矩形、菱形的性质与判定
矩形和菱形的性质和判定(教案)

1.理论介绍:首先,我们要了解矩形和菱形的基本概念。矩形是一种四边形,有四个直角,对边平行且相等;菱形则是四边相等的四边形,对角线互相垂直平分。它们在几何图形中具有重要的地位,广泛应用于日常生活和艺术设计中。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何利用矩形和菱形的性质来解决实际问题,如计算图形的面积和周长。
4.培养学生的数学应用意识,将矩形和菱形的知识应用于生活实际,如设计图案、计算面积等,增强数学与生活实际的联系,提高学生的数学素养。
三、教学难点与重点
1.教学重点
(1)矩形和菱形的性质:熟练掌握矩形和菱形的定义、特征及性质,包括对边平行且相等、对角线互相平分等。
举例:矩形性质的应用——计算矩形面积;菱形性质的应用——判断菱形对角线长度关系。
1.培养学生的空间观念和几何直观能力,通过观察、操作矩形和菱形,使其理解并掌握其性质,能运用这些性质解决实际问题;
2.培养学生的逻辑思维和推理能力,通过矩形和菱形的判定方法的学习,使学生能够运用严谨的逻辑推理证明四边形的类型,提高解决问题的能力;
3.培养学生的数据分析能力,使学生能够运用矩形和菱形的相关性质,分析解决实际问题时四边形边长、角度等数据的变化规律;
(4)几何证明的逻辑推理:在判定矩形和菱形时,学生需要具备严密的逻辑推理能力,能够运用已知条件和性质进行证明。
举例:运用矩形和菱形的性质,通过步骤严谨的推理过程,证明一个四边形是矩形或菱形。
在教学过程中,教师需针对这些难点和重点,采用适当的教学策略,如直观演示、案例分析、小组讨论等,帮助学生透彻理解矩形和菱形的性质与判定方法,提高解决问题的能力。
(2)矩形和菱形的判定方法:理解和掌握矩形、菱形的判定条件,能够准确判断四边形的类型。
矩形菱形的性质与判定(附加答案)

矩形菱形的性质与判定(附加答案) 一.解答题(共30小题) 1.(2012•娄底)如图,在矩形ABCD 中,M 、N 分别是AD 、BC 的中点,P 、Q 分别是BM 、DN 的中点. (1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么样的特殊四边形?请说明理由.2.(2010•泰州)如图,四边形ABCD 是矩形,∠EDC=∠CAB ,∠DEC=90°. (1)求证:AC ∥DE ; (2)过点B 作BF ⊥AC 于点F ,连接EF ,试判别四边形BCEF 的形状,并说明理由.3.(2010•肇庆)如图所示,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1=∠2. (1)求证:四边形ABCD 是矩形; (2)若∠BOC=120°,AB=4cm ,求四边形ABCD 的面积.4.(2010•常州)如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形.5.(2008•南京)如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE . 求证:(1)△ABF ≌△DCE ; (2)四边形ABCD 是矩形.6.(2010•崇左)如图,O 是矩形ABCD 的对角线的交点,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 上的点,且AE=BF=CG=DH . (1)求证:四边形EFGH 是矩形;(2)若E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,且DG ⊥AC ,OF=2cm ,求矩形ABCD 的面积.7.如图所示,BD ,BE 分别是∠ABC 与它的邻补角∠ABP 的平分线.AE ⊥BE ,AD ⊥BD ,E ,D 为垂足,求证:四边形AEBD 是矩形.8.如图,O 为△ABC 内一点,把AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连接形成四边形DEFG .(1)四边形DEFG 是什么四边形,请说明理由;(2)若四边形DEFG 是矩形,点0所在位置应满足什么条件?说明理由.9.如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 边上且AE=CG ,AH=CF .(1)求证:四边形EFGH 是平行四边形;(2)如果AB=AD ,且AH=AE ,求证:四边形EFGH 是矩形.10.如图,已知△ABC 中,AB=AC ,∠BAD=∠CAD ,F 为BA 延长线上的一点,AE 平分∠FAC ,DE ∥AB 交AE 于E .(1)求证:AE ∥BC(2)求证:四边形AECD 是矩形; (3)BC=6cm ,,求AB 的长.11.(2012•西藏)如图,四边形ABCD 是菱形,AE ⊥BC 交CB 的延长线于点E ,AF ⊥CD 交CD 的延长线于点F .求证:AE=AF .12.(2012•重庆)已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2. (1)若CE=1,求BC 的长; (2)求证:AM=DF+ME .13.(2012•嘉兴)如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:BD=EC ; (2)若∠E=50°,求∠BAO 的大小.14.(2012•温州)如图,△ABC 中,∠B=90°,AB=6cm ,BC=8cm .将△ABC 沿射线BC 方向平移10cm ,得到△DEF ,A ,B ,C 的对应点分别是D ,E ,F ,连接AD .求证:四边形ACFD 是菱形.15.(2012•聊城)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.16.(2012•恩施州)如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.17.(2011•宁波)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.18.(2011•临沂)如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.19.(2011•济宁)如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.20.(2011•恩施州)如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.21.(2011•常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.22.(2011•安顺)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.23.(2010•岳阳)如图,在Rt△ABC中,∠ABC=90°,∠BAC=60°,D为AC的中点,以BD为折痕,将△BCD折叠,使得C点到达C1点的位置,连接AC1.求证:四边形ABDC1是菱形.24.(2010•徐州)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.25.(2010•温州)如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E、F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.26.(2011•西宁)如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是_________.27.(2002•广西)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.28.如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,求证:OE⊥DC.29.如图,平行四边形ABCD的对角线AC、BD相交于O,若AB=5,AC=8,BD=6.(1)求证:AC⊥BD.(2)求证:平行四边形ABCD是菱形.(3)四边形ABCD的面积.30.已知:如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F,连接CG.(1)求证:四边形BCGD是菱形;(2)若BC=1,求DF的长.参考答案与试题解析一.解答题(共30小题)1.证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC;(2)四边形MPNQ是菱形.理由如下:连接AN,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN 的中点,∴PM=NQ,∵DM=BN,DQ=BP,∠MDQ=∠NBP,∴△MQD≌△NPB.∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∴MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB ,∴∠EDC=∠ACD,∴AC∥DE;(2)解:四边形BCEF是平行四边形.