应用泛函分析教案1

合集下载

泛函分析教案范文

泛函分析教案范文

泛函分析教案范文泛函分析是数学中重要的一个分支,研究的是无穷维的函数空间及其上的线性算子的性质和应用。

泛函分析在数学的许多领域中都起到了重要的作用,尤其是在数学物理中的应用广泛。

本教案将介绍泛函分析的基本概念、定理和方法,以及其在实际问题中的应用。

一、教学目标1.理解泛函分析的基本概念和基本定理;2.掌握泛函分析的基本方法和技巧;3.了解泛函分析在实际问题中的应用。

二、教学内容1.泛函空间的定义和性质;2.算子的定义和性质;3. Hilbert空间和Banach空间的基本概念和定理;4.偏微分方程的变分方法和泛函分析的应用。

三、教学方法1.讲授法:通过讲解理论和定理,引导学生理解泛函分析的基本概念和基本定理;2.练习法:通过给学生提供大量的例题和习题,培养学生运用泛函分析的方法和技巧解决实际问题的能力;3.讨论法:通过小组讨论和探讨,引导学生深入理解和掌握泛函分析的概念和方法。

四、教学步骤1.引入泛函分析的基本概念和基本问题,介绍泛函空间的定义和性质;2. 介绍算子的定义和性质,引出Hilbert空间和Banach空间的概念和基本定理;3.讲解偏微分方程的变分方法和泛函分析的应用,举例说明;4.给学生布置相关习题和作业,要求学生运用泛函分析的方法解决实际问题。

五、教学评价1.课堂讨论和小组讨论,评价学生的理解泛函分析的能力;2.习题和作业的完成情况,评价学生运用泛函分析解决实际问题的能力;3.课程考试,综合评价学生对泛函分析的掌握程度。

六、教学资源1.教材:《泛函分析》;2.讲义:泛函分析的基本概念和基本定理;3.习题集:泛函分析的相关习题和作业。

七、教学反思泛函分析是一门相对抽象和复杂的数学学科,对学生的数学基础和抽象思维能力要求较高。

在教学中,要注重培养学生的推理和分析能力,引导学生探究问题的本质和核心。

同时,要通过大量的例题和习题,加强学生的理解和应用能力。

此外,还要注重掌握泛函分析在实际问题中的应用,为学生提供更多的实例和案例,培养学生运用泛函分析解决实际问题的能力。

泛函分析解读课程设计

泛函分析解读课程设计

泛函分析解读课程设计一、课程目标知识目标:1. 理解泛函分析的基本概念,如赋范线性空间、内积空间、有界线性算子等;2. 掌握泛函分析中的重要性质和定理,如开映射定理、闭图像定理、Hahn-Banach定理等;3. 学会运用泛函分析方法解决实际问题,如优化问题、微分方程等。

技能目标:1. 能够运用泛函分析的知识对实际问题进行建模和求解;2. 能够运用数学软件(如MATLAB)进行泛函分析的计算;3. 能够运用逻辑推理和证明方法,阐述泛函分析中的性质和定理。

情感态度价值观目标:1. 培养学生严谨、科学的思维方式和探究精神,增强对数学美的感悟;2. 培养学生团队协作和沟通交流的能力,学会倾听、尊重他人观点;3. 激发学生对数学学科的兴趣和热情,提高学生的学术素养。

课程性质:本课程为高年级数学专业或相关专业的学科基础课程,旨在帮助学生掌握泛函分析的基本概念、性质和定理,培养其运用泛函分析方法解决实际问题的能力。

学生特点:学生具备一定的数学基础和分析能力,具有较强的逻辑思维和抽象思维能力。

教学要求:结合学生特点,注重理论与实践相结合,强调知识的应用性和实践性。

通过案例分析、讨论交流等教学方式,引导学生掌握泛函分析的核心内容,提高其分析问题和解决问题的能力。

同时,注重培养学生的学术素养和团队协作精神。

在教学过程中,将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 引言与背景:介绍泛函分析的发展历程、应用领域及与其它数学分支的联系。

