2016高考数学二轮复习 专题5 立体几何 专题综合检测五 文

合集下载

2016高考立体几何复习备考试题及详细解答

2016高考立体几何复习备考试题及详细解答

专题 立 体 几 何1.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行 (C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面 解由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.2.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 解因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A)14斛 (B)22斛 (C)36斛 (D)66斛4.一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+解由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 5.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( ) (A )1 (B )2 (C )4 (D )8解由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r =2,故选B. 6.某几何体的三视图如图所示,则该几何体的体积为A 、13π+ B 、23π+ C 123π+ D 、223π+ 解这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V ππ=⨯⨯+⨯⨯⨯⨯⨯=+,选A .7.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2 B.4+ C.2+ D .5=,三棱锥表面积表2S =+.8.一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1B)2(C)1+ (D)解由题意,该四面体的直观图如下,,ABD BCD∆∆是等腰直角三角形,,ABC ACD∆∆是等边三角形,则111,6022BCD ABD ABC ACD S S S S ∆∆∆∆======,所以四面体的表正(主)视图11俯视图侧(左)视图21面积2122BCD ABD ABC ACD SS S S S ∆∆∆∆=+++=⨯+=+ B.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π10.在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π (D )2π解直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为:2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥11.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( ) A.A DB α'∠≤ B. A DB α'∠≥ C. A CB α'∠≤ D. A CB α'∠≤解设ADCθ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N,M ,BOAC过N作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND'∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=,同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==,显然BP ⊥面A NP ',故BP A P '⊥,在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222cos cos 2A N NP A P A NP A N NP α''+-'=∠='⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯12某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89π B.169π解分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为x ,y,h ,长方体上底面截圆锥的截面半径为a ,则22224)2(a a y x ==+,如下图所示,圆锥的轴截面如图所示,则可知a h ha 22221-=⇒-=,而长方体的体积)22(2222222a a h a h y x xyh V -==+≤=322162()327a a a ++-≤⨯=,当且仅当y x =,3222=⇒-=a a a 时,等号成立,此时利用率为ππ98213127162=⨯⨯,故选A. 13.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B.312cm C.3323cm D. 3403cm14.若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 解若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“lm ⊥ ”是“//l α 的必要不充分条件,故选B .15.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51解由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB DV a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .16若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 解由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π 17若正三棱柱的所有棱长均为a,且其体积为,则a = .解23644a a a =⇒=⇒= 18.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。

专题05 立体几何(测试卷)-2016年高考文数二轮复习精品资料(新课标版)(解析版)

专题05 立体几何(测试卷)-2016年高考文数二轮复习精品资料(新课标版)(解析版)

【高效整合篇】专题五 立体几何(一) 选择题(12*5=60分)1. 【2016届福建省上杭县一中高三12月考】已知α、β是两个不同的平面,m 、n 是两条不同的直线,则下列命题中正确的是( ) A .若,mn m α⊂,则n α B .若,m n ααβ=,则m nC .若,m m αβ⊥⊥,则αβD .若,m βαβ⊥⊥,则m α【答案】C 【解析】A .若,mn m α⊂,则n α,缺少n α⊄,不正确; B .若,m n ααβ=,则,m n 平行、相交或异面,不正确;C .若,m m αβ⊥⊥,则αβ,正确; D .若,m βαβ⊥⊥,则m α,缺少条件m α⊄,不正确.2. 【2016届湖南省常德市一中高三上第五次月考】若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm 【答案】B3. 【2016届浙江省临海市台州中学高三上第三次统练】对于不重合的两平面βα,,给定下列条件: ①存在平面γ,使得,αβ都垂直于γ; ②存在平面γ,使得,αβ都平行于γ; ③存在直线m l m l //,,使得βα⊂⊂;④存在异面直线βαβα//,//,//,//,,m m l l m l 使得其中可以判定βα,平行的条件有( )A .1个B .2个C .3个D .4个 【答案】B4. 【2016届河北省邯郸市一中高三一轮收官考试一】在正方体1111CD C D AB -A B 中,P 为正方形1111C D A B 四边上的动点,O 为底面正方形CD AB 的中心,M ,N 分别为AB ,C B 中点,点Q 为平面CD AB 内一点,线段1D Q 与OP 互相平分,则满足Q λM =MN 的实数λ的值有( )A .0个B .1个C .2个D .3个 【答案】C【解析】因为线段1D Q 与OP 互相平分,所以四点1,,,O Q P D 共面,且四边形1OQPD 为平行四边形.若P 在线段11C D 上时,Q 一定在线段ON 上运动,只有当P 为11C D 的中点时,Q 与点M 重合,此时1λ=,符合题意;若P 在线段11C B 与线段11B A 上时,在平面ABCD 找不到符合条件的点Q ;若P 在线段11D A 上时,点Q 在直线OM 上运动,只有当P 为线段11D A 的中点时,点Q 与点M 重合,此时0λ=符合题意,所以符合条件的λ值有两个,故选C .5. 【2015高考山东】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π 错误!未找到引用源。