理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF(AAS),∴CE=BF,DE=AF(全等三角形的对应边相等),∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形(两组对边分别相等的四边形是平行四边形).3.(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD . ∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:在△BOC 中,∵∠BOC=120°, ∴∠1=∠2=(180°﹣120°)÷2=30°, ∴在Rt △ABC 中,AC=2AB=2×4=8(cm ), ∴BC=(cm ). ∴四边形ABCD 的面积=4.证明:∵四边形ABDE 是平行四边形, ∴AE ∥BC ,AB=DE ,AE=BD . ∵D 为BC 中点, ∴CD=BD . ∴CD ∥AE ,CD=AE . ∴四边形ADCE 是平行四边形. ∵AB=AC ,D 为BC 中点, ∴AD ⊥BC ,即∠ADC=90°, ∴平行四边形ADCE 是矩形.5.证明:(1)∵BE=CF ,BF=BE+EF ,CE=CF+EF , ∴BF=CE . ∵四边形ABCD 是平行四边形, ∴AB=DC . 在△ABF 和△DCE 中,∵AB=DC ,BF=CE ,AF=DE , ∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE , ∴∠B=∠C . ∵四边形ABCD 是平行四边形, ∴AB ∥CD . ∴∠B+∠C=180°. ∴∠B=∠C=90°. ∴四边形ABCD 是矩形.6.(1)证明:∵四边形ABCD 是矩形, ∴OA=0B=OC=OD , ∵AE=BF=CG=DH , ∴AO ﹣AE=OB ﹣BF=CO ﹣CG=DO ﹣DH , 即:OE=OF=OG=OH , ∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点, ∴GO=GC , ∵DG ⊥AC , ∴∠DGO=∠DGC=90°, 又∵DG=DG , ∴△DGC ≌△DGO , ∴CD=OD , ∵F 是BO 中点,OF=2cm , ∴BO=4cm , ∵四边形ABCD 是矩形, ∴DO=BO=4cm , ∴DC=4cm ,DB=8cm , ∴CB==4, ∴矩形ABCD 的面积=4×4=16cm 2.7.证明:∵BD ,BE 分别是∠ABC ,∠ABP 的平分线, ∴∠ABD+∠ABE=(∠ABC+∠ABP )=90°.即∠EBD=90°. 又∵AE ⊥BE ,AD ⊥BD , ∴∠AEB=∠ADB=90°, ∴四边形AEBD 是矩形.8.解:(1)四边形DEFG 是平行四边形.理由如下: ∵D 、G 分别是AB 、AC 的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=BC;同理可证:EF∥BC,且EF=BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上且A和垂足除外.理由如下:连接OA;∵把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.∴DE∥OA∥GF,EF∥BC,∵四边形DEFG是矩形,∴DE⊥EF,∴OA⊥EF,∴OA⊥BC,即O点在BC边的高上且A和垂足除外.9.证明:(1)在平行四边形ABCD中,∠A=∠C,(1分)又∵AE=CG,AH=CF,∴△AEH≌△CGF.(2分)∴EH=GF.(1分)在平行四边形ABCD中,AB=CD,AD=BC,∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.(1分)∴GH=EF.(1分)∴四边形EFGH是平行四边形.(1分)(2)解法一:在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°﹣α.∵AE=AH,∴∠AHE=∠AEH=.(1分)∵AD=AB=CD,AH=AE=CG,∴AD﹣AH=CD﹣CG,即DH=DG.(1分)∴∠DHG=∠DGH=.(1分)∴∠EHG=180°﹣∠DHG﹣∠AHE=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)解法二:连接BD,AC.∵AH=AE,AD=AB,∴,∴HE∥BD,(1分)同理可证,GH∥AC,(1分)∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,(1分)∴AC⊥BD,∴∠EHG=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)10.解:(1)∵AB=AC,∠BAD=∠CAD,∴AD⊥BC,∴∠ADB=90°,∵AE平分∠FAC,∴∠EAD=90°,∴AE∥BC;(2)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形AECD是平行四边形,∵∠ADC=90°,∴四边形AECD是矩形;(3)∵BC=6cm,∴CD=3cm , ∵,∴AD=4, ∴AB=AC==5,∴AB 的长是5cm .11.证明:方法一:∵四边形ABCD 是菱形, ∴AB=AD ,∠ABC=∠ADC , ∴180°﹣∠ABC=180°﹣∠ADC , 即∠ABE=∠ADF , ∵AE ⊥BC ,AF ⊥CD , ∴∠AEB=∠AFD=90°, 在△ABE 和△ADF 中,,∴△ABE ≌△ADF (AAS ), ∴AE=AF .方法二:∵四边形ABCD 是菱形, ∴BC=CD , ∵AE ⊥BC ,AF ⊥CD , ∴菱形ABCD 的面积=BC •AE=CD •AF , ∴AE=AF . 12.(1)解:∵四边形ABCD 是菱形, ∴AB ∥CD , ∴∠1=∠ACD , ∵∠1=∠2, ∴∠ACD=∠2, ∴MC=MD , ∵ME ⊥CD , ∴CD=2CE , ∵CE=1, ∴CD=2, ∴BC=CD=2;(2)证明:如图,∵F 为边BC 的中点,∴BF=CF=BC ,∴CF=CE ,在菱形ABCD 中,AC 平分∠BCD , ∴∠ACB=∠ACD , 在△CEM 和△CFM 中, ∵,∴△CEM ≌△CFM (SAS ),∴ME=MF ,延长AB 交DF 的延长线于点G , ∵AB ∥CD , ∴∠G=∠2, ∵∠1=∠2, ∴∠1=∠G , ∴AM=MG , 在△CDF 和△BGF 中, ∵,∴△CDF ≌△BGF (AAS ), ∴GF=DF ,由图形可知,GM=GF+MF , ∴AM=DF+ME .13.(1)证明:∵菱形ABCD , ∴AB=CD ,AB ∥CD , 又∵BE=AB ,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.14.证明:由平移变换的性质得:CF=AD=10cm,DF=AC,∵∠B=90°,AB=6cm,BC=8cm,∴AC===10,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.15.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.16.证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵AD⊥BC,BD=CD,∴AB=AC,∴AE=AF,∴平行四边形AEDF是菱形.17.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF;(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴DE=BE,∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.18.证明:(1)∵AB=AC,∴∠B=∠BCA,∵AD平分∠FAC,∴∠FAD=∠DAC=∠FAC,∵∠B+∠BCA=∠FAC,∴∠B=∠FAC,∴∠B=∠FAD,∴AD∥BC,∴∠D=∠DCE,∵CD平分∠ACE,∴∠ACD=∠DCE,∴∠D=∠ACD,∴AC=AD;(2)∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.19.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB(AAS),∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形20证明:∵AC=AD,AF是CD边上的中线,∴∠AFC=90°,∴∠ACF+∠CAF=90°,∵∠ACF+∠PCA=90°,∴∠PCA=∠CAF,∴PC∥AQ,同理:AP∥QC,∴四边形APCQ是平行四边形.∵AF∥CP,AE∥CQ,∴∠EPC=∠PAF=∠FQC,∵AB=AC,AE平分∠BAC,∴CE=BE=CB(等腰三角三线合一),∵AF是CD边上的中线,∴CF=CD,∵CB=DC,∴CE=CF,∵PC⊥CD,QC⊥BC,∴∠ECP+∠PCQ=∠QCF+∠PCQ=90°,∴∠PCE=∠QCF,∴△PEC≌△QFC(AAS),∴PC=QC,∴四边形APCQ是菱形..21.