2. 赋范线性空间:涵盖赋范线性空间的定义、性质、例证,以及范数的性质和运算。

- 教材章节:第2章 赋范线性空间- 内容列举:范数的定义与性质、Cauchy序列与完备性、赋范线性空间的例子。

3. 内积空间:探讨内积的定义、性质、希尔伯特空间及其几何意义。

- 教材章节:第3章 内积空间- 内容列举:内积的定义与性质、Cauchy-Schwarz不等式、内积空间的例子、希尔伯特空间。

应用泛函分析教案

应用泛函分析教案

第二章 度量空间§2.1 度量空间的进一步例子 教学内容(或课题):目的要求: 在复习第二章度量空间基本概念前提下,要求进一步掌握离散度量空间、序列空间、有界函数空间、可测函数空间等. 教学过程:一 复习度量空间的概念设X 是个集合,若对于∈∀y x ,X ,都有唯一确定的实数()y x d ,与之对应,且满足01 ()y x d ,0≥,()y x d ,=0y x =⇔;02 ()y x d ,≤()z x d ,+()z y d ,对∈∀z y x ,,X 都成立, 则称(X ,d )为度量空间或距离空间,X 中的元素称为点,条件02称为三点不等式. 欧氏空间n R 对n R 中任意两点()n x x x x ,,,21 =和()n y y y y ,,,21 =,规定距离为 ()y x d ,=()2112⎪⎭⎫ ⎝⎛-∑=ni i i y x .[]b a C ,空间 []b a C ,表闭区间[]b a ,上实值(或复值)连续函数的全体.对[]b a C ,中任意两点y x ,,定义()y x d ,=()()t y t x bt a -≤≤max .pl ()1+∞<≤p 空间 记pl ={}⎭⎬⎫⎩⎨⎧∞<=∑∞=∞=11k p kk k xx x .设{}∞==1k k x x ,{}∞==1k k y y ∈p l ,定义 ()y x d ,=pi pii y x 11⎪⎪⎭⎫ ⎝⎛-∑∞=. 二 度量空间的进一步例子例1 设X 是任意非空集合,对于∈∀y x ,X ,令()y x d ,=⎩⎨⎧=≠y x y x 当,当,0;1容易验证 01 ()y x d ,0≥,()y x d ,=0y x =⇔; 02()y x d ,≤()z x d ,+()z y d ,对∈∀z y x ,,X 都成立. 称(X ,d )为离散的度量空间. 由此可见,在任何非空的集合上总可以定义距离,使它成为度量空间.例2 序列空间S 令S 表示实数列(或复数列)的全体,对{}∞==∀1k k x x ,{}∞==1k k y y ,令 ()y x d ,=∑∞=121k kkk k k y x y x -+-1. 显然右边的级数总是收敛的. 易知()y x d ,0≥,且()y x d ,=0y x =⇔. 即()y x d ,满足条件01. 对C b a ∈∀,,先证≤+++ba b a 1aa +1+bb +1.实因令 ()t t t f +=1 (+∞<≤t 0),则因为()2)1(1t t f +='0>,所以函数 ()ttt f +=1 在[)+∞,0上单调递增. 又因为 b a b a +≤+,所以有≤+++ba b a 1b a b a +++1=b a a ++1+b a b ++1≤a a +1+bb+1. 再令 {}∞==1k k z z ,k k z x a -=,k k y z b -=,则 k k y x b a -=+. 由上述已证的不等式,得kk k k y x y x -+-1≤kk k k z x z x -+-1+kk k k y z y z -+-1.由此推得 02 ()y x d ,≤()z x d ,+()z y d ,对∈∀z y x ,,S 都成立. 故S 按()y x d ,成一度量空间.例3 有界函数空间()A B设A 是一个给定的集合,令()A B 表示A 上有界实值(或复值)函数的全体. ∈∀y x ,()A B ,定义 ()y x d ,=()()t y t x At -∈sup .显然()y x d ,0≥,且()y x d ,=0⇔A t ∈∀成立()()t y t x =,即()y x d ,满足条件01.又A t ∈∀,有 ()()t y t x -≤()()t z t x -+()()t y t z -≤()()t z t x At -∈sup +()()t y t z At -∈sup所以 ()()t y t x At -∈sup ≤()()t z t x At -∈sup +()()t y t z At -∈sup . 即()y x d ,满足条件02. 特别当[]b a A ,=时,()A B =[]b a B ,.例4可测函数空间()X M设()X M 为X 上实值(或复值)的Lebesgue 可测函数的全体,m 为Lebesgue 测度,若()X m ∞<,对任意两个可测函数()t f 及()t g ,由于()()()()11<-+-t g t f t g t f ,故不等式左边为X 上可积函数. 令()g f d ,=()()()()⎰-+-Xdm t g y f t g t f 1.若把()X M 中两个几乎处处相等的函数视为()X M 中同一个元素,则()g f d ,≥0且()g f d ,=0 ⇔ g f =,即()g f d ,满足条件01. 其次(参考例2)()g f d ,=()()()()⎰-+-X dm t g y f t g t f 1≤⎰⎪⎪⎭⎫⎝⎛-+-+-+-X dm g h gh h f h f 11=⎰-+-Xdm hf h f 1+⎰-+-Xdm gh g h 1=()h f d ,+()g h d ,,对∈∀h g f ,,()X M 都成立. 即 ()g f d , 满足条件02. 故()X M 按上述距离()g f d ,成为度量空间.作业 P 205. 2. 4.作业提示 2. 与例2处理方法类似.4.利用xx+1 当0≥x 时的递增性.§2.2(1) 度量空间中的极限 教学内容(或课题):目的要求: 掌握一般的度量空间中的邻域、内点、外点、界点、导集、闭包、开集、闭集、收敛点列等概念,认识具体空间中点列收敛的具体意义. 教学过程:设()d X ,为度量空间,d 是距离,定义()ε,0x B =(){}ε<∈0,x x d X x 为0x 的以ε为半径的开球,亦称为0x 的ε邻域.例1 设()d X ,是离散的度量空间,d 是距离,则()ε,0x B ={}⎩⎨⎧>≤<1,;10,0εε当当X x仿§2.2-§2.3,设E 是度量空间()d X ,中的一个子集,0x 是X 中一点若存在0x 的某一邻域()0x U ,s.t. ()0x U ⊂E ,则称0x 为E 的内点. 若0x 是CE 的内点,则称0x 为E 的外点. 若∀()0x U 内既有E 的点又有非E 的点,则称0x 为E 的边界点. 若∀()0x U 内都含有无穷多个属于E 的点,则称0x 为E 的聚点. E 的全体聚点所成集合称为E 的导集,记为E '. E E '称为E 的闭包,记为E . 若E 的每一点都是E 的内点,则称E 为开集. 若E '⊂E ,则称E 为闭集.例2在欧氏空间1R 中,记A 为全体有理数点的集合,B 为全体无理数点的集合.则集合A 及B 均无内点,均无外点; ∈∀x 1R 既是A 又是B 的界点,既是A 又是B 的聚点; 1R 既是A 又是B 的导集,既是A 又是B 的闭包; A 、B 既非开集又非闭集. 若如同例1,将集合1R 离散化,则∈∀x A 都是A 的内点,∈∀y B 都是B 的内点,因此A 、B 在离散空间中均为开集; A 、B 均无界点; A 之外点集合为B ,B 之外点集合为A ; A 、B 均无聚点,因此Φ='A ,Φ='B ,A A '⊃,B B '⊃,故A 、B 均为闭集.设{}∞=1n n x 是()d X ,中点列,若X x ∈∃,s.t.()0,lim =∞→x x d n n (*)则称{}∞=1n n x 是收敛点列,x 是点列{}∞=1n n x 的极限.收敛点列的极限是唯一的. 实因若设n x 既牧敛于x 又收敛y ,则因为()()()0,,,0→+≤≤n n x y d x x d y x d ()∞→n ,而有 ()y x d ,=0. 所以x =y .附注 (*)式换个表达方式:()x x d n n ,lim ∞→=()x x d n n ,lim ∞→. 即当点列极限存在时,距离运算与极限运算可以换序. 更一般地有 距离()y x d ,是x 和y 的连续函数.证明 ()y x d ,≤()0,x x d +()00,y x d +()y y d ,0 ⇒()y x d ,-()00,y x d ≤()0,x x d +()y y d ,0;()00,y x d ≤()x x d ,0+()y x d ,+()0,y y d ⇒()00,y x d -()y x d ,≤()0,x x d +()y y d ,0. 所以|()y x d ,-()00,y x d |≤()0,x x d +()y y d ,0 例3 设()d X ,为一度量空间,令()ε,0x B =(){}ε<∈0,,x x d X x x , ()ε,0x S =(){}ε≤∈0,,x x d X x x . 问()ε,0x B =()ε,0x S ?答 在n R 空间中,必有()ε,0x B =()ε,0x S . 在离散度量空间()d X ,中,当1=ε时,()ε,0x B ={}0x ,()ε,0x S =X ,此时()ε,0x B ≠()ε,0x S . 毕.设M 是度量空间()d X ,中的点集,定义. ()M δ=()y x d My x ,sup ,∈为点集M 的直径. 若()M δ=()y x d My x ,sup ,∈∞<,则称M 为()d X ,中的有界集(等价于固定0x ,M x ∈∀,()B x x d ≤0,,B 为某正数,则为有界集).()d X ,中的收敛点列{}∞=1n n x 是有界集. 实因,设=∞→n n x lim0x ,则数列(){}0,x x d n 收敛于0,故00>∃M ,s.t.N ∈∀n 有()00,M x x d n ≤. 所以m n ,∀∈N ,有 ()≤m n x x d ,()0,x x d + ()m x x d ,002M ≤.()d X ,中的闭集可以用点列极限来定义: M 为闭集 ⇔ M 中任何收敛点列的极限都在M 中,即若∈n x M , ,2,1=n ,x x n →,则∈x M .具体空间中点列收敛的具体意义:1. 欧氏空间n R m x =()()()()m nm m x x x ,,,21 , ,2,1=m ,为n R 中的点列,x =()n x x x ,,,21 ∈n R ,()x x d m ,=()()()()()()2222211nm n m m x x x x x x -++-+- . x x m →()∞→m ⇔ 对每个n i ≤≤1,有 ()i m i x x → ()∞→m .2. []b a C , 设{}⊂∞=1n n x []b a C ,,∈x []b a C ,,则()x x d n ,=()()0max →-≤≤t x t x n bt a ()∞→n ⇔ {}∞=1n n x 在[]b a ,一致收敛于()t x .3. 序列空间S 设m x =()()()(),,,,21m n m m ξξξ, ,2,1=m ,及x =() ,,,,21n ξξξ分别是S 中的点列及点,则()()()∑∞=→-+-=10121,k k m kkm k k m x x d ξξξξ ()∞→m ⇔ m x 依坐标收敛于x . 实因,若对每个k 有()k m kξξ→()∞→m ,则因∑∞=121k k收敛,所以N ∈∃m ,s.t. 221ε<∑∞=mk k. 因为对每个1,,2,1-=m k ,存在N ∈k N ,s.t.当k N n >时()k n k ξξ-2ε<. 令{}121,,,max -=m N N N N ,当N n >时,成立∑-=1121m k k ()()k n k k n k ξξξξ-+-1<∑-=1121m k k 212εε+<2ε. 所以当N n >时,成立()x x d n ,=∑-=1121m k k ()()k n k k n k ξξξξ-+-1+∑∞=m k k 21()()k n k kn k ξξξξ-+-1<2ε+2ε=ε.所以x x n →()∞→n反之,若x x n →()∞→n ,即()x x d n ,=∑∞=121k k()()k n k kn k ξξξξ-+-10→()∞→n .又因为N ∈∀k ,有()()kn k kn k ξξξξ-+-1k 2≤()x x d n ,,所以当∞→n 时,()()kn k kn k ξξξξ-+-1→0所以0>∀ε,N ∈∃N ,s.t. 当N n >时,成立()()kn k kn k ξξξξ-+-1<εε+1. 所以()k n k ξξ-ε<. 所以N ∈∀k ,有()k n k ξξ→()∞→n .4. 可测函数空间()X M 设{}∞=1n n f ⊂()X M ,f ⊂()X M ,则因()f f d n ,=()()()()⎰-+-Xn n dm t f t f t f t f 1,有 f f n → ⇔ f f n ⇒.实因,若f f n ⇒,则0>∀σ,有[]()σ≥-f f X m n 0→ ()∞→n . 0>∀ε(不妨设()X m 2<ε),取()220εεσ-<<X m ,则()21εσσ<+X m . 今对这样取定的ε及σ,因f f n ⇒,故N ∈∃N ,s.t. 当N n >时,成立[]()σ≥-f f X m n 2ε<. 所以()f f d n ,=()()()()[]⎰≥--+-σf f X n n n dm t f t f t f t f 1+()()()()[]⎰<--+-σf f X n n n dm t f t f t f t f 1≤[]()σ≥-f f X m n 1⋅+()21εσσ<+X m +2ε=ε. 所以()f f d n ,0→()∞→n . 所以f f n →()∞→n .反之,若f f n →()∞→n ,即()f f d n ,0→()∞→n . 对0>∀σ,由于[]()≤≥-+σσσf f X m n 1()()()()[]⎰≥--+-σf f X n n n dm t f t f t f t f 1≤()f f d n ,. 所以[]()0lim =≥-∞→σf f X m n n ,即f f n ⇒.以上各种极限概念不完全一致(依坐标收敛,一致收敛,依测度收敛),引进距离概念之后,都可以统一在度量空间的极限概念之中. 作业 P 205. 5.作业提示 均匀收敛即一致收敛. 证明大意如同“序列空间S ”,并利用 ()()()()()()()()t f t f t f t f r r nr r n bt a -+-≤≤1max=()()()()()()()()t ft f t f t f nax r r n bt a r r n bt a -+-≤≤≤≤max 1.§2.2(2) 度量空间中的稠密集 可分空间 教学内容(或课题):目的要求: 掌握度量空间中的稠密集和可分空间的概念,能正确使用这两个概念. 教学过程:Th 设B 是度量空间X 的一个子集,则集合(){}ε<∈∈=y x d B y X x x O ,,,是个开集,且B ⊂O .证明 设∀0x ∈O ,则∃0y ∈B ,s.t. ()00,y x d <ε. 所以0x ∈()ε,0y U ⊂O . ()δ,0x U x ∈∀,其中εδ<<0-()00,y x d ,则()0,y x d <(ε-()00,y x d )+()00,y x d =ε. 所以()δ,0x U ⊂()ε,0y U ⊂O . 所以∀0x 是O 之内点. 所以O 是开集.又证 以B 中每一点为心作半径ε的邻域,所有这些邻域的并集就是集合O .每个邻域都是开集,任意个开集之并仍为开集,故O 为开集. 至于B ⊂O 是很显然的. 证毕.附注 当0→ε时,得到是B 之闭包未必是B . 例如B =⎭⎬⎫⎩⎨⎧n 1⊂1R .O = ∞=⎪⎭⎫ ⎝⎛11,1n k n U ⊃⎪⎭⎫ ⎝⎛+k k U 1,11=()()⎪⎪⎭⎫ ⎝⎛+++-112,11k k k k k ⊃{}0,但∉0B . P 205.6. 设B ⊂[]b a ,,证明度量空间C []b a ,中的集(){}0,=∈t f B t f 时当为C []b a ,中的闭集,而集(){}()0,><∈=a at f B t f A 时当为开集 ⇔ B 为闭集.证明 设(){}∞=1n n t f ⊂(){}0,=∈t f B t f 时当且在[]b a C ,中()()t f t f n →.则当B t ∈时,对N ∈∀n ,有()t f n =0. 令∞→n ,得B t ∈时,()0=t f . 所以()∈t f (){}0,=∈t f B t f 时当. 所以(){}0,=∈t f B t f 时当是闭集.“⇐” 设B 为闭集,()t f 0∈A ,则 ()a t f <0(当B t ∈). 因()t f 0在B 连续,所以()t f 0≤Bt ∈max ()t f 0a <(当B t ∈). 取ε:0<ε<a -Bt ∈max ()t f 0,则对()t f ∀∈()ε,0f U ,有()()t f t f 0-≤[]b a t ,max ∈()()t f t f 0-<ε. 所以()t f <()t f 0+ε. 所以当B t ∈()t f ≤()t f 0+ε<Bt ∈max ()t f 0+(a -Bt ∈max ()t f 0)=a所以()ε,0f U ⊂A . 所以A 为开集.“⇒” 设A 为开集. 设{}∞=1n n t ⊂B ,0t t n →且0t B ∉.取点()t f :()t f ∈A =(){}a t f B t f <∈时,当,则()n t f <a ,令∞→n 得,()a t f ≤0.因为0t B ∉,故只有()a t f =0. 不妨设()0t f =a (()0t f =-a 时同法可证之). 因为A 为开集,所以00>∃ε,s.t.()0,εf U ⊂A =(){}a t f B t f <∈时,当. :ε∀00εε<<,因为()()()0εεε<=+t f t f d ,,所以点因为()n n t f ∞→lim =()0t f ,所以对上述0>ε且0εε<,存在N t ∈B ,s.t.()()ε<-0t f t f N , 所以()0t f -ε<()N t f . 所以()N t f +ε>()0t f =a .但由方框,应有()ε+N x f <a ,与()N t f +ε>()0t f =a 相互矛盾. 这就证明了B B '⊃. 故B 为闭集. 证毕.Def 1 设X 是度量空间,N 和M 是X 的两个子集,令M 表示M 的闭包,若N ⊂M ,则称集M 在集N 中稠密,当N =X 时,称M 为X 的一个稠密子集. 若X 有一个可列的稠密子集,则称X 是可分空间.