22.1 一元二次方程22.2 降次——解一元二次方程22.3 实际问题与一元二次方程第二十三章旋转23.1 图形的旋转23.2 中心对称第二十四章圆★24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率九年级下册第二十六章二次函数★26.1 二次函数及其图像26.2 用函数观点看一元二次方程26.3 实际问题与二次函数第二十七章相似★27.1图形的相似27.2相似三角形27.3位似第二十八章锐角三角函数28.1锐角三角函数28.2解直角三角形第二十九章投影与视图29.1投影29.2三视图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《九年义务教育全日制初级中学数学教学大纲》把数学思想、方法作为基础知识的重要组成部分,在大纲中明确提出来,这不仅是大纲体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。

一、了解《大纲》要求,把握教学方法所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。

所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。

数学思想是数学的灵魂,数学方法是数学的行为。

运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。

若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

1、明确基本要求,渗透“层次”教学。

《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解” 、“理解”和“会应用” 。

在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。

这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。

在《教学大纲》中要求“了解” 的方法有:分类法、类经法、反证法等。

要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。

在教学中,要认真把握好“了解” 、“理解”、“会应用”这三个层次。

不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们推动信心。

如初中几何第三册中明确提出“反证法” 的教学思想,且揭示了运用“反证法” 的一般步骤,但《教学大纲》只是把“反证法”定位在“了解”的层次上,我们在教学中,应牢牢地把握住这个“度” ,千万不能随意拔高、加深。

否则,教学效果将是得不偿失。

2、从“方法”了解“思想” ,用“思想”指导“方法” 。

关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。

其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。

它们既相辅相成,又相互蕴含。

只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。

因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。

比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。

在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。

这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

二、遵循认识规律,把握教学原则,实施创新教育要达到《教学大纲》的基本要求,教学中应遵循以下几项原则:1、渗透“方法” ,了解“思想” 。

由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。

因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。

教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。

忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。

如初中代数课本第一册《有理数》这一章,与原来部编教材相比,它少了一节——“有理数大小的比较” ,而它的要求则贯穿在整章之中。

在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大” ,“正数都大于0,负数都小于0,正数大于一切负数” 。

而两个负数比大小的全过程单独地放在绝对值教学之后解决。

教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。

在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。

比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间” 、“两根之外” ,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。

2、训练“方法” ,理解“思想” 。

数学思想的内容是相当丰富的,方法也有难有易。

因此,必须分层次地进行渗透和教学。

这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。

如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。

在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。

3、掌握“方法” ,运用“思想” 。

数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。

数学思想、方法的形成同样有一个循序渐进的过程。

只有经过反复训练才能使学生真正领会。

另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统” ,这更需要一个反复训练、不断完善的过程。

比如,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。

学习一次函数的时候,我们可以用乘法公式类比;在学习二次函数有关性质时,我们可以和一元二次议程的根与系数性质类比。

通过多次重复性的演示,使学生真正理解、掌握类比的数学方法。

4、提炼“方法” ,完善“思想” 。

教学中要适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。

由于数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。

因此,教师的概括、分析是十分重要的。

教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处。

浅谈初中数学教学渗透的思想方法字体大小:大|中|小2006-12-18 10:58 - 阅读:2601 - 评论:3所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。

所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。

数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们合称为数学思想方法。

数学教学的目的不仅要求学生掌握好数学的基础知识和基本技能,还要求发展学生的能力,培养他们良好的个性品质和学习习惯。

在实现教学目的的过程中,数学思想方法对于打好“双基”和加深对知识的理解、培养学生的思维能力有着独到的优势,它是学生形成良好认知结构的纽带,是由知识转化为能力的桥梁。

因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响。

从初中阶段就重视数学思想方法的渗透,将为学生后续学习打下坚实的基础,会使学生终生受益。

一、初中数学教学应渗透的思想方法1、分类讨论思想分类讨论是根据教学对象的本质属性将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。

分类是数学发现的重要手段。

在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。

例如,教材中给实数的定义是“有理数与无理数统称为实数”,这个定义揭示了实数的内涵与外延,这本身就体现出分类思想方法。

因此,在学完实数的概念后,可以如此分类:尔后一提到实数,就会想到它可能是有理数,也可能是无理数;一提到有理数,就会想到它可能是整数,也可能是分数等。

又如,实数的绝对值定义也是采用分类法给出的,在这个定义中选择a = 0作为分类的标准。

在每一类中,其结果都不包含绝对值符号。

因此定义也给出了脱去绝对值符号的一种方法。

再如,在同一个圆中,一条弧所对的圆周角等于它所对圆心角的一半。

为了验证这个猜想,教学时常将圆对折,使折痕经过圆心和圆周角的顶点,这时可能出现三种情况:⑴折痕是圆周角的一条边,⑵折痕在圆周角的内部,⑶折痕在圆周角的外部。

验证时,要分三种情形来说明,这里实际上也体现了分类讨论的思想方法。

还有,对三角形全等识别方法的探索,教材中的思考题:如果两个三角形有三个部分(边或角)分别对应相等,那么有哪几种可能的情况?同时,教材中对处理几种识别方法时也采用分类讨论,由简到繁,一步步得出,教学时要让学生体验这种思想方法。

2、数形结合思想一般地,人们把代数称为“数”而把几何称为“形”,数与形表面看是相互独立,其实在一定条件下它们可以相互转化,数量问题可以转化为图形问题,图形问题也可以转化为数量问题。

初一教材引入数轴,就为数形结合的思想奠定了基础。

有理数的大小比较、相反数的几何意义、绝对值的几何意义、列方程解应用题中的画图分析等,充分显示出数与形结合起来产生的威力,这种抽象与形象的结合,能使学生的思维得到锻炼。

数形结合在各年级中都得到充分的利用。

例如,点与圆的位置关系,可以通过比较点到圆心的距离与圆半径两者的大小来确定,直线与圆的位置关系,可以通过比较圆心到直线的距离与圆半径两者的大小来确定,圆与圆的位置关系,可以通过比较两圆圆心的距离与两圆半径之和或之差的大小来确定。

又如,勾股定理结论的论证、函数的图象与函数的性质、利用图象求二元一次方程组的近似解、用三角函数解直角三角形等等都是典型的数形结合的体现。

再如,有理数的加法法则、乘法法则,不等式组的解集的确定都是利用数轴或其它实图归纳总结出来的;实践与探索中行程问题教学,经常是利用线段图解的方法来引导学生分析题中的数量关系。

在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,弓I发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。

相关文档
最新文档