证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=AB,DE=AB (直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD (ASA ),∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.(四边相等的四边形是菱形)22.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE ,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△AEC≌△EAF(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.证明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.23.证明:∵∠ABC=90°,∠BAC=60°,∴∠C=30°∴BA=AC.又∵BD是斜边AC的中线,∴BD=AD=AC=CD.∴BD=AB=CD,∴∠C=∠DBC=30°,∵将△BCD沿BD折叠得△BC1D,∴△CBD≌△C1BD,∴CD=DC1,∴AB=BD=DC1,∴∠C1BA=∠BC1D=30°,∴BA∥DC1,DC1=AB,∴四边形ABDC1为平行四边形,又∵AB=BD,∴平行四边形ABDC1为菱形.24.证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB;又∵D是BC的中点,即BD=DC,∴△BDF≌△EDC;(AAS)(2)∵AB=AC,∴△ABC是等腰三角形;又∵BD=DC,∴AD⊥BC(三线合一),由(1)知:△BDF≌△EDC,则DE=DF,DB=DC;∴四边形BFCE是菱形(对角线互相平分且互相垂直的四边形为菱形).25.证明:(1)在▱ABCD 中,BC∥AF ,∴∠1=∠F,∵BE=BP,∴∠E=∠1,∴∠E=∠F;(2)∵BD∥EF,∴∠2=∠E,∠3=∠F,∵∠E=∠F,∴∠2=∠3,∴AB=AD,∴▱ABCD是菱形.26.(1)证明:∵矩形ABCD,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OD,∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∴四边形AODE是菱形.(2)解:∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∵菱形ABCD,∴AC⊥BD,∴∠AOD=90°,∴平行四边形AODE是矩形.故答案为:矩形.27.(1)证明:∵DF∥AE,EF∥AD,∴四边形DAEF是平行四边形.∵∠2=∠AED,∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)解:∵∠A=60°,∴△AED为等边三角形.∴DE=5,连接AF 与DE相交于O,则EO=.∴OA==.∴AF=5.∴S菱形AEFD=AF•DE=.28.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵ABCD是矩形,∴OC=OD.∴四边形OCED是菱形,∴OE⊥CD.29.证明:(1)∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∵32+42=52,∴AO2+BO2=AB2,∴∠AOB=90°,(2)∵CA⊥BD,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形;(3)四边形ABCD的面积为:AC•BD=×8×6=24.30.(1)证明:∵DF∥BC,∠ACB=90°,∴∠CFD=90°.∵CD⊥AB,∴∠AEC=90°.在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,∴Rt△AEC≌Rt△DFC.∴CE=CF.∴DE=AF.而∠AGF=∠DGE,∠AFG=∠DEG=90°,∴Rt△AFG≌Rt△DEG.∴GF=GE;(2)解:∵CD⊥AB,∠A=30°,∴CE=AC=CD,∴CE=ED .∴BC=BD=1.又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,∴∠ECB=∠A=30°,∠CEB=90°,∴BE=BC=BD=,在直角三角形ABC中,∠A=30°,则AB=2BC=2.则AE=AB﹣BE=,∵Rt△AEC≌Rt△DFC,∴DF=AE=.。
菱形、矩形、正方形的性质及判定

特殊
四边
边
形
菱
形
菱形、矩形、正方形的性质判定
性
质
角
对角线
面积
对称性
判定
边
角
对角线
矩 形
正 方 形
【例题精讲】
【例 1】如图,在矩形 ABCD 中,AE⊥BD,垂足为 E,∠DAE :∠BAE = 3 :1, 求∠EAC的度数。
【拓展练习】
如图,在矩形 ABCD 中,对角线 AC、BD 相较于点 O,∠AOB=60°,AE 平分∠BAD ,交 BC 于 E,求 ∠BOE的度数
C.AD//BC,∠A =∠C
D.OA=OC,OB=OD,AB=BC
13,.在矩形 ABCD 的边 AB 上有一点 E,且 CE=DE,若 AB=2AD,则∠ADE 等于(
A.45°
B.30°
C.60°
D.75°
14.矩形的一内角平分线把矩形的一条边分成 3 和 5 两部分,则该矩形的周长是(
A.16
8.菱形的周长为 16,两邻角度数的比为 1:2,此菱形的面积为(
)
A.4 3
B.8 3
C.10 3
D.12 3
9.已知 E 是矩形 ABCD 的边 BC 的中点,那么 SΔ AED =
S矩形ABCD (
)
1
1
1
1
A.
B.
C.
D.
2
4
5
6
10.如图,周长为 68 的矩形 ABCD 被分成 7 个全等的矩形,则矩形 ABCD 的面积为
A.75°
B.60°
C.45°
D.30°
6.已知菱形 ABCD,AE⊥BC 于 E,若 S菱形ABCD = 24 ,且 AE=6,则菱形的边长为(
矩形、菱形、正方形的性质及判定(四边形)

矩形、菱形、正方形的性质及判定一、知识提要1.矩形定义有一个角是直角的平行四边形叫做矩形;性质①矩形的四个角都是直角;②矩形的对角线相等.判定①有一个角是直角的平行四边形叫做矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2.直角三角形斜边的中线等于斜边长的一半.3.菱形定义有一组邻边相等的平行四边形叫做菱形.性质①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判定①有一组邻边相等的平行四边形叫做菱形;②对角线互相垂直的平行四边形是菱形;③四边相等的四边形是菱形.4.菱形的面积等于对角线乘积的一半.5.正方形定义四条边都相等、四个角都是直角的四边形是正方形.性质正方形拥有平行四边形、矩形、菱形的所有性质;判定①由一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形.二、精讲精练1.矩形ABCD的对角线AC,BD相交于点O,则边与对角线组成的直角三角形的个数是________.2.(2011浙江)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条B.4条ODC BA60°C .5条D .6条3. 矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC = ___.4. 已知矩形ABCD ,若它的宽扩大2倍,且它的长缩小四分之一,那么新矩形的面积等于原矩形ABCD 面积的__________.5. (2011四川)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分6. (2011江苏)在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是_______________(写出一种即可) 7. (2011山东)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .438. 如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF(2)若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.9. (2011江苏)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm10. (2011河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC =_______.EFDCBAD CBAHFGE ADBC11. 菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为___________.12. (2011重庆)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH =_________.13. 已知菱形周长是24cm ,一个内角为60°,则菱形的面积为______.14. 菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,则AE =6cm ,则菱形ABCD的边长为_______.15. (2011山东)已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 16. 