例1 n 维欧氏空间n R 是可分空间. 事实上,座标为有理数的点的全体是n R 的可列稠密子集.设M 是闭区间[]b a ,全体有理数集合,N 是[]b a ,全体无理数集合. 在1R 中,因为M ⊂N ,N ⊂M ,所以N 在M 中稠,M 在N 中稠. 因为[]b a ,⊂M ,[]b a ,⊂N ,所以M 和N 都在[]b a ,中稠密. 若X =[]b a ,视为1R 的子空间,则X 是可分空间.例2 离散距离空间X 可分 ⇔ X 是可列集.实因在X 中没有稠密的真子集(因X 中任何一个真子集的闭集还是这个真子集本身),所以X 中唯一的稠密子集只有X 本身,因此X 可分的充要条件为X 是可列集.例3 令∞l 表示有界实(或复)数列全体. 对∞l 中() ,,21ξξ=∀x ,y =() ,,21ηη,定义()y x d ,=k k kηξ-sup .显然()y x d ,≥0 且()y x d ,=0 ⇔ k k kηξ-sup =0 ⇔ 对N ∈∀k ,都有k k ηξ-=0 ⇔ 对N ∈∀k ,都有k k ηξ= ⇔ y x =. 其次设z ∀=() ,,21ςς∈∞l . 因为N ∈∀k ,都有k k ηξ-≤k k ςξ-+kk ςη-≤k k kςξ-sup +k k kςη-sup . 所以k k kηξ-sup ≤k k kςξ-sup +k k kςη-sup .即()y x d ,≤()z x d ,+()z y d ,. 所以∞l 按()y x d ,成为度量空间.往证∞l 是不可分空间.令M 表示∞l 中坐标k ξ取值为0或1的点() ,,21ξξ=x 的全体,则M 与二进位小数一一对应,所以M 有连续统的基数,对M 中任意的两个不同点y x ,,有()y x d ,=1. 若∞l 可分,则∞l 中存在可列稠密子集,设为{}∞=1k k z . 对M 中每一点x ,作球⎪⎭⎫ ⎝⎛31,x B ,则⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛M x x B 31,是一族的两两不相交的球,总数有不可列个. 但由于{}∞=1k k z 在∞l 中稠密,所以每个⎪⎭⎫ ⎝⎛31,x B 中至少含有{}∞=1k k z 中的一点,这与{}∞=1k k z 是可列集矛盾. 证毕.作业: P 205. 3.7.8.9.作业解答: 3. 令n O =()⎭⎬⎫⎩⎨⎧<∈∈n y x d B y X x x 1,,,,则n O 是开集且n O B ⊃. 因为n O ↓,所以n n O ∞→lim = ∞=1n n O . 因B 是闭集,所以n n O ∞→lim =B ,即 ∞=1n n O =B .7. 取ε:0<ε<()F E d ,31. 作开集 O =(){}ε<∈a x d E a x ,, 和G =(){}ε<∈b y d F b y ,,,则O ⊃E ,G ⊃F . 又∀a ∈E ,∀b ∈F ,∀x ∈O ,∀y ∈G ,有 ()b a d ,≤()x a d ,+()y x d ,+()b y d ,. 所以()y x d ,≥()b a d ,-()x a d ,-()b y d ,≥()F E d ,-()F E d ,31-()F E d ,31=()F E d ,31>0. 所以x ≠y . 所以O 与G 必不相交. 又证不相交 若c ∈O G ,则存在()ε,a U 和()ε,b U ,a ∈E ,b ∈F ,s.t.c ∈()ε,a U ()ε,b U . 于是0<()F E d ,≤()b a d ,≤()c a d ,+()b c d ,<ε+ε<32()F E d ,. 矛盾. 所以 O G =Φ.8. ∀x ∈[]b a ,,令()t f x =[]{}⎩⎨⎧-∈=x b a t xt ,,0,1 则集合M =()[]{}b a x t f x ,∈含有不可数个元素()t f x ,M ⊂B []b a ,,∀()t f x 、()t f y ∈M 且x ≠y 时,()y x f f d ,=1. 若[]b a B ,可分,则[]b a B ,中存在可列的稠密子集,记为(){}t f n . 对M 中每一点()t f x ,作球()⎪⎭⎫ ⎝⎛31,t f B x ,则()()⎭⎬⎫⎩⎨⎧∈⎪⎭⎫⎝⎛M t f t f B x x 31,是一族两两不相交的球,总数有不可列个.但由于(){}t f n 在[]b a B ,中稠密,所以每个()⎪⎭⎫ ⎝⎛31,t f B x 中至少含有(){}t f n 中的点,这与(){}t f n 是可列集矛盾. 故[]b a B ,不可分.9. 因为X 可分,所以存在稠密子集B ={} ,,21x x . 对于每个O x ∈.存在()r x U ,⊂O . 因为B 在X 中稠密,所以可在⎪⎭⎫⎝⎛4,r x U 中取出B 中一点k x . 取有理数r ':24r r r <'<,所以x ∈()r x U k ',⊂()r x U ,⊂O ,且所有()r x U k ',至多可列个,包含它的开集O 至多可选出可列个. 证毕.§2.3 连续映照教学内容(或课题):目的要求: 掌握连续映照概念,掌握连续映照的充要条件,学会使用连续映照概念和连续映照充要条件处理与连续映照的实际问题.教学过程:Def 1 设X =()d X ,,Y =()d Y ~,是两个度量空间,T 是X 到Y 中的映照:X =()d X ,T→ Y =()d Y ~,. 0x ∈X ,若∀ε>0,∃δ>0,s.t.∀x ∈X 且()0,x x d <δ,都有()0,~Tx Tx d <ε,则称T 在0x 连续:用邻域来描述T 在0x 连续:对0Tx 的每一个ε-邻域N ,必存在0x 的某个δ-邻域0N ,s.t. 0TN ⊂N (0TN 表0N 在T 作用之下的像集). 也可以用极限来定义映照的连续性,基于Th 1 设T 是度量空间()d X ,到度量空间()d Y ~,中的映照:()d X ,T→()d Y ~,, 则T 在0x 连续 ⇔ 当n x →0x 时,必有n Tx →0Tx .证明 “⇒” 设T 在0x 连续,则∀ε>0,∃δ>0,s.t. ∀x ∈X 且()0,x x d <δ,都有()0,~Tx Tx d <ε. 因为n x →0x ,所以∃N ∈N ,s.t.当n >N 时,有()0,x x d n <δ. 所以()0,Tx Tx d n <ε. 所以n Tx →0Tx . “⇐” 反证法. 若T 在0x 不连续,则∃0ε>0,s.t. ∀δ>0,∃x ≠0x ,虽然()0,x x d <δ,但是()0,~Tx Tx d ≥0ε. 特别取δ=n1,则有n x ,s.t.当()0,x x d <n1时,有()0,~Tx Tx d n ≥0ε. 即n x →0x 时,有n Tx 不→0Tx . 与假设矛盾.证毕.若映照T 在X 的每一点都连续,则称T 是X 上的连续映照. 称集合{}M Tx X x x ∈∈,(M ⊂Y )为集合M 在映照T 下的原像.简记为M T 1-.用开集刻划连续映照,就是Th 2 度量空间X 到Y 中的映照T 是X 上的连续映照 ⇔ 任意开集M ⊂Y ,M T 1-是X 中的开集.证明 “⇒” 设T 是连续映照,M ⊂Y 是Y 中开集. 若M T 1-=Φ,则M T 1-是X 中开集. 若M T 1-≠Φ,则0x ∀∈M T 1-,令0y =0Tx ,则0y ∈M . 由于M 是开集,所以存在邻域()ε,0y N⊂M . 由T 的连续性,存在邻域()δ.0x N ,s.t. T ()δ.0x N ⊂ ()ε,0y N ⊂M . 从而 ()δ.0x N ⊂1-T ()ε,0y N ⊂M T 1-. 所以0x 是M T 1-的内点. 因为0x ∈M 是任意的,所以M T 1-是X 中的开集.“⇐” 设Y 中每个开集的原像是开集. 0x ∀∈X ,则()ε,01Tx N T -是X 中的开集. 又0x ∈()ε,01Tx N T -,所以0x 是()ε,01Tx N T -的内点,所以存在邻域()δ.0x N ⊂()ε,01Tx N T -. 所以T ()δ.0x N ⊂()ε,0Tx N ,所以T 在0x 连续. 又0x ∈X 是任意的,所以T 是X 上的连续映照. 证毕.利用()CM T 1-=()M T C 1-,又有Th 2' 度量空间X 到Y 中的映照T 是X 上的连续映照 ⇔ 任意闭集M ⊂Y ,M T 1-是X 中的闭集.证明 “⇒” 设T 是X 上的连续映照,又设M ⊂Y ,M 是闭集,则CM 是开集. 由Th2, ()CM T 1-是开集. 但()CM T 1-=()M T C 1-,故M T 1-是X 中的闭集.“⇐” M ∀⊂Y 且M 是闭集,则CM 是开集. 由()CM T 1-=()M T C 1-,及Y 中任何闭集M 的M T 1-总是X 中的闭集,得Y 中任何开集CM 的原像()CM T 1-总是开集,由Th2, T 是X 上的连续映照. 证毕.P 206.10. 设X 为距离空间,A 为X 中的子集. 令()x f =()y x d Ay ,inf ∈, x ∈X . 证明()x f 是X 上的连续函数.证明 0x ∀∈X ,n x ∀∈X , ,2,1=n ,s.t.n x →0x .y ∀∈A ⊂X ,因为 ()y x d n ,≤()0,x x d n +()y x d ,0,所以 ()y x d n Ay ,inf ∈≤()0,x x d n +()y x d ,0, 所以 ()y x d n Ay ,inf ∈-()0,x x d n≤()y x d ,0, 所以()y x d n Ay ,inf ∈-()0,x x d n ≤()y x d Ay ,inf 0∈,所以()y x d n Ay ,inf ∈-()y x d Ay ,inf 0∈≤()0,x x d n . 同理()y x d Ay ,inf 0∈-()y x d n Ay ,inf ∈≤()n x x d ,0.所以|()()0x f x f n -|=|()y x d n Ay ,inf ∈-()y x d Ay ,inf 0∈|≤()0,x x d n →0(∞→n ).所以()x f 是X 上的连续映照(Th 1). 作业: P 206. 11. 12. 13.作业解答: 11. 先证 ()y x d F y F x ,inf 21∈∈>0. 否则>∀ε0,x ∃∈1F ,y ∈2F ,s.t. ()y x d ,<ε. 令ε=m1,则∃m x ∈1F ,m y ∈2F ,s.t. ()m m y x d ,<m1,令∞→m ,由于()y x d ,是二元连续函数,故得()00,y x d =0(0x ∈1F 是m x 的聚点,0y ∈2F 是m y 的聚点,聚点存在).因此0x =0y 与1F 2F =Φ相矛盾,故()21,F F d =()y x d F y Fx ,inf 21∈∈>0.取ε:0<ε<21()21,F F d ,再令1G =() 1,F x x U ∈ε,2G =() 2,F y y U ∈ε,则1G 与2G 均为开集. 下证∀()ε,x U 与∀()ε,y U 都不相交. 若不然设∃z ∈()ε,x U ()ε,y U ,则()y x d ,≤()z x d ,+()y z d ,<ε+ε<()21,F F d . 与()y x d ,≥()21,F F d 相矛盾. 故任意二邻域不相交,从而1G 2G =Φ.12. ∀取开集G ⊂Z . 因为g 是Y 到Z 中的连续映照, 所以G g 1-⊂Y 是开集.因为f 是X 到Y 中的连续映照,所以()G g f 11--⊂X 是开集. 即()G gf 1-⊂X 是开集. 所以 gf 是X 到Z 中的连续映照.13. 由Th 2'或由()M T C 1-=()CM T 1-和Th2推得. 附注 区间(]c ,∞-及[)∞+,c 均为闭集.§2.4 压缩映象原理及其应用本节作为完备度量空间何重要特征,我们介绍Banach 压缩映象原理,它在许多关于存在唯一性的定理证明中是一个有力的工具.随着现代电子计算机技术的发展,我们在解方程(包括常微分方程、偏微分方程、积分方程、差分方程、代数方程等)的过程中,大量使用的是逐次逼近的迭代法.几乎可以这样说:对一个方程,只要我们找到一个迭代公式,就算解出了这个方程(当然我们还要考虑迭代公式的收敛性、解的稳定性和收敛速度等问题).但是,在逐次迭代中,我们必须保证迭代过程中得到的是个收敛序列,否则就是毫无意义的了.而选代法解方程的实质就是寻求变换(映射、映照)的不动点.例如求方程f(x)=0的根,我们可令g(x)=x-f(x),则求f(x)=0的根就变成求g(x)的不动点,即求,使.而在通常求映射的不动点的方法中,最简单的就是下面我们所讲的--Banach压缩映象定理.定义(压缩映象)设T是度量空间X到X中的映照,如果对都有(是常数)则称T是X上的一个压缩映照.从几何上说:压缩映照即点x和y经过映照T后,它们的像的距离缩短了(不超过d(x,y)的倍)定理1(Banach压缩映照原理)1922年(Banach 1892-1945 波兰数学家)设(X,d)是一个完备度量空间,T是X上的一个压缩映照,则丅有唯一的不动点.即的使证:任取令(此即解方程的逐次迭代法)先证是Cauchy点列①①先考虑相邻两点的距离②再考虑任意两点的距离当n>m时==是Cauchy点列是完备度量空间,使下证x为不动点再证不动点唯一若还有,使则因必须注:①定理条件(a)X完备,(b)缺一不可,反例如下(a)若X不完备,则定理不成立例如:令X=(0,1),用欧氏距离,则但不动点(b)定理不成立例如:令 X=R用欧氏距离则但显然T无不动点.②若将空间X条件加强为紧距空间,则压缩因子条件可放宽为1,即可改为限于我们的学时,我们只介绍一下Banach压缩映象原理的简单应用.定理2(隐函数存在定理)设在带状区域上处处连续,处处有关于y的偏导数,且如果存在常数m,M,适合.则方程f在闭区间上有唯一的连续函数,使.证:(在中考虑映照,若其为压缩映照,则有不动点)在完备度量空间中作映照,显然,对由连续函数的运算性质有.是到自身的一个映照下证是压缩的.即证,任取由微分中值定理,存在,使令则,故取最大值映照T是压缩的.由Banach压缩映象定理在上有唯一的不动点使显然这个不动点适合注:①注意本定理的证明思路:先确定空间,再找映照(这是难点),然后证明此映照是压缩的,最后利用定理即得.注意到这是利用Banach压缩映照定理解题的一般方法.②②此隐函数存在定理给出的条件强于数学分析中隐函数存在定理所给出的条件,因而得出的结论也强些:此处得出区间上的连续隐函数.下面我们介绍Banach不动点定理在常微分方程解的存在唯一性定理中的应用--Picard定理.定理3:(Picard定理 Cauchy--Peano微分方程解的存在唯一性定理)(Picard 法国人 1856—1941 Peano意大利人1858--1932)设在矩形上连续,设又在R上关于x満足Lipschitz(德国人 1832--1903)条件,即存在常数k使对有,那么方程在区间上有唯一的满足初始条件的连续函数解.其中证:设表示在区间上的连续函数全体.对成完备度量空间.又令表示中满足条件的连续函数全体所成的子空间.显然闭,因而也是完备度量空间.令如果当时,而是R上的二元连续函数,映照中积分有意义.又对一切故T是到的一个映照下证是压缩的.由Lipschitz条件,对中的任意两点有令,则由有.则故T是压缩的.由Banach压缩映象定理,T在中有唯一的不动点.即使即且即是满足初值条件的连续解.再证唯一性.如果也是满足的连续解.那么因而而且也是T的不动点.而T的不动点是唯一的.故有唯一解.注:题设条件中Lipschitz条件的要求是十分强的,它保证了解的唯一性.实际上満足Lipschtz条件即为一致收敛.因而可在积分号下求导,如果把解的要求降低,例如只要求广义解,即只要求满足积分方程则题设条件可大大放宽:只要有界,即可利用Lebesgue控制收敛定理得到广义解.注意到Banach压缩映照定理不仅证明了方程的解的存在唯一性,而且也提供了求解的方法--逐次逼近法:即只要任取令则解.且在Banach不动点定理的证明中,有.即此式给出了用逼近解的误差估计式.补充:Brouwer不动点是定理与Schauder不动点定理简介鉴于不动点理论在现代数学中非常重要的地位,以及不动点理论是现代泛函分析中一个十分活跃的重要分支,下面我们简单介绍Brouwer不动点定理和Schauder不动点定理及其简单应用.一、Brouwer不动点定理及其应用:(一)Brouwer不动点定理(Brouwer:荷兰人 1881-1966)定义(凸集):X为一集,若则称A为X的凸子集.定理1(Brouwer不动点定理):设为的有界闭凸集,连续,则使.证:1、若证明如下:不妨设作辅助函数显然在上连续.从而变成证明使即可.显然:否则则0为f之不动点;否则则1为f之不动点:(证毕)由连续函数的介值性定理的推论:根的存在定理可得使证毕.2、若,其证明方法很多,其中纯分析方法的证明要用到场论中旋度的概念,且很繁,而简洁的证明要用到拓扑学中映象度理论,因而希望对此有兴趣的同学可参阅张石生《不动点定理及其应用》,或一般常微分方程教材的附录.3、注意到Brouwer不动点定理中的条件是不可缺少的,但某些条件可以减弱.下面我们讨论Brouwer不动点定理的应用.(二)证明代数基本定理:代数基本定理:复系数一元n次方程至少有一个复根.证:令作辅助函数考虑闭圆盘:显然 c为有界闭凸集,且连续(只要考虑z=1连续即可,而这是显然的.).下证将c映入c:当时当时=将 c映入 c. 由Brouwer不动点定理使使证毕(三)证明Perrou定理:Perrou定理:矩阵使.即:正矩阵一定存在正特征值和特征向量.证:设,令为标准单纯形,则.作映照显然为连续映照.下面先证将映入.注意到.则由Brouwer不动点定理使即.令则有.下证的每个分量严挌大于零.由的第i个分量方程为正矩阵一定存在正特征值和特征向量.(四)Rother证明定理:Brouwer定理条件可以减弱,作为Brouwer不动点定理的推广,下面我们证明Rother定理.Rother定理:为单位球,在上连续,且当时,使.证:作辅助函数则连续,且.作,则F在上连续,且将映入.由 Brouwer不动点定理,F有不动点.即,使得.下证此为之不动点.若若先用反证法证明.若,则矛盾,.从而故 f有不动点. 证毕Brouwer不动点定理有着十分广泛的应用,由于时间关系,我们就不再多谈.对此有兴趣的同学可参阅张石生《不动点理论及其应用》.我们可以进一步将Brouwer不动点定理推广到无穷维空间—这就是Schauder不动点定理.二、Schauder不动点定理:(Schauder:1899-1940)首先我们注意到度量空间中:紧集列紧闭集(致密闭集),在拓扑空间中:紧集任意开复盖都有有限复盖之集.Schauder不动点定理:紧凸集到自身的连续映照必有不动点.证:(略)Schauder不动点定理的应用(略).我们还可以将Schauder不动点定理再推广到多值映照得到Kakutani不动点定理.。