菱形有____条对称轴,对称轴之间具有________的位置关系. 17. 菱形具有而一般平行四边形不具有的性质是( )A .两组对边分别平行B .两组对边分别相等C .一组邻边相等D .对角线相互平分18. (2011四川)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足__________条件时,四边形EFGH 是菱形.19. (2011浙江)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.F E B C A D 20. (2011湖州)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10, BAC =90,且四边形AECF 是菱形,求BE 的长.21. (2011湖南)下列四边形中,对角线相等且互相垂直平分的是( ) A.平行四边形 B.正方形 C.等腰梯形 D.矩形22. 有一组邻边_______并且有一个角是________的平行四边形,叫做正方形. 23. (2010湖北)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .24. 已知正方形ABCD 中,AC ,BD 交于点O ,OE ⊥BC 于E ,若OE =2,则正方形的面积为____.25. 如图,已知,正方形ABCD 的对角线交于O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于( )A .7B .5C .4D .326. (2011贵州)如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证: △ADE ≌△BCE ; (2)求∠AFB 的度数.FED CBA FE ODCBA三、测试提高【板块一】菱形的性质1. 若菱形两邻角的比为1:2,周长为24 cm ,则较短对角线的长为_____. 【板块二】菱形的判定2. (2011湖南)如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .等腰梯形 3. (2011湖北)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【板块三】菱形余矩形的性质4. (2011江苏)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 【板块四】特殊四边形的判定5. 下列命题中,正确命题是( )A .两条对角线相等的四边形是平行四边形;B .两条对角线相等且互相垂直的四边形是矩形;C .两条对角线互相垂直平分的四边形是菱形;D .两条对角线平分且相等的四边形是正方形;四、课后作业1. 矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB =60°,若BD =10 cm ,则AD =_____.2. 矩形周长为72cm ,一边中点与对边两个端点连线的夹角为直角,此矩形的长边为_______.3. 矩形的边长为10和15,其中一个内角平分线分长边为两部分,这两部分的长度分别为_________.4. 过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ).A . 不等边三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形BACD5. 矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E ,F ,则四边形AFCE 是___________.6. 菱形一个内角为120°,平分这个内角的一条对角线长12 cm ,则菱形的周长为_____.7. 若菱形两条对角线长分别为6 cm 和8 cm ,则它的周长是________,面积是_______.8. 菱形的一个角是60°,边长是8 cm ,那么菱形的两条对角线的长分别是_________.9. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为_____. 10. 在菱形ABCD 中,AE ⊥BC , AF ⊥CD ,且BE =EC , CF =FD ,则∠AEF 等于_______.11. 如图,小华剪了两条宽为2的纸条,交叉叠放在一起,且它们交角为45°,则它们重叠部分的面积为( ). A.22 B.1 C.332 D.2 12. (2011广东)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是( ). A .3公里 B .4公里C .5公里D .6公里13. 正方形的对角线__________且_________,每条对角线平分_____. 14. 如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .FE BCDA15. (2011山东)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.OFEDCBA。
矩形、菱形、正方形的判定及性质应用举例

ABCD EFO矩形、菱形、正方形的判定及性质应用举例矩形、菱形、正方形的判定和性质是初中数学中最重要的内容之一.在中考中所占的比例较大,常以填空题、选择题、计算题、证明题的形式出现. 现举几例供同学们参考. 一、矩形知识的应用例1(甘肃白银7市课改)如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .分析:由四边形ABCD 是矩形,利用矩形的对角线互相平分且相等可知,矩形中OA=OB=OD=OC ,由三角形全等可求出阴影部分的面积.解:∵矩形ABCD 的对角线AC 和BD 相交于点O . ∴OA=OB=OD=OC ,AC=BD∵)(,SAS COF AOE COD AOB ∆≅∆∆≅∆ ∴COF AOE COD AOB S S S S ∆∆∆∆==, ∴阴影部分的面积33221=⨯⨯=点评:矩形是特殊的平行四边形,其特殊性表现在角上(四个角都是直角),两条对角线将矩形分成四个等腰三角形,从而可以计算阴影部分的面积.二、菱形知识的应用例2. (山东)如下图,菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB=a ,求:(1)∠ABC 的度数;(2)已知a AO 23=,求对角线AC 的长;(3)求菱形的面积.分析: 因为E 是AB 的中点,且DE ⊥AB 可得等腰三角形ABD 为等边三角形,这样菱形的4个内角都可求出,并且由特殊角的关系很容易求出AC 的长和菱形面积.解:(1)连结BD.在菱形ABCD 中,∵ DE ⊥AB ,E 是AB 的中点,∴ AB=AD=DB. ∴ △ABD 为等边三角形.∴ ∠ABD=60° .∴ ∠ABC=2∠ABD=120°.(2)在菱形ABCD 中 ,AC ⊥BD ,且AC 与BD 互相平分. 由(1)在Rt △ABO 中,a AO 23=a a AO AC 32322=⨯==∴ (3)由(1)知a AB BD ==,∴a a S ⋅⨯=⋅=321BD AC 21菱形 .232a = 点评:(1)本题首先证明△ABD 是等边三角形,从而求出∠ABD 的度数,再利用菱形的性质可求∠ABC.(2)求AC 的长可利用菱形的对角线互相垂直平分(3)菱形的面积可用21AC·BD 求出,也可利用AB·DE 求出. 本题应用了菱形的对角线互相垂直平分的性质,即可求出面积.三、正方形知识的应用例3(浙江台州)把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.分析:本题是将正方形ABCD 绕着点A ,按顺时针方向进行旋转,画出正方形AEFG .构造全等三角形.解:HG HB =. 证法1:连结AH ,∵四边形ABCD ,AEFG 都是正方形.∴90B G ∠=∠=°.由题意知AG AB =,又AH AH =.DCAB GHFEDC AB GHFERt Rt()∴△≌△,AGH ABH HL=∴.HG HB证法2:连结GB.,都是正方形,∵四边形ABCD AEFG∠=∠=∴°.ABC AGF90由题意知AB AG=.∴.∠=∠AGB ABG∴.∠=∠HGB HBG∴.=HG HB点评:本题主要考查正方形的性质及三角形全等的判定,要证HG=HB,转化为证Rt△AGH≌Rt△ABH或HBG∠即可.=HGB∠练习:1.如图,如果要使平行四边行ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是.2.如图,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形.3.如图,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC 于点E,PF⊥CD于点F.(1) 求证:BP=DP;(2) 如图,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.参考答案1.AB AD AC BD,等.=⊥2.证明:根据题意可知DE∆≅C∆CDE'则''',,=∠=∠=CD C D C DE CDE CE C E∵AD//BC ∴∠C′DE=∠CED∴∠CDE=∠CED ∴CD=CE∴CD=C′D=C′E=CE ∴四边形CDC′E为菱形3.(1) 解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.(2) 不是总成立.当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC 边上时,DP >DC>BP,此时BP=DP不成立.说明:未用举反例的方法说理的不得分.(3)连接BE、DF,则BE与DF始终相等.在图中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有BE=DF.。