泛涵分析课程设计

泛涵分析课程设计

泛涵分析课程设计一、教学目标本节课的教学目标是使学生掌握泛函分析的基本概念和基本性质,能够运用泛函分析的方法解决一些实际问题。

具体来说,知识目标包括:掌握泛函空间、映射、变换等基本概念;理解泛函分析的基本性质,如闭性、连续性等;掌握泛函分析的基本运算,如加法、数乘等。

技能目标包括:能够运用泛函分析的方法解决一些线性代数和微分方程的问题;能够运用泛函分析的方法分析和解决一些实际问题。

情感态度价值观目标包括:培养学生的抽象思维能力,提高学生解决实际问题的能力;培养学生对数学的兴趣和热情,提高学生对数学的自信心。

二、教学内容本节课的教学内容主要包括泛函分析的基本概念、基本性质和基本运算。

具体来说,首先介绍泛函空间的概念,包括赋范空间、内积空间等,并介绍其基本性质;然后介绍映射和变换的概念,包括连续性、可积性等,并介绍其基本性质;最后介绍泛函分析的基本运算,如加法、数乘等,并介绍其运算规则。

三、教学方法为了达到本节课的教学目标,将采用多种教学方法进行教学。

首先,采用讲授法,向学生讲解泛函分析的基本概念、基本性质和基本运算;其次,采用讨论法,引导学生进行思考和讨论,提高学生解决问题的能力;再次,采用案例分析法,通过分析一些实际问题,让学生学会运用泛函分析的方法解决问题;最后,采用实验法,让学生通过实验验证泛函分析的理论和方法。

四、教学资源为了支持本节课的教学内容和教学方法的实施,将选择和准备以下教学资源。

首先,教材《泛函分析导论》作为主要的学习材料,为学生提供系统的泛函分析知识;其次,参考书《泛函分析原理》和《泛函分析的应用》作为辅助的学习材料,为学生提供更多的泛函分析的知识和实例;再次,多媒体资料,包括PPT、视频等,用于辅助讲解和演示;最后,实验设备,如计算机、投影仪等,用于实验和演示。

五、教学评估为了全面、客观地评估学生的学习成果,将采用多种评估方式。

平时表现占30%,包括课堂参与度、提问回答、小组讨论等;作业占20%,包括课后习题、小论文等;考试占50%,包括期中和期末考试。

应用泛函分析教案

应用泛函分析教案

应用泛函分析教案第一章:泛函分析引言1.1 泛函分析的概念介绍泛函分析的基本概念,例如赋范线性空间、内积空间、巴拿赫空间等。

解释泛函分析与其他数学分支的关系,例如微积分、线性代数等。

1.2 泛函分析的应用探讨泛函分析在数学物理中的重要作用,例如偏微分方程、量子力学等。

介绍泛函分析在工程和计算机科学中的应用,例如信号处理、机器学习等。

第二章:赋范线性空间2.1 赋范线性空间的基本概念定义赋范线性空间,介绍范数的性质和例子。

解释赋范线性空间中的距离和角度概念。

2.2 赋范线性空间的主要结果介绍赋范线性空间中的基本定理,例如三角不等式、平行四边形法则等。

探讨赋范线性空间中的极限和连续性概念。

第三章:内积空间3.1 内积空间的基本概念定义内积空间,介绍内积的性质和例子。

解释内积空间中的正交性和角度概念。

3.2 内积空间的主要结果介绍内积空间中的基本定理,例如帕施-柯尔莫哥洛夫定理、正交基等。

探讨内积空间中的谱理论和量子力学中的应用。

第四章:巴拿赫空间4.1 巴拿赫空间的基本概念定义巴拿赫空间,介绍巴拿赫空间的特点和例子。

解释巴拿赫空间中的弱收敛和紧性概念。

4.2 巴拿赫空间的主要结果介绍巴拿赫空间中的主要定理,例如巴拿赫-魏尔斯特拉斯定理、Riesz表示定理等。

探讨巴拿赫空间在函数逼近论和泛函积分中的应用。

第五章:泛函分析的应用实例5.1 信号处理中的应用介绍泛函分析在信号处理中的应用,例如希尔伯特空间、正交函数等。

探讨泛函分析在信号滤波和去噪等问题的解决中的作用。

5.2 机器学习中的应用介绍泛函分析在机器学习中的应用,例如核函数、支持向量机等。

探讨泛函分析在特征选择和优化算法中的作用。

第六章:赋范线性空间的operators6.1 算子概念定义算子和赋范线性空间中的算子,例如线性映射、紧算子、有界算子等。

解释算子的性质和例子,例如线性、连续、可逆等。

6.2 算子的基本理论介绍算子的基本定理,例如谱定理、弗雷德孙定理、盖尔丹定理等。

泛函分析教学大纲

泛函分析教学大纲

泛函分析教学大纲第一篇:泛函分析教学大纲一、教学目的通过学习此章,理解线性算子的谱及分类,掌握紧集和全连续算子的定义及紧线性算子的谱。

二、教学重点线性算子的谱及分类,全连续算子。

三、教学难点紧集和紧线性算子的谱。

四、讲授要求通过学习此章,理解线性算子的谱及分类,掌握紧集和全连续算子的定义及紧线性算子的谱。

五、讲授要点谱集及分类,有界线性算子谱的性质,紧集合全连续算子,紧线性算子的谱。

第二篇:泛函分析教学大纲课号:218.116.1泛函分析教学大纲(Functional Analysis)学分数 3 周学时 4一.说明1.课程名称: 泛函分析(一学期课程),第五学期(3+1)*18=72.2.教学目的和要求:(1)课程性质: 本课程是数学系专业基础课, 为数学系本科三年级学生所必修。

(2)基本内容: 本课程主要内容: 度量空间中点集分析,赋范空间上算子与几何,内积空间中几何与算子,线性算子谱理论。

(3)基本要求: 通过本课程的学习, 学生应熟练掌握度量,范数,线性算子,内积,直交投影,谱等概念, 熟练掌握纲理论及有界线性算子的基本原理和线性泛函的延拓理论, 为今后学习打下坚实基础。

3.教学方式: 课堂授课。

4.考试方式: 考试。

5.教材: 《泛函分析》讲义,郭坤宇,徐胜芝编参考书: 《实变函数与泛函分析》夏道行等编, 高等教育出版社。

二.讲授纲要第一章度量空间中点集分析1.1 度量空间(3学时)1.2 度量拓扑(2学时)1.3 数值函数(2学时)1.4 紧~~~与极值(2学时)1.5 贝尔纲论(3学时)1.6 函数空间(2学时)本章要求: 通过学习度量空间的基本点集理论, 读者应能熟悉紧集与其应用, 熟悉纲理论及其应用, 掌握映射的连续性与数值函数的上半连续与下半连续性及其特征.第二章赋范空间上算子与几何有界线性算子(3学时)连续线性泛函(3学时)弱收敛与共轭(2学时)一致有界原理(2学时)开映射与闭算子(3学时)凸集与超平面(2学时)本章要求: 通过学习有界线性算子的基本理论, 读者应能掌握线性泛函分析的基本原理:泛函延拓原理及其在分析与几何上的应用;一致有界原理及其应用;开映射原理与闭图像定理的应用等.第三章内积空间上几何与算子内积空间(2学时)共轭算子(2学时)投影算子(2学时)基与维数(2学时)赋范代数(2学时)本章要求: 通过学习内积空间的几何, 掌握投影定理与投影算子的应用,直交基的确立及其应用.第四章线性算子谱理论正则点与谱点(3学时)紧算子谱分析(3学时)有界正规算子(2学时)无界线性算子(2学时)谱测度与积分(3学时)指标理论初步(2学时)本章要求: 通过学习线性算子谱理论, 读者应能计算一些典型线性算子如单向平移和乘法算子等的谱, 提高利用Gelfand谱理论分析谱的能力, 掌握正规算子谱分解及其应用, 能分析紧算子的谱并掌握Fredholm算子指标的应用.第三篇:泛函分析1.设(X,d)为距离空间。

泛函分析课程教学设计方案

《泛函分析》课程教学设计方案责任教师周勇一课程设计方案的内容与要求(一)课程说明1 课程性质《泛函分析》课程是中央广播电视大学数学与应用数学专业的一门限选课,最近几年来,它已成为高等院校数学与应用数学专业的一门重要基础课。

它的要紧任务是使学生把握抽象分析的大体思想,为进一步学习现代数学打下必要的基础。

2 课程的知识结构概况和在专业知识结构中的地位和作用泛函分析课程的要紧内容是距离空间与拓扑空间、赋范线性空间、有界限性算子、Hilbert空间、拓扑线性空间和Banach代数等。

本课程为选修课,课内学时为72学时,共4学分。

(二)教学媒体的组合利用方案本课程的要紧教学媒体有4大类 ,其作用是在整个学习进程中为学员的自主学习提供必要的辅导和辅助,加深学员对所学知识的明白得,从而达到把握数学大纲规定内容的目的,媒体的组成如下:▲文字教材:文字教材是教学媒体的核心,是传递数学信息及学生进行自主学习的大体依据,是整个数学媒体体系的基础。

包括主教材、参考资料、教学大纲、课程教学设计方案、期末考试说明。

▲音像教材:音像教材是对文字教材内容的进一步阐释与必要的补充(分重点教学和章节温习类型),以增强学生对该课程教学内容的明白得和把握。

采取录像课形式。

▲网络教学:以因特网为媒介,通过网上教学、E-MAIL等网络信息传输手腕为学生和教师提供效劳▲电话教学:该课程责任教师的电话为分类具体说明和要求如下:1 文字教材(1)主教材:本课程文字教材有主教材,名称为《泛函分析》(刘炳初编著)科学出版社出版。

(2)教学大纲:“泛函分析教学大纲”,由四川广播电视大学下发。

(3)课程教学设计方案:由省电大该课程的责任教师编写。

文字教材的利用主体是学生自己。

2 其他媒体的设计利用方案责任教师通过网络组织教学,提供学习支持效劳,利用四川电大教学处主页和电子邮件对学生进行教学辅导。

通过因特网为所有参加开放教育学习的学生发布教学信息,提供Array学习指导。

武汉大学泛函分析授课教案

授课班级:XX级XX班授课时间:2023年X月X日授课教师:XXX教学目标:1. 使学生掌握泛函分析的基本概念和基本性质。

2. 使学生能够运用泛函分析的理论和方法解决实际问题。

3. 培养学生的逻辑思维能力和创新意识。

教学内容:1. 泛函分析的基本概念2. 线性赋范空间3. 线性算子4. 共鸣定理及其应用5. 自反空间与一致凸空间教学过程:一、导入1. 回顾实变函数和复变函数的基本知识,引出泛函分析的概念。

2. 强调泛函分析在数学和自然科学中的应用。

二、基本概念1. 泛函分析的基本概念:函数空间、线性赋范空间、线性算子等。

2. 通过实例讲解,使学生理解这些概念。

三、线性赋范空间1. 定义线性赋范空间,并举例说明。

2. 讲解线性赋范空间的性质,如闭性、完备性等。

3. 介绍一些常见的线性赋范空间,如Lp空间、C空间等。

四、线性算子1. 定义线性算子,并举例说明。

2. 讲解线性算子的性质,如连续性、有界性等。

3. 介绍一些常见的线性算子,如积分算子、微分算子等。

五、共鸣定理及其应用1. 介绍共鸣定理的定义和证明。

2. 通过具体例子分析共鸣定理在经典分析中的应用。

3. 讲解如何将经典分析中的问题转化为泛函分析中的问题。

六、自反空间与一致凸空间1. 定义自反空间和一致凸空间,并举例说明。

2. 讲解自反空间和一致凸空间的性质,如自然嵌入映射、等距同构等。

3. 介绍一些常见的自反空间和一致凸空间,如Lp空间、Lq空间等。

七、总结1. 总结本节课的主要内容,强调泛函分析在数学和自然科学中的应用。

2. 布置课后作业,巩固所学知识。

教学评价:1. 通过课堂提问、讨论等方式,了解学生对本节课内容的掌握程度。

2. 课后作业的完成情况作为评价学生掌握知识的重要依据。

3. 定期进行测试,了解学生对泛函分析的整体掌握情况。

应用泛函分析课程教学大纲

应用泛函分析课程教学大纲课程名称:应用泛函分析英文名称:Applied Functional Analysis课程编码:x4080131学时数:48其中实践学时数:0 课外学时数:0学分数:3.0适用专业:信息与计算科学一、课程简介《应用泛函分析》是一门专业选修课程。

课程内容包括距离空间、赋范空间、有界线性算子等基础理论。

泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。

它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

通过对本课程的学习,使学生掌握泛函分析中的基本概念及方法,培养学生利用泛函分析这一数学工具,分析和解决有关的数学理论问题的能力,为学生今后处理和解决实际问题打下坚实的理论基础。

二、课程目标与毕业要求关系表课程目标毕业要求(1)使学生掌握泛函分析中的基本概念及方法,了解距离空间、拓扑空间、赋范空间的基本概念和原理,培养学生利用泛函分析这一数学工具分析有关的数学理论问题的能力。