矩形与菱形性质及判定

矩形与菱形性质及判定【教学目标】1. 掌握矩形及菱形的概念和性质,理解矩形、菱形与平行四边形的区别与联系2. 会初步运用矩形的概念和性质来解决有关问题3. 掌握矩形及菱形的判定,能求解较为综合型问题【教学重难点】1. 熟练运用矩形与菱形的性质,求解相关问题2. 对于矩形及菱形的判定熟练掌握3. 综合运用矩形及菱形的性质及判定求解较为复杂的问题【教学内容】★知识梳理一、矩形1. 性质定理(1)矩形的四个角都是直角(2)矩形的两条对角线相等2. 判定定理(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形二、菱形1. 性质定理(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角2. 判定定理(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形★考点一、矩形例1. 如图,矩形ABCD的两条对角线相交于点O,图中有个直角三角形,个等腰三角形例2. 如图,在矩形ABCD中,AC和BD是两条对角线,若AE⊥BD于点E,∠DAE = 2∠BAE,则∠EAC =例3. 如图,在四边形ABCD中,∠BDC=90°,AB⊥BC于点B,E是BC中点,连结AE、DE,则AE与DE的大小关系是()(A)AE=DE (B)AE>DE (C)AE<DE (D)不能确定例4. 如图,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,OB=4,则DC的长例5. 如图,在矩形ABCD中,已知E是BC的中点,AE=AD=2,求AC的长例6. 如图,在矩形ABCD中,已知点E在DC上,AE=2BC,且AE=AB,求∠CBE的度数例7. 如图所示,在矩形ABCD中,对角线AC、BD交于点O,过顶点C作CE∥BD,交AB延长线于点E,求证:AC=CE例8. 已知平行四边形ABCD的对角线AC和BD相交于点O,△AOD是正三角形,AD=4,求这个平行四边形的面积例9. 如图,延长等腰△ABC的腰BA至点D,使AD=BA,延长腰CA至点E,使AE=CA,连结CD、DE、EB,求证:四边形BCDE是矩形例10. 如图,在△ABC中,已知AB=AC,∠BAC=90°,D为BC的中点,P为BC的延长线上一点,PE⊥AB于点E,PF⊥AC于点F,求证:DE⊥DF且DE = DF例11. 如图,平行四边形ABCD的四个内角的平分线分别相交于点E、F、G、H求证:四边形EFGH是矩形例12. 如图,在△ABC中,AB=AC,AD⊥BC于点D,AN是△ABC的外角∠CAM的平分线,CE⊥AN于点E,求证:四边形ADCE是矩形二、菱形例13. 若菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为例14. 菱形的一个角是60°,边长是8 cm,则菱形的两条对角线的长分别是例15. 在菱形ABCD中,AE⊥BC,AF⊥CD,且BE=EC,CF=FD,则∠AEF等于()(A)120°(B)45°(C)60°(D)150°例16. 在菱形ABCD中,若∠ADC=120°,则BD:AC等于()(A)3:2 (B)3:3 (C)1:2 (D)3:1例17. 在菱形ABCD中,已知∠A=30°,AB=10 cm,求AD和BC之间的距离例18. 如图,在菱形ABCD中,已知E是BC上一点,且AE=AB,∠EAD=2∠BAE求证:BE=AF例19. 如图,平行四边形ABCD的对角线相交于点O,AB=5,CO=2,BD=2求证:四边形ABCD是菱形例20. 如图,矩形ABCD的对角线相交于点O,分别过点A、D作AE∥BD,DE∥AC交于点E ,求证:四边形AODE 是菱形例21. 如图,平行四边形ABCD 的对角线AC 的垂直平分线与AD ,BC ,AC 分别交于E 、F 、O 求证:四边形AFCE 是菱形例22. 如图,四边形ABCD 是平行四边形,点E 、F 在直线AB 上,且AE=AB=BF ,连结CE 、DF 分别交AD 、BC 于点M 、N(1)求证:四边形DMNC 是平行四边形(2)若要使四边形DMNC 为菱形,则还需增加什么条件?例23. 如图,△ABC 中,∠C=90°,AD 平分∠BAC ,ED ⊥BC ,DF//AB ,求证:AD 与EF 互相垂直平分AB C D EF★ 能力训练1. 如图所示,在矩形ABCD 中,AB=5cm ,BC=4cm ,动点P 以1cm/s 的速度从A 点出发,经点D 、C 到点B ,设△ABP 的面积为s (cm 2),点P 运动的时间为t (s )(1)求当点P 在线段AD 上时,s 与t 之间的函数关系式(2)求当点P 在线段BC 上时,s 与t 之间的函数关系式2. 如图,点E 是矩形ABCD 边AD 上一点,且BE=ED ,P 是对角线BD 上任一点,PF ⊥BE ,PG ⊥AD ,垂足分别为F 、G ,试探索线段PF 、PG 、AB 之间的数量关系,并证明3. 如图,平行四边形ABCD 中,AB ⊥AC ,AB=1,BC=5,对角线AC 、BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC 、AD 于点E 、F(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形(2)试说明在旋转过程中,线段AF 与EC 总保持相等【课后作业】A BC OFE1. 下列图形中既是轴对称图形,又是中心对称图形的是()(A)平行四边形(B)等边三角形(C)矩形(D)直角三角形2. 下列叙述错误的是()(A)平行四边形的对角线互相平分(B)平行四边形的四个内角相等(C)矩形的对角线相等(D)有一个角时90º的平行四边形是矩形3. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为()(A)45°, 135°(B)60°, 120°(C)90°, 90°(D)30°, 150°4. 若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为5. 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为6. 菱形有条对称轴,对称轴之间具有的位置关系7. 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为8. 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是9. 如图,在四边形ABCD中,∠A=∠ABC=90°,BD=CD,E是BC的中点求证:四边形ABED是矩形10. 如图,在平行四边形ABCD中,M是BC的中点,∠MAD=∠MDA求证:四边形ABCD是矩形11. 如图,在矩形ABCD中,CE⊥BD于E,∠DCE:∠BCE=3:1,且M为OC的中点,试说明ME⊥AC12. 如图,在矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC,求证:CE = EF13. 如图,在菱形ABCD 中,点E 、F 分别在CD 、BC 上,且CE=CF ,求证:AE = AF14. 如图,已知四边形ABCD 是菱形,点E F ,分别是边CD 、AD 的中点.,求证:AE CF15. 如图,△ABC 中,AB=AC ,AD 是角平分线,E 为AD 延长线上一点,CF//BE 交AD 于F ,连接BF 、CE ,求证:四边形BECF 是菱形A B C DE FA EC BF。
4.3~4.4矩形,菱形的性质及判定练习
4.3~4.4矩形,菱形的性质及判定练习1.菱形、矩形的有关概念矩形:有一个角是直角的平行四边形叫做矩形.菱形:有一组邻边相等的平行四边形叫做菱形.温馨提醒:(1)矩形、菱形具有平行四边形的一切性质;(2)依据矩形的性质,得出直角三角形具有的性质斜边上的中线等于斜边的一半;(3)矩形、菱形既是轴对称图形又是中心对称图形;3.菱形、矩形的判定矩形的判定方法:①有一个角是直角的平行四边形是矩形.②有三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;温馨提示:(1)矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再找一个角为直角或对角线相等。
很多同学容易忽视这个问题。
(2)在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。
(3)两条对角线相等的四边形不一定是矩形,必须加上平行四边形这个条件;对角线相互垂直的四边形不一定是菱形,必须加上平行四边形这个条件。