(5)基础知识:掌握数学科学的思想方法,具有较扎实的数学基础知识。

(6)专业知识:系统地掌握泛函分析的基础理论和基本方法。

(2)使学生掌握有界线性算子相关理论和方法,具有进一步解决有关的数学理论问题的能力。

(5)基础知识:掌握数学科学的思想方法,具有较扎实的数学基础知识。

(6)专业知识:系统地掌握泛函分析的基础理论和基本方法。

三、课程教学内容、基本要求、重点和难点(一)距离空间和拓扑空间了解距离空间和拓扑空间的基本概念和定理。

理解和掌握空间的完备性的概念。

理解和掌握拓信息与计算科学专业教学大纲- 75 -扑空间的紧性的概念。

掌握压缩映射原理。

重点:距离空间的点集的相关理论,拓扑空间点集的相关理论。

泛涵分析课程设计

泛涵分析课程设计一、课程目标知识目标:1. 让学生掌握泛涵分析的基本概念,如向量空间、线性映射、特征值与特征向量等;2. 使学生理解泛涵分析在数学及相关领域中的应用,如物理、工程、计算机科学等;3. 引导学生运用泛涵分析的知识解决实际问题,提高数学建模和数学思维能力。

技能目标:1. 培养学生运用数学软件(如MATLAB、Python等)进行泛涵分析运算的能力;2. 培养学生通过小组合作、讨论与展示,提高沟通与协作能力;3. 培养学生运用泛涵分析知识解决实际问题时,提出假设、建立模型、分析问题和解决问题的能力。

情感态度价值观目标:1. 培养学生对泛涵分析学科的兴趣,激发学生学习数学的热情;2. 培养学生严谨、踏实的科学态度,树立正确的数学价值观;3. 引导学生认识数学在国家和科技创新中的重要作用,培养学生的社会责任感和使命感。

课程性质:本课程为数学专业高年级选修课,旨在提高学生运用泛涵分析知识解决实际问题的能力。

学生特点:学生已具备一定的数学基础和分析能力,对泛涵分析有一定了解,但实际应用能力有待提高。

教学要求:注重理论与实践相结合,强调学生的主体地位,采用启发式、讨论式教学方法,提高学生的参与度和积极性。

通过本课程的学习,使学生能够将泛涵分析知识运用到实际问题的解决中,为未来的学术研究和工作奠定基础。

二、教学内容1. 引入泛涵分析基本概念:包括向量空间、线性映射、范数、内积、赋范线性空间和希尔伯特空间等基础理论。

相关教材章节:第一章至第三章2. 特征值与特征向量:探讨线性算子的特征值和特征向量,以及它们在物理、工程等领域的应用。

相关教材章节:第四章3. 泛函与变分法:介绍泛函的基本概念,探讨变分法在求解极值问题中的应用。

相关教材章节:第五章4. 偏微分方程:学习偏微分方程的基本理论,并探讨其在工程、物理等领域的应用。

相关教材章节:第六章5. 数值方法:介绍泛涵分析在数值计算中的应用,如线性方程组的求解、优化问题的数值方法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 度量空间§2.1 度量空间的进一步例子 教学内容(或课题):目的要求: 在复习第二章度量空间基本概念前提下,要求进一步掌握离散度量空间、序列空间、有界函数空间、可测函数空间等. 教学过程:一 复习度量空间的概念设X 是个集合,若对于∈∀y x ,X ,都有唯一确定的实数()y x d ,与之对应,且满足01 ()y x d ,0≥,()y x d ,=0y x =⇔;02 ()y x d ,≤()z x d ,+()z y d ,对∈∀z y x ,,X 都成立, 则称(X ,d )为度量空间或距离空间,X 中的元素称为点,条件02称为三点不等式. 欧氏空间n R 对n R 中任意两点()n x x x x ,,,21 =和()n y y y y ,,,21 =,规定距离为 ()y x d ,=()2112⎪⎭⎫ ⎝⎛-∑=ni i i y x .[]b a C ,空间 []b a C ,表闭区间[]b a ,上实值(或复值)连续函数的全体.对[]b a C ,中任意两点y x ,,定义()y x d ,=()()t y t x bt a -≤≤max .pl ()1+∞<≤p 空间 记pl ={}⎭⎬⎫⎩⎨⎧∞<=∑∞=∞=11k p kk k xx x .设{}∞==1k k x x ,{}∞==1k k y y ∈p l ,定义 ()y x d ,=pi pii y x 11⎪⎪⎭⎫ ⎝⎛-∑∞=. 二 度量空间的进一步例子例1 设X 是任意非空集合,对于∈∀y x ,X ,令()y x d ,=⎩⎨⎧=≠y x y x 当,当,0;1容易验证 01 ()y x d ,0≥,()y x d ,=0y x =⇔; 02()y x d ,≤()z x d ,+()z y d ,对∈∀z y x ,,X 都成立. 称(X ,d )为离散的度量空间. 由此可见,在任何非空的集合上总可以定义距离,使它成为度量空间.例2 序列空间S 令S 表示实数列(或复数列)的全体,对{}∞==∀1k k x x ,{}∞==1k k y y ,令 ()y x d ,=∑∞=121k kkk k k y x y x -+-1. 显然右边的级数总是收敛的. 易知()y x d ,0≥,且()y x d ,=0y x =⇔. 即()y x d ,满足条件01. 对C b a ∈∀,,先证≤+++ba b a 1aa +1+bb +1.实因令 ()t t t f +=1 (+∞<≤t 0),则因为()2)1(1t t f +='0>,所以函数 ()ttt f +=1 在[)+∞,0上单调递增. 又因为 b a b a +≤+,所以有≤+++ba b a 1ba b a +++1=ba a ++1+ba b ++1≤aa +1+bb +1.再令 {}∞==1k k z z ,k k z x a -=,k k y z b -=,则 k k y x b a -=+. 由上述已证的不等式,得kk k k y x y x -+-1≤kk k k z x z x -+-1+kk k k y z y z -+-1.由此推得 02 ()y x d ,≤()z x d ,+()z y d ,对∈∀z y x ,,S 都成立. 故S 按()y x d ,成一度量空间.例3 有界函数空间()A B设A 是一个给定的集合,令()A B 表示A 上有界实值(或复值)函数的全体. ∈∀y x ,()A B ,定义 ()y x d ,=()()t y t x At -∈sup .显然()y x d ,0≥,且()y x d ,=0⇔A t ∈∀成立()()t y t x =,即()y x d ,满足条件01.又A t ∈∀,有 ()()t y t x -≤()()t z t x -+()()t y t z -≤()()t z t x At -∈sup +()()t y t z At -∈sup所以 ()()t y t x At -∈sup ≤()()t z t x At -∈sup +()()t y t z At -∈sup . 即()y x d ,满足条件02. 特别当[]b a A ,=时,()A B =[]b a B ,.例4可测函数空间()X M设()X M 为X 上实值(或复值)的Lebesgue 可测函数的全体,m 为Lebesgue 测度,若()X m ∞<,对任意两个可测函数()t f 及()t g ,由于()()()()11<-+-t g t f t g t f ,故不等式左边为X 上可积函数. 令()g f d ,=()()()()⎰-+-Xdm t g y f t g t f 1.若把()X M 中两个几乎处处相等的函数视为()X M 中同一个元素,则()g f d ,≥0且()g f d ,=0 ⇔ g f =,即()g f d ,满足条件01. 其次(参考例2)()g f d ,=()()()()⎰-+-X dm t g y f t g t f 1≤⎰⎪⎪⎭⎫⎝⎛-+-+-+-X dm g h gh h f h f 11=⎰-+-Xdm hf h f 1+⎰-+-Xdm gh g h 1=()h f d ,+()g h d ,,对∈∀h g f ,,()X M 都成立. 即 ()g f d , 满足条件02. 故()X M 按上述距离()g f d ,成为度量空间.作业 P 205. 2. 4.作业提示 2. 与例2处理方法类似.4.利用xx+1 当0≥x 时的递增性.§2.2(1) 度量空间中的极限教学内容(或课题):目的要求: 掌握一般的度量空间中的邻域、内点、外点、界点、导集、闭包、开集、闭集、收敛点列等概念,认识具体空间中点列收敛的具体意义. 教学过程:设()d X ,为度量空间,d 是距离,定义 ()ε,0x B =(){}ε<∈0,x x d X x 为0x 的以ε为半径的开球,亦称为0x 的ε邻域.例1 设()d X ,是离散的度量空间,d 是距离,则()ε,0x B ={}⎩⎨⎧>≤<1,;10,0εε当当X x仿§2.2-§2.3,设E 是度量空间()d X ,中的一个子集,0x 是X 中一点若存在0x 的某一邻域()0x U ,s.t. ()0x U ⊂E ,则称0x 为E 的内点. 若0x 是CE 的内点,则称0x 为E 的外点. 若∀()0x U 内既有E 的点又有非E 的点,则称0x 为E 的边界点. 若∀()0x U 内都含有无穷多个属于E 的点,则称0x 为E 的聚点. E 的全体聚点所成集合称为E 的导集,记为E '. E E '称为E 的闭包,记为E . 若E 的每一点都是E 的内点,则称E 为开集. 若E '⊂E ,则称E 为闭集.例2在欧氏空间1R 中,记A 为全体有理数点的集合,B 为全体无理数点的集合.则集合A 及B 均无内点,均无外点; ∈∀x 1R 既是A 又是B 的界点,既是A 又是B 的聚点; 1R 既是A 又是B 的导集,既是A 又是B 的闭包; A 、B 既非开集又非闭集. 若如同例1,将集合1R 离散化,则∈∀x A 都是A 的内点,∈∀y B 都是B 的内点,因此A 、B 在离散空间中均为开集; A 、B 均无界点; A 之外点集合为B ,B 之外点集合为A ; A 、B 均无聚点,因此Φ='A ,Φ='B ,A A '⊃,B B '⊃,故A 、B 均为闭集.设{}∞=1n n x 是()d X ,中点列,若X x ∈∃,s.t.()0,lim =∞→x x d n n (*)则称{}∞=1n n x 是收敛点列,x 是点列{}∞=1n n x 的极限.收敛点列的极限是唯一的. 实因若设n x 既牧敛于x 又收敛y ,则因为()()()0,,,0→+≤≤n n x y d x x d y x d ()∞→n ,而有 ()y x d ,=0. 所以x =y .附注 (*)式换个表达方式:()x x d n n ,lim ∞→=()x x d n n ,lim ∞→. 即当点列极限存在时,距离运算与极限运算可以换序. 更一般地有 距离()y x d ,是x 和y 的连续函数.证明 ()y x d ,≤()0,x x d +()00,y x d +()y y d ,0 ⇒()y x d ,-()00,y x d ≤()0,x x d +()y y d ,0;()00,y x d ≤()x x d ,0+()y x d ,+()0,y y d ⇒()00,y x d -()y x d ,≤()0,x x d +()y y d ,0. 所以|()y x d ,-()00,y x d |≤()0,x x d +()y y d ,0 例3 设()d X ,为一度量空间,令()ε,0x B =(){}ε<∈0,,x x d X x x , ()ε,0x S =(){}ε≤∈0,,x x d X x x . 问()ε,0x B =()ε,0x S ?答 在n R 空间中,必有()ε,0x B =()ε,0x S . 在离散度量空间()d X ,中,当1=ε时,()ε,0x B ={}0x ,()ε,0x S =X ,此时()ε,0x B ≠()ε,0x S . 毕.设M 是度量空间()d X ,中的点集,定义. ()M δ=()y x d My x ,sup ,∈为点集M 的直径. 若()M δ=()y x d My x ,sup ,∈∞<,则称M 为()d X ,中的有界集(等价于固定0x ,M x ∈∀,()B x x d ≤0,,B 为某正数,则为有界集).()d X ,中的收敛点列{}∞=1n n x 是有界集. 实因,设=∞→n n x lim0x ,则数列(){}0,x x d n 收敛于0,故00>∃M ,s.t.N ∈∀n 有()00,M x x d n ≤. 所以m n ,∀∈N ,有 ()≤m n x x d ,()0,x x d + ()m x x d ,002M ≤.()d X ,中的闭集可以用点列极限来定义: M 为闭集 ⇔ M 中任何收敛点列的极限都在M 中,即若∈n x M , ,2,1=n ,x x n →,则∈x M .具体空间中点列收敛的具体意义:1. 欧氏空间n R m x =()()()()m nm m x x x ,,,21 , ,2,1=m ,为n R 中的点列,x =()n x x x ,,,21 ∈n R ,()x x d m ,=()()()()()()2222211nm n m m x x x x x x -++-+- . x x m →()∞→m ⇔ 对每个n i ≤≤1,有 ()i m i x x → ()∞→m .2. []b a C , 设{}⊂∞=1n n x []b a C ,,∈x []b a C ,,则()x x d n ,=()()0max →-≤≤t x t x n bt a ()∞→n ⇔ {}∞=1n n x 在[]b a ,一致收敛于()t x .3. 序列空间S 设m x =()()()(),,,,21m n m m ξξξ, ,2,1=m ,及x =() ,,,,21n ξξξ分别是S 中的点列及点,则()()()∑∞=→-+-=10121,k k m kkm k k m x x d ξξξξ ()∞→m ⇔ m x 依坐标收敛于x .实因,若对每个k 有()k m kξξ→()∞→m ,则因∑∞=121k k 收敛,所以N ∈∃m ,s.t. 221ε<∑∞=m k k. 因为对每个1,,2,1-=m k ,存在N ∈k N ,s.t.当k N n >时()k n k ξξ-2ε<. 令{}121,,,max -=m N N N N ,当N n >时,成立∑-=1121m k k ()()k n k k n k ξξξξ-+-1<∑-=1121m k k 212εε+<2ε. 所以当N n >时,成立()x x d n ,=∑-=1121m k k ()()k n k k n k ξξξξ-+-1+∑∞=m k k 21()()k n k kn k ξξξξ-+-1<2ε+2ε=ε.所以x x n →()∞→n反之,若x x n →()∞→n ,即()x x d n ,=∑∞=121k k()()kn k kn k ξξξξ-+-10→()∞→n .又因为N ∈∀k ,有()()kn k kn k ξξξξ-+-1k 2≤()x x d n ,,所以当∞→n 时,()()kn k kn k ξξξξ-+-1→0所以 0>∀ε,N ∈∃N ,s.t. 当N n >时,成立()()kn k kn k ξξξξ-+-1<εε+1. 所以()k n k ξξ-ε<. 所以N ∈∀k ,有()k n k ξξ→()∞→n .4. 可测函数空间()X M 设{}∞=1n n f ⊂()X M ,f ⊂()X M ,则因()f f d n ,=()()()()⎰-+-Xn n dm t f t f t f t f 1,有 f f n → ⇔ f f n ⇒.实因,若f f n ⇒,则0>∀σ,有[]()σ≥-f f X m n 0→ ()∞→n . 0>∀ε(不妨设()X m 2<ε),取()220εεσ-<<X m ,则()21εσσ<+X m . 今对这样取定的ε及σ,因f f n ⇒,故N ∈∃N ,s.t. 当N n >时,成立[]()σ≥-f f X m n 2ε<. 所以()f f d n ,=()()()()[]⎰≥--+-σf f X n n n dm t f t f t f t f 1+()()()()[]⎰<--+-σf f X n n n dm t f t f t f t f 1≤[]()σ≥-f f X m n 1⋅+()21εσσ<+X m +2ε=ε. 所以()f f d n ,0→()∞→n . 所以f f n →()∞→n .反之,若f f n →()∞→n ,即()f f d n ,0→()∞→n . 对0>∀σ,由于[]()≤≥-+σσσf f X m n 1()()()()[]⎰≥--+-σf f X n n n dm t f t f t f t f 1≤()f f d n ,. 所以[]()0lim =≥-∞→σf f X m n n ,即f f n ⇒.以上各种极限概念不完全一致(依坐标收敛,一致收敛,依测度收敛),引进距离概念之后,都可以统一在度量空间的极限概念之中. 作业 P 205. 5.作业提示 均匀收敛即一致收敛. 证明大意如同“序列空间S ”,并利用 ()()()()()()()()t f t f t f t f r r nr r n bt a -+-≤≤1max=()()()()()()()()t ft f t f t f nax r r n bt a r r n bt a -+-≤≤≤≤max 1.§2.2(2) 度量空间中的稠密集 可分空间 教学内容(或课题):目的要求: 掌握度量空间中的稠密集和可分空间的概念,能正确使用这两个概念.