5.面积、角度、线段等计算问题S 菱形=12l l ·l 2(l 1、l 2为菱形对角线长) 连对角线,矩形、菱形就可得到特殊三角形(如等腰三角形、直角三角形),因此,解矩形、菱形问题时,要注意特殊三角形性质的运用。
利用全等三角形解决问题。
跟踪训练:一、填空题:1.矩形的定义:____________________________的平行四边形叫做矩形。
2.矩形的性质:矩形是一个特殊的平行四边形,它具有四边形和平行四边形的所有性质;矩形的四个角______________; 矩形的对角线______________; 矩形是轴对称图形,它的对称轴是______________。
矩形的性质和判定
矩形6)知识梳理:1、矩形的性质:四个角都是直角;对角线相等;2.直角三角形斜边上的中线等于斜边的一半;3.矩形的判定定理:对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形;4.有一组临边相等的平行四边形角菱形5.菱形的性质:四条边都相等;两条对角线互相垂直,并且每一条对角线平分一组对角。
6.菱形的判定定理:对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。
知识回顾:1、矩形的定义(通常叫长方形)有一个角是的叫做矩形.2、矩形的性质:矩形具有平行四边形所具有的一切性质,矩形与平行四边形比较又有其特殊的性质.⑴边:对边,邻边;⑵角:;⑶对角线:;(4)对称性:①是轴对称图形,有条对称轴,分别是是所在的直线;②又是中心对称图形,对称中心是,过对角线交点的任一条直线等分该平行四边形的面积.3、直角三角形斜边上中线的性质从矩形的性质可以说明直角三角形斜边上的中线等于斜边的.4、矩形的判定方法方法⑴定义法:的平行四边形四边形是矩形;方法⑵有三个角是的四边形是矩形;方法⑶对角线的平行四边形四边形是矩形【当堂检测】一、选择题1.矩形具有而平行四边形不具有的的性质是()A.对角相等B.对角线相等C.对角线互相平分D.对边平行且相等2.矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是()A.20°B.40°C.60°D.80°3.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角4.能判断四边形是矩形的条件是()A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.下列四边形中不是矩形的是()A.有三个角是直角的四边形是矩形B.四个角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形6.下列命题中,属于假命题的是()O D CA B A .三角形三个内角的和等于l80°B .两直线平行,同位角相等C .矩形的对角线相等D .相等的角是对顶角.7.如图,AC ,BD 是矩形ABCD 的对角线,过点D 作DE ∥AC 交BC 的延长线于E ,则图中与△ABC 全等的三角形共有() A .1个 B .2个C .3个D .4个8.如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,, 则矩形的对角线AC) A .2 B .4C .D .9.由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( )A .22.5°B .45°C .30°D .60°10.如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB ,BC 的长分别为3和4,则点P 到矩形的两条对角线AC 和BD 的距离之和是()A .125B .65C .245D .不确定 二、填空题1.两条直角边的长分别为12 cm 和5 cm ,则斜边上的中线长为cm .2.若矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =4cm ,则矩形对角线的长为()cm .3.矩形一条边长为3cm ,面积为12cm2,则该矩形另一条边长为cm .4.矩形的两条对角线的夹角为60°,较短的边长为4.5 cm ,则对角线长为.5.如图8,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为.6.如图9,把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是.7、如图10利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是.三、答解题1.如图,矩形ABCD 的两条对角线相交于点O ,CE ∥OB 交AB 的延长线于点E , 试判断AC 与CE 的大小关系.2、如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD =8,AB =4,请你判断△BED 的形状并求它的面积.3、如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.4.已知:如图,在矩形ABCD 中,AF =BE .求证:DE =CF .5.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,求AE 的长.。
矩形、菱形、正方形的性质与判定压轴题九种模型全攻略(解析版)
专题06矩形、菱形、正方形的性质与判定压轴题九种模型全攻略【考点导航】目录【典型例题】 (1)【考点一利用矩形的性质求角度】 (1)【考点二利用矩形的性质求线段长】 (3)【考点三矩形的性质与判定综合问题】 (6)【考点四利用菱形的性质求角度】 (10)【考点五利用菱形的性质求线段长】 (11)【考点六菱形的性质与判定综合问题】 (14)【考点七利用正方形的性质求角度】 (18)【考点八利用正方形的性质求线段长】 (20)【考点九正方形的性质与判定综合问题】 (23)【过关检测】 (30)【典型例题】【考点一利用矩形的性质求角度】【答案】27.5︒【分析】本题主要考查了矩形的性质、等腰三角形的性质以及直角三角形的性质.由矩形的性质得出【变式训练】【答案】75︒/75度【分析】本题主要考查了矩形的性质,等边三角形的判定和性质,等腰三角形的判定和性质.根据矩形的性质可得90,BAD ABC OA ∠=∠=︒而得到30OBE ∠=︒,再根据等腰三角形的性质,即可求解.∵30BOF ∠=︒,∴AOF AOB BOF ∠=∠-∠如图所示,当点F 在BC 上时,∵30BOF ∠=︒,∴AOF AOB BOF ∠=∠+∠故答案为:46︒或106︒.【点睛】本题考查了矩形的性质,等边对等角,三角形的外角的性质,分类讨论是解题的关键.【考点二利用矩形的性质求线段长】例题:(2023上·四川成都·九年级校考阶段练习)如图,矩形ABCD 中,对角线AC BD 、相交于点O ,过点O【答案】3【分析】本题主要考查了矩形的性质、线段垂直平分线的性质、勾股定理、根据面积等式求线段的长度等知识与方法,连接BE ,由矩形的性质可得11S OB OE OD OE =⋅=⋅∵四边形ABCD 是矩形,对角线90BAD OB OD ∴∠=︒=,,OE BD ⊥ ,OE ∴垂直平分BD ,BOE S 【变式训练】1.(2024上·江西鹰潭·九年级统考期末)如图,矩形ABCD 中,对角线AC ,BD 相交于O ,E ,F 分别是OC ,BC 的中点.若5cm EF =,求AC 的长.AC=【答案】20cm【分析】本题考查了矩形的性质,中位线,根据矩形的性质得E、F分别是OC、BC的中点,(1)求EC的长;(2)求CDE∠的度数.【答案】(1)(843)cm-【考点三矩形的性质与判定综合问题】例题:(2023上·辽宁丹东·九年级统考期中)如图,四边形ABCD 是平行四边形,点E 在边BC 的延长线上,且CE BC =,AE AB =,AE ,DC 相交于点O ,连接DE .(1)求证:四边形ACED 是矩形;(2)若120AOD ∠=︒,4AC =,求AE 的长.【答案】(1)证明详见解析(2)8【变式训练】Y的对角线相交于点O,且1.(2023上·陕西咸阳·九年级咸阳市实验中学校考阶段练习)如图,ABCD∠=∠.COD OBC2(1)求证:四边形ABCD是矩形;是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)若65BD DF ==,,求AD 的长.【答案】(1)见解析(2)8【分析】(1)证明90ADC DAE AEC ∠=∠=∠=︒,根据矩形的判定即可得到结论;(2)根据矩形的性质和勾股定理即可求出AD 的长.此题考查了矩形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,熟练掌握矩形的判定和性质是解题的关键.【详解】(1)证明:∵AB AC =,AD 是BAC ∠的平分线,∴,AD BC BAD CAD ⊥∠=∠,∴90ADC ∠=︒,∵AN 是ABC 外角CAM ∠的平分线,∴MAN CAN ∠=∠.∴=90DAE ∠︒,∵CE AN ⊥,∴90AEC ∠=︒.∴90ADC DAE AEC ∠=∠=∠=︒,∴四边形ADCE 为矩形;(2)解:∵四边形ADCE 为矩形,∴AE CD AC DE ==,,∵BD CD =,∴6AE BD ==,【考点四利用菱形的性质求角度】【答案】70︒/70度【分析】本题考查菱形性质,利用三角形内角和即可求得本题答案.