教学过程:Th 设B 是度量空间X 的一个子集,则集合(){}ε<∈∈=y x d B y X x x O ,,,是个开集,且B ⊂O .证明 设∀0x ∈O ,则∃0y ∈B ,s.t. ()00,y x d <ε. 所以0x ∈()ε,0y U ⊂O . ()δ,0x U x ∈∀,其中εδ<<0-()00,y x d ,则()0,y x d <(ε-()00,y x d )+()00,y x d =ε. 所以()δ,0x U ⊂()ε,0y U ⊂O . 所以∀0x 是O 之内点. 所以O 是开集.又证 以B 中每一点为心作半径ε的邻域,所有这些邻域的并集就是集合O .每个邻域都是开集,任意个开集之并仍为开集,故O 为开集. 至于B ⊂O 是很显然的. 证毕.附注 当0→ε时,得到是B 之闭包未必是B . 例如B =⎭⎬⎫⎩⎨⎧n 1⊂1R .O = ∞=⎪⎭⎫ ⎝⎛11,1n k n U ⊃⎪⎭⎫ ⎝⎛+k k U 1,11=()()⎪⎪⎭⎫ ⎝⎛+++-112,11k k k k k ⊃{}0,但∉0B . P 205.6. 设B ⊂[]b a ,,证明度量空间C []b a ,中的集(){}0,=∈t f B t f 时当为C []b a ,中的闭集,而集(){}()0,><∈=a at f B t f A 时当为开集 ⇔ B 为闭集.证明 设(){}∞=1n n t f ⊂(){}0,=∈t f B t f 时当且在[]b a C ,中()()t f t f n →.则当B t ∈时,对N ∈∀n ,有()t f n =0. 令∞→n ,得B t ∈时,()0=t f . 所以()∈t f (){}0,=∈t f B t f 时当. 所以(){}0,=∈t f B t f 时当是闭集.“⇐” 设B 为闭集,()t f 0∈A ,则 ()a t f <0(当B t ∈). 因()t f 0在B 连续,所以()t f 0≤Bt ∈max ()t f 0a <(当B t ∈). 取ε:0<ε<a -Bt ∈max ()t f 0,则对()t f ∀∈()ε,0f U ,有()()t f t f 0-≤[]b a t ,max ∈()()t f t f 0-<ε. 所以()t f <()t f 0+ε. 所以当B t ∈()t f ≤()t f 0+ε<Bt ∈max ()t f 0+(a -Bt ∈max ()t f 0)=a所以()ε,0f U ⊂A . 所以A 为开集.“⇒” 设A 为开集. 设{}∞=1n n t ⊂B ,0t t n →且0t B ∉.取点()t f :()t f ∈A =(){}a t f B t f <∈时,当,则()n t f <a ,令∞→n 得,()a t f ≤0.因为0t B ∉,故只有()a t f =0. 不妨设()0t f =a (()0t f =-a 时同法可证之). 因为A 为开集,所以00>∃ε,s.t.()0,εf U ⊂A =(){}a t f B t f <∈时,当. :ε∀00εε<<,因为()()()0εεε<=+t f t f d ,,所以点因为()n n t f ∞→lim =()0t f ,所以对上述0>ε且0εε<,存在N t ∈B ,s.t.()()ε<-0t f t f N , 所以()0t f -ε<()N t f . 所以()N t f +ε>()0t f =a .但由方框,应有()ε+N x f <a ,与()N t f +ε>()0t f =a 相互矛盾. 这就证明了B B '⊃. 故B 为闭集. 证毕.Def 1 设X 是度量空间,N 和M 是X 的两个子集,令M 表示M的闭包,若N ⊂M ,则称集M 在集N 中稠密,当N =X 时,称M 为X 的一个稠密子集. 若X 有一个可列的稠密子集,则称X 是可分空间.例1 n 维欧氏空间n R 是可分空间. 事实上,座标为有理数的点的全体是n R 的可列稠密子集.设M 是闭区间[]b a ,全体有理数集合,N 是[]b a ,全体无理数集合. 在1R 中,因为M ⊂N ,N ⊂M ,所以N 在M 中稠,M 在N 中稠. 因为[]b a ,⊂M ,[]b a ,⊂N ,所以M 和N 都在[]b a ,中稠密. 若X =[]b a ,视为1R 的子空间,则X 是可分空间.例2 离散距离空间X 可分 ⇔ X 是可列集.实因在X 中没有稠密的真子集(因X 中任何一个真子集的闭集还是这个真子集本身),所以X 中唯一的稠密子集只有X 本身,因此X 可分的充要条件为X 是可列集.例3 令∞l 表示有界实(或复)数列全体. 对∞l 中() ,,21ξξ=∀x ,y =() ,,21ηη,定义()y x d ,=k k kηξ-sup .显然()y x d ,≥0 且()y x d ,=0 ⇔ k k kηξ-sup =0 ⇔ 对N ∈∀k ,都有k k ηξ-=0 ⇔ 对N ∈∀k ,都有k k ηξ= ⇔ y x =. 其次设z ∀=() ,,21ςς∈∞l . 因为N ∈∀k ,都有k k ηξ-≤k k ςξ-+kk ςη-≤k k kςξ-sup +k k kςη-sup . 所以k k kηξ-sup ≤k k kςξ-sup +k k kςη-sup .即()y x d ,≤()z x d ,+()z y d ,. 所以∞l 按()y x d ,成为度量空间.往证∞l 是不可分空间.令M 表示∞l 中坐标k ξ取值为0或1的点() ,,21ξξ=x 的全体,则M 与二进位小数一一对应,所以M 有连续统的基数,对M 中任意的两个不同点y x ,,有()y x d ,=1. 若∞l 可分,则∞l 中存在可列稠密子集,设为{}∞=1k k z . 对M 中每一点x ,作球⎪⎭⎫ ⎝⎛31,x B ,则⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛M x x B 31,是一族的两两不相交的球,总数有不可列个. 但由于{}∞=1k k z 在∞l 中稠密,所以每个⎪⎭⎫ ⎝⎛31,x B 中至少含有{}∞=1k k z 中的一点,这与{}∞=1k k z 是可列集矛盾. 证毕.作业: P 205. 3.7.8.9.作业解答: 3. 令n O =()⎭⎬⎫⎩⎨⎧<∈∈n y x d B y X x x 1,,,,则n O 是开集且n O B ⊃. 因为n O ↓,所以n n O ∞→lim = ∞=1n n O . 因B 是闭集,所以n n O ∞→lim =B ,即 ∞=1n n O =B .7. 取ε:0<ε<()F E d ,31. 作开集 O =(){}ε<∈a x d E a x ,, 和G =(){}ε<∈b y d F b y ,,,则O ⊃E ,G ⊃F . 又∀a ∈E ,∀b ∈F ,∀x ∈O ,∀y ∈G ,有 ()b a d ,≤()x a d ,+()y x d ,+()b y d ,. 所以()y x d ,≥()b a d ,-()x a d ,-()b y d ,≥()F E d ,-()F E d ,31-()F E d ,31=()F E d ,31>0. 所以x ≠y . 所以O 与G 必不相交. 又证不相交 若c ∈O G ,则存在()ε,a U 和()ε,b U ,a ∈E ,b ∈F ,s.t.c ∈()ε,a U ()ε,b U . 于是0<()F E d ,≤()b a d ,≤()c a d ,+()b c d ,<ε+ε<32()F E d ,. 矛盾. 所以 O G =Φ.8. ∀x ∈[]b a ,,令()t f x =[]{}⎩⎨⎧-∈=x b a t xt ,,0,1 则集合M =()[]{}b a x t f x ,∈含有不可数个元素()t f x ,M ⊂B []b a ,,∀()t f x 、()t f y ∈M 且x ≠y 时,()y x f f d ,=1. 若[]b a B ,可分,则[]b a B ,中存在可列的稠密子集,记为(){}t f n . 对M 中每一点()t f x ,作球()⎪⎭⎫ ⎝⎛31,t f B x ,则()()⎭⎬⎫⎩⎨⎧∈⎪⎭⎫⎝⎛M t f t f B x x 31,是一族两两不相交的球,总数有不可列个.但由于(){}t f n 在[]b a B ,中稠密,所以每个()⎪⎭⎫ ⎝⎛31,t f B x 中至少含有(){}t f n 中的点,这与(){}t f n 是可列集矛盾. 故[]b a B ,不可分.9. 因为X 可分,所以存在稠密子集B ={} ,,21x x . 对于每个O x ∈.存在()r x U ,⊂O . 因为B 在X 中稠密,所以可在⎪⎭⎫⎝⎛4,r x U 中取出B 中一点k x . 取有理数r ':24rr r <'<,所以x ∈()r x U k ',⊂()r x U ,⊂O ,且所有()r x U k ',至多可列个,包含它的开集O 至多可选出可列个. 证毕.§2.3 连续映照教学内容(或课题):目的要求: 掌握连续映照概念,掌握连续映照的充要条件,学会使用连续映照概念和连续映照充要条件处理与连续映照的实际问题.教学过程:Def 1 设X =()d X ,,Y =()d Y ~,是两个度量空间,T 是X 到Y 中的映照:X =()d X ,T → Y =()d Y ~,. 0x ∈X ,若∀ε>0,∃δ>0,s.t.∀x ∈X 且()0,x x d <δ,都有()0,~Tx Tx d <ε,则称T 在0x 连续:用邻域来描述T 在0x 连续:对0Tx 的每一个ε-邻域N ,必存在0x 的某个δ-邻域0N ,s.t. 0TN ⊂N (0TN 表0N 在T 作用之下的像集). 也可以用极限来定义映照的连续性,基于Th 1 设T 是度量空间()d X ,到度量空间()d Y ~,中的映照:()d X ,T→()d Y ~,, 则T 在0x 连续 ⇔ 当n x →0x 时,必有n Tx →0Tx .证明 “⇒” 设T 在0x 连续,则∀ε>0,∃δ>0,s.t. ∀x ∈X 且()0,x x d <δ,都有()0,~Tx Tx d <ε. 因为n x →0x ,所以∃N ∈N ,s.t.当n >N 时,有()0,x x d n <δ. 所以()0,Tx Tx d n <ε. 所以n Tx →0Tx . “⇐” 反证法. 若T 在0x 不连续,则∃0ε>0,s.t. ∀δ>0,∃x ≠0x ,虽然()0,x x d <δ,但是()0,~Tx Tx d ≥0ε. 特别取δ=n1,则有n x ,s.t.当()0,x x d <n1时,有()0,~Tx Tx d n ≥0ε. 即n x →0x 时,有n Tx 不→0Tx . 与假设矛盾.证毕.若映照T 在X 的每一点都连续,则称T 是X 上的连续映照. 称集合{}M Tx X x x ∈∈,(M ⊂Y )为集合M 在映照T 下的原像.简记为M T 1-.用开集刻划连续映照,就是Th 2 度量空间X 到Y 中的映照T 是X 上的连续映照 ⇔ 任意开集M ⊂Y ,M T 1-是X 中的开集.证明 “⇒” 设T 是连续映照,M ⊂Y 是Y 中开集. 若M T 1-=Φ,则M T 1-是X 中开集. 若M T 1-≠Φ,则0x ∀∈M T 1-,令0y =0Tx ,则0y ∈M . 由于M 是开集,所以存在邻域()ε,0y N⊂M . 由T 的连续性,存在邻域()δ.0x N ,s.t. T ()δ.0x N ⊂ ()ε,0y N ⊂M . 从而 ()δ.0x N ⊂1-T ()ε,0y N ⊂M T 1-. 所以0x 是M T 1-的内点. 因为0x ∈M 是任意的,所以M T 1-是X 中的开集.“⇐” 设Y 中每个开集的原像是开集. 0x ∀∈X ,则()ε,01Tx N T -是X 中的开集. 又0x ∈()ε,01Tx N T -,所以0x 是()ε,01Tx N T -的内点,所以存在邻域()δ.0x N ⊂()ε,01Tx N T -. 所以T ()δ.0x N ⊂()ε,0Tx N ,所以T 在0x 连续. 又0x ∈X 是任意的,所以T 是X 上的连续映照. 证毕.利用()CM T 1-=()M T C 1-,又有Th 2' 度量空间X 到Y 中的映照T 是X 上的连续映照 ⇔ 任意闭集M ⊂Y ,M T 1-是X 中的闭集.证明 “⇒” 设T 是X 上的连续映照,又设M ⊂Y ,M 是闭集,则CM 是开集. 由Th2, ()CM T 1-是开集. 但()CM T 1-=()M T C 1-,故M T 1-是X 中的闭集.“⇐” M ∀⊂Y 且M 是闭集,则CM 是开集. 由()CM T 1-=()M T C 1-,及Y 中任何闭集M 的M T 1-总是X 中的闭集,得Y 中任何开集CM 的原像()CM T 1-总是开集,由Th2, T 是X 上的连续映照. 证毕.P 206.10. 设X 为距离空间,A 为X 中的子集. 令()x f =()y x d Ay ,inf ∈, x ∈X . 证明()x f 是X 上的连续函数.证明 0x ∀∈X ,n x ∀∈X , ,2,1=n ,s.t.n x →0x .y ∀∈A ⊂X ,因为 ()y x d n ,≤()0,x x d n +()y x d ,0,所以 ()y x d n Ay ,inf ∈≤()0,x x d n +()y x d ,0, 所以 ()y x d n Ay ,inf ∈-()0,x x d n≤()y x d ,0, 所以()y x d n Ay ,inf ∈-()0,x x d n ≤()y x d Ay ,inf 0∈,所以()y x d n Ay ,inf ∈-()y x d Ay ,inf 0∈≤()0,x x d n . 同理()y x d Ay ,inf 0∈-()y x d n Ay ,inf ∈≤()n x x d ,0.所以|()()0x f x f n -|=|()y x d n Ay ,inf ∈-()y x d Ay ,inf 0∈|≤()0,x x d n →0(∞→n ).所以()x f 是X 上的连续映照(Th 1).作业: P 206. 11. 12. 13.作业解答: 11. 先证 ()y x d F y F x ,inf 21∈∈>0. 否则>∀ε0,x ∃∈1F ,y ∈2F ,s.t. ()y x d ,<ε. 令ε=m1,则∃m x ∈1F ,m y ∈2F ,s.t. ()m m y x d ,<m1,令∞→m ,由于()y x d ,是二元连续函数,故得()00,y x d =0(0x ∈1F 是m x 的聚点,0y ∈2F 是m y 的聚点,聚点存在). 因此0x =0y 与1F 2F =Φ相矛盾,故()21,F F d =()y x d F y F x ,inf 21∈∈>0.取ε:0<ε<21()21,F F d ,再令1G =() 1,F x x U ∈ε,2G =() 2,F y y U ∈ε,则1G 与2G 均为开集. 下证∀()ε,x U 与∀()ε,y U 都不相交. 若不然设∃z ∈()ε,x U ()ε,y U ,则()y x d ,≤()z x d ,+()y z d ,<ε+ε<()21,F F d . 与()y x d ,≥()21,F F d 相矛盾. 故任意二邻域不相交,从而1G 2G =Φ.12. ∀取开集G ⊂Z . 因为g 是Y 到Z 中的连续映照, 所以G g 1-⊂Y 是开集.因为f 是X 到Y 中的连续映照,所以()G g f 11--⊂X 是开集. 即()G gf 1-⊂X 是开集. 所以 gf 是X 到Z 中的连续映照.13. 由Th 2'或由()M T C 1-=()CM T 1-和Th2推得.附注 区间(]c ,∞-及[)∞+,c 均为闭集.§2.4 压缩映象原理及其应用本节作为完备度量空间何重要特征,我们介绍Banach压缩映象原理,它在许多关于存在唯一性的定理证明中是一个有力的工具。

相关文档
最新文档