【变式训练】【答案】20︒/20度【分析】本题考查菱形的性质、直角三角形的性质、等腰三角形的性质,关键是熟练掌握直角三角形斜边∠中线性质.先根据菱形的性质得到CBD四边形ABCD是菱形,ABC∠=,∴∠=︒,OA OCBCD100∴∠=∠=︒,PA=50ACB ACD∴∠=∠=︒,PAC PCA20【考点五利用菱形的性质求线段长】【答案】513 13【分析】本题考查了菱形的性质,勾股定理;根据菱形的性质得出AO=得AE,在Rt ABE△中,勾股定理即可求解.【变式训练】【答案】2.5【分析】本题考查了菱形的性质以及中位线的性质,解题的关键是求出菱形的边长.【详解】解: 四边形ABCD【答案】6或63或6【分析】由题意知AP =90BP A ∠=︒,由勾股定理得,当16AP =时,16BP=;∵菱形ABCD 中,=60B ∠︒,∴ABC 是等边三角形,∵2162AP AC ==,【考点六菱形的性质与判定综合问题】(1)求证:四边形ABEF是菱形;AB=,求AE的长.(2)若8BF=,5【答案】(1)见解析(2)AE的长为6【变式训练】(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求在(2)的条件下,1OD =∵2DM =,∴22OM DM OM =-=(1)求证:四边形AFCE 是菱形.(2)若8AC =,6EF =,求BF 【答案】(1)见解析(2)75BF =【考点七利用正方形的性质求角度】【答案】22.5︒/22【分析】本题考查了正方形的性质,根据四边形=,即可求出据BP OB【详解】解: 四边形90BOC ∴∠=︒,45OBC ∠=︒,BP OB = ,BOP BPO ∴∠=∠,(18045)267.5BOP BPO ∴∠=∠=︒-︒÷=︒,9067.522.5COP ∴∠=︒-︒=︒.故答案为:22.5︒.【变式训练】【答案】70【分析】本题考查正方形的性质,全等三角形的判定和性质.证明ABE CBE △△≌,得到AEB BEC ∠=∠,利用三角形的内角和定理和平角的定义,进行求解即可.掌握正方形的性质,是解题关键.【详解】解:∵正方形ABCD ,∴45,ABE CBE AB BC ∠=∠=︒=,∵BE BE =,∴ABE CBE △△≌,∴AEB BEC ∠=∠,∵25BCF ∠=︒,∴1804525110AEB BEC ∠=∠=︒-︒-︒=︒,∴180********AEB AED ∠∠=︒--︒==︒︒,故答案为:70.【考点八利用正方形的性质求线段长】【答案】22【分析】本题主要考查正方形的性质以及勾股定理,熟练掌握勾股定理是解题的关键.根据正方形的性质得到2AB BC ==,再由勾股定理得到答案.【变式训练】【答案】352【分析】本题考查了正方形的性质,勾股定理求得12x =,进而表示出【详解】解:如图所示,连接∵AE 的垂直平分线分别交∴AG EG=设BG x =,则4CG =-∵E 是CD 的中点,则CE ∴(2224GE CG CE =+=∵2AP =,边长为6,即∴4PB =∵点Q 为BC 的中点,∴3CQ BQ ==,,过点P 作PE BC ⊥于E ,,∴6PE AB ==,BE AP =∵3BQ =,2AP =,∴1QE =,∴221637PQ =+=,【考点九正方形的性质与判定综合问题】例题:(2023上·山西吕梁·九年级统考期末)综合与实践【问题情境】如图1,正方形ABCD 中,点E 为其内一点,以点E 为直角顶点,以AB 为斜边构造直角三角形ABE ,使得90AEB ∠=︒,将Rt ABE △绕点B 按顺时针方向旋转90︒,得到△CBE '(点A 的对应点为C ),延长AE 交CE '于点F ,连接DE .DA DE =,∴12AQ QE AE ==. 四边形ABCD 是正方形,∴90DAB ∠=︒,DA AB =,∴90BAE DAQ ︒∠+∠=.90ADQ DAQ ∠+∠=︒,∴BAE ADQ ∠=∠,90DQA AEB ︒∠=∠=,∴(AAS)ADQ BAE △≌△,∴AQ BE =,DQ AE =,∴22DQ AE AQ BE ===.将Rt ABE 绕点B 沿顺时针方向旋转【变式训练】1.(2024上·内蒙古鄂尔多斯·九年级统考期末)如图1,正方形ABCD 的边长为5,点E 为正方形CD 边上一动点,过点B 作BP AE ⊥于点P ,将APB △绕点A 逆时针旋转90︒得AP D '△,延长BP 交P D '于点F ,连(1)判断四边形的AP FP '的形状,并说明理由;(2)若1DF =,求AP 的长度;(3)在(2)的条件下,求CPB APBS S ∆∆.【答案】(1)四边形AP FP '是正方形(2)3AP =∵90APB CGB ABC ∠=∠=∠=︒,∴ABP CBG BCG CBG ∠+∠=∠+∠=∴ABP BCG ∠=∠,在ABP 和BCG 中,APB BGC ∠=∠⎧⎪(1)如图1,当点E在线段AC上时.①求证:矩形DEFG是正方形;=-;②求证:CG AC CE(2)如图2,当点E在线段AC的延长线上时,正方形ABCD的边长为【答案】(1)①证明见解析,②证明见解析;(2)34GE=.∵EF DE ⊥,45PEC ∠=︒∴90DEF ∠=︒,∴45PED FEC ∠∠+=︒,∵45QEF FEC ∠+∠=︒,∴QEF PED ∠=∠,∵EP EQ =,90EQF EPD ∠=∠=︒∴()ASA EQF EPD ≌,∴EF ED =,∵四边形DEFG 矩形,EF ED =,∴四边形DEFG 是正方形;②证明:∵四边形DEFG 是正方形,∴DE DG =,90EDG ∠=︒∵90ADE EDC ∠+∠=︒,90CDG EDC ∠+∠=︒,∴ADE CDG ∠=∠,∵AD DC =,DE DG=∴()SAS ADE CDG ≌,∴AE CG =,∵AE AC CE =-,∴CG AC CE =-;(2)同(1)理,四边形DEFG 是正方形,∴,90DE DG EDG =∠=︒,∵90ADE EDC ∠=︒+∠,90CDG EDC ∠=︒+∠∴ADE CDG ∠=∠,∵,AD DC DE DG ==,∴()SAS ADE CDG ≌,)∴AE CG =,45DCG DAC ∠=∠=︒,∴90ACG ∠=︒,【过关检测】一、单选题1.(2024上·广东清远·九年级统考期末)菱形的面积为212cm ,一条对角线长是4cm ,那么菱形的另一条对A.22.5︒【答案】A【分析】本题主要考查的正方形的性质,等腰三角形的性质,根据正方形的性质得出腰三角形的性质得出【详解】解:∵四边形A.322B.32【答案】C【分析】本题主要考查了菱形的性质,三角形的中位线定理,熟练掌握菱形的性质是解答本题的关键.首先根据三角形中位线定理得到ACA.5B【答案】B【分析】本题考查了矩形的性质、线段垂直平分线的性质;连接四边形ABCD是矩形,对角线A.四边形BFDE是平行四边形B.若四边形ABCDC.若四边形ABCD∵四边形ABCD 是平行四边形,∴OA OC OB OD ==,,∵E 、F 是对角线AC 上的两点(不与点A 、C 重合),AE CF =,∴OE OF =,∵OB OD =,∴四边形BFDE 是平行四边形,故A 不符合题意;当四边形ABCD 是菱形时,BD AC ⊥,∴EF BD ⊥,又∵四边形BFDE 是平行四边形,∴四边形BFDE 是菱形,故B 不符合题意;当四边形ABCD 是正方形时,BD AC ⊥,∴EF BD ⊥,又∵四边形BFDE 是平行四边形,∴四边形BFDE 是菱形,故C 不符合题意;当四边形ABCD 是矩形时,AC BD =,∵E 、F 是对角线AC 上的两点(不与点A 、C 重合),∴EF BD ≠,∴四边形BFDE 不是矩形,故D 符合题意,故选:D .二、填空题=(答案不唯一)【答案】AC BD【分析】本题主要考查了矩形的判定.根据矩形的判定定理,即可求解.=,理由:【详解】解:添加AC BD【答案】67.5︒【分析】本题主要考查正方形的性质,熟练掌握正方形的性质是解题的关键;根据正方形的性质得到线段相等和【答案】20︒/20度【分析】本题考查了菱形的性质、等腰三角形的性质、直角三角形斜边上的中线性质等知识,熟练掌握菱形的性质是解题的关键.由菱形的性质得OB OD=,CD【答案】51 2 +【分析】在ABC中,AB∵,36AB AC A =∠=︒,∴(11802ABC ACB ==∠∠∴723636BCD ∠=︒-︒=︒,∴1807236BDC ∠=︒-︒-∴BDC B ∠=∠,∵四边形ABCD 为菱形,∴1362BAC BAD ==︒∠∠∴在等腰ABC 中底角为36【答案】1.5或3【分析】本题考查了矩形与翻折问题,∠=︒,画出对应的图形即可求解.EPC90∠=【详解】解:若PEC∠=∠=∠∵AEP B PEC、、三点共线∴A E C==由题意得:BC AD==,则CP设EP BP x∴2C E A C A E =-=∴()22242x x -=+,解得: 1.5x =∴ 1.5BP =若90EPC∠=︒,如图所示:则四边形ABPE 是矩形,由翻折可知:BP EP =,∴四边形ABPE 是正方形∴3BP AB ==综上所述: 1.5BP =或3BP =故答案为:1.5或3.三、解答题11.(2023上·新疆喀什·九年级校联考期中)如图,在菱形ABCD 中,对角线AC ,AE BC ⊥交CB 延长线于E ,CF AE ∥交AD 延长线于点F .(1)求证:四边形AECF 是矩形;(2)连接OE ,若5AD =,3BE =,求线段OE 的长.【答案】(1)见解析∵四边形ABCD 为菱形,∴5AB BC AD ===,又∵四边形AECF 为矩形,OA OC OE ==,(1)求证:OE OF=;CF=,求OC(2)若12CE=,5(3)当点O在边AC上运动到什么位置时,四边形【答案】(1)证明见解析【点睛】本题考查矩形的判定,平行四边形的判定,直角三角形的判定,角平分线的定义,平行线的性质,等角对等边,勾股定理,直角三角形斜边上的中线等于斜边的一半等知识,根据已知得出题关键.13.(2023上·河南驻马店·九年级驻马店市第二初级中学校考阶段练习)如图在(1)求证:四边形ADCF 是平行四边形(2)若6,10AB BC ==.①当AC =______时,四边形ADCF ②若四边形ADCF 是菱形,则DG勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.14.(2023上·山东枣庄·九年级校考阶段练习)如图,在ABC 中,D 是BC 边上的一点,点E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连接BF .(1)求证:BD CD =;(2)当ABC 满足什么条件时四边形AFBD 为矩形?证明你的结论;(3)若ABC 为直角三角形,且90BAC ∠=︒时,判断四边形AFBD 的形状,并说明理由.【答案】(1)见解析(2)当AB AC =时,四边形AFBD 为矩形,见解析(3)四边形AFBD 为菱形,见解析【分析】(1)证明AEF DEC △≌△可得AF DC =,再根据条件AF BD =可利用等量代换可得BD CD =;(2)首先判定四边形AFBD 为平行四边形,再根据等腰三角形三线合一的性质可得AD BC ⊥,进而可得四边形AFBD 为矩形;(3)利用直角三角形斜边中线的性质求得AD BD =,进而可得四边形AFBD 为菱形.【详解】(1)证明:∵AF BC ∥,AFE ECD ∴∠=∠.E 是AD 的中点,DE AE ∴=,在AEF △与DEC 中,AFE ECD AEF DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)AEF DEC ∴△≌△,AF DC ∴=,AF BD = ,(1)求证:四边形AEDF 是菱形;(2)若5AE =,8AD =,求EF 的长;(3)ABC 满足什么条件时,四边形【答案】(1)见解析(2)6EF =四边形平行四边形(1)求证:矩形DEFG是正方形;(2)若2,2==,求CG的长度;AB CE(3)当线段DE与正方形ABCD的某条边的夹角是30︒时,直接写出【答案】(1)见解析(2)解:如图2中,在Rt ∵2,AB =∴222AC AB ==,2CE = ,AE CE ∴=,(3)解:①当DE 与AD 的夹角为则903060CDE ∠=︒-︒=︒,在四边形CDEF 中,由四边形内角和定理得:②当DE 与DC 的夹角为30︒90HCF DEF ∠=∠=︒ ,CHF ∠30EFC CDE ∴∠=∠=︒,综上所述,120EFC ∠=︒或30【点睛】本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。
矩形、菱形的性质及判定
矩形、菱形的性质及判定一、矩形的性质和判定1.定义: 有一个角是直角的叫做矩形(通常也叫长方形)。
2.性质:矩形的性质:(从边、角、对角线三个方面总结出矩形的性质) (1)对边平行且相等; (2)每个角都是直角; (3)对角线相等且互相平分。
矩形是轴对称图形,它有条对称轴。
矩形是中心对称图形,是它的对称中心。
3.判定(1)定义:有一个角是直角的平行四边形是矩形。
(2)有三个角都是直角的四边形是矩形。
(3)对角线相等的平行四边形是矩形。
(也可以表述成“对角线互相平分且的四边形是矩形”)。
4、直角三角形的性质: 直角三角形斜边上的中线等于斜边的一半.逆定理:如果一个三角形的一条边上的中线等于它的一半,那么这个三角形是直角三角形,且这条边所对的角为直角。
(会证明吗?)例:如图,在△ABC中,∠ACB=90°,D是AB边的中点,AC=3,BC=4,则CD=__________.在直角三角形中还有一个涉及“一半”的定理是:例1、矩形是面积的60,一边长为5,则它的一条对角线长等于。
例2、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
例3、如图,已知矩形ABCD的两条对角线相交于O,,AB=4cm,求此矩形的面积。
ABOCD例4、四边形ABCD的对角线相交于点O,在下列条件中,不能判别它是矩形的是() A.AB=CD,AD=BC,∠BAD=90°B.AO=CO,BO=CO,AC=BD C.∠BAD=∠ABC=90°,∠BCD+∠ADC=180° D.∠BAD=∠BCD,∠ABC=∠ADC=90°例5、如图,矩形ABCD中,DE=AB,,求证:EF=EB。
AEBCDF例6、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连结CF.(1)求证:D是BC的中点;(2)如果AB=AC,试猜测四边形ADCF的形状,并证明你的结论.二、菱形的性质和判定定义1、四条边都相等的四边形是菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形、菱形的性质与判定
教学目的:1、知识目标:掌握矩形的定义,知道矩形与平行四边形的关系。
掌握矩形的性质定理
2、能力目标:使学生能应用矩形定义、判定等知识,解决简单的证明题和计
算题。
3、情感目标:进一步培养学生独立思考和分析问题的能力
教学重点:矩形的性质及其推论.矩形的判定
教学难点:矩形的本质属性及性质定理的综合应用.矩形的判定及性质的综合应用.
节前预习: 1:矩形的四个角都是.
2:矩形的对角线.
3:直角三角形等于斜边的一半.
4:的平行四边形是矩形的平行四边形是矩形.
5:的四边形是矩形.
教学过程
一.复习提问:1.什么叫平行四边形?它和四边形有什么区别?
二、引入新课:我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形.
讲解新课:制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).
矩形的性质:既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.
(1)、矩形性质
1:矩形的四个角都是直角.
2:矩形对角线相等.
(2)、矩形的判定.
矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义备注
由平行四边形到矩形,便于学生理解图形。
设问:如何用理论推理的方法来证明矩形的对角线相等呢?(让学生思考并提问回答,再让
作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.
讲矩形判定定理1,对角线相等的平行四边形是矩形。
已知:在平行四边形ABCD 中,AC=DB ,
求证:平行四边形ABCD 是矩形。
证明:∵四边形ABCD 是平行四边形,
∴AB=DC 。
务员 又∵AC=DB ,BC=CB , A B ∴△ABC ≌△DCB 。
∴∠ABC=∠DCB 。
又∵AB ∥DC , B ∴∠ABC+∠DCB=180°。
∴∠ABC=90°。
C D ∴四边形ABCD 是矩形。
方法3:有三个角是直角的四边形是矩形. 归纳矩形判定方法(由学生小结):
1、一个角是直角的平行四边形.
2、对角线相等的平行四边形.
3、有三个角是直角的四边形. (3).矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
(4).矩形知识的综合应用。
(让学生思考,然后师生共同完成)
例:已知
ABCD 的对角线AC ,
BD 相交于O ,△ABO 是等边三角形,cm 4=AB ,求这个平行
求:四边形的面积. 三、课堂训练:
1、矩形的面积是12,一边与一条对角线的比为3∶5,则矩形的对角线长是( )
A .3
B .4
C .5
D .12
2、已知矩形的对角线长为10cm ,那么顺次连接矩形四边的中点所得的四边形的周长为( )
A .40cm
B .10cm
C .5cm
D .20cm
3、如图,E 为矩形ABCD 的边CD 上的一点,AB =AE =4,BC =2,则∠BEC 是( )
学生板书)
题讲解:(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)
让学生写出推理过程。
分析解题思路:(1)先判定
ABCD 为矩
形.(2)求出Rt △
ABC 的直角边
BC 的长.(3)求BC AB S ⋅=.
(A)15°(B)30°(C)60°(D)75°
4、如图,矩形ABCD中,O是两对角线的交点AE⊥BD,垂足为E.若OD=2 OE,AE=3,则DE的长为______.
5、已知:如图,矩形ABCD中,E、F是AB上的两点,且AF=BE.
求证:∠ADE=∠BCF.
8、6、如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD 上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.求证:PF+PG=AB.
四、课堂小结:对比平行四边形,掌握矩形的性质和判定,并且能利用性质和判定解决一些问题。
五、作业布置:p148 3、4。