2016届高考数学二轮复习大专题综合测第2部分4(文)立体几何(文)

2016届高考数学二轮复习大专题综合测第2部分4(文)立体几何(文)

4立体几何(文)时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·山东潍坊市质检)已知三条不同的直线m,n,l和两个不同的平面α,β,则下列命题正确的是()A.若m∥n,n⊂α,则m∥αB.若α⊥β,α∩β=m,n⊥m,则n⊥αC.若l⊥n,m⊥n,则l∥mD.若l⊥α,m⊥β,且l⊥m,则α⊥β[答案] D[解析]若m∥n,n⊂α,则m∥α或m⊂α,故A不正确;若α⊥β,α∩β=m,n⊥m,则n与α相交或n∥α或n⊂α,故B不正确;若l⊥n,m⊥n,则l与m相交、平行或异面,故C不正确;若l⊥α,m⊥β,且l⊥m,则由线面垂直的性质定理和面面垂直的判定定理知α⊥β,故D正确.2.一个几何体的三视图如图所示,则这个几何体的表面积为()A.6+5B.6+2 5C.8+ 5 D.8+2 5[答案] D[解析]由三视图可知该几何体为一横放的直三棱柱,其中底面正对观察者,为一直角三角形,两直角边长分别为1,2,棱柱的高为2,故其表面积S=(2+1+5)×2+2×1=8+2 5.3.如图是一个空间几何体的三视图,这个几何体的体积是()A.2πB.4πC .6πD .8π[答案] D[解析] 由图可知该几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π,故选D .4.在正四面体(棱长都相等的四面体)A -BCD 中,棱长为4,M是BC 的中点,点P 在线段AM 上运动(P 不与A 、M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题:①BC ⊥平面AMD ; ②Q 点一定在直线DM 上; ③V C -AMD =4 2. 其中正确的是( ) A .①② B .①③ C .②③ D .①②③[答案] A[解析] 由BC ⊥AM ,BC ⊥MD ,可得BC ⊥平面AMD ,即①正确;由BC ⊥平面AMD 可得平面AMD ⊥平面ABC ,则若过P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,Q 点一定在直线DM 上,即②正确;由V C -AMD =12V C -ABD =12×212×43=823,即③不正确,综上可得正确的命题序号为①②,故应选A.5.(2015·淄博市质检)某几何体的三视图如图所示,则该几何体的体积为( )A.πa 36 B .πa 33C.2πa 33D .πa 3[答案] A[解析] 由三视图可知该几何体为一个圆锥的14,其中圆锥的底面圆的半径为a ,高为2a ,所以该几何体的体积V =(13×πa 2×2a )×14=πa 36.故选A.6.已知α、β、γ是三个不重合的平面,m 、n 是不重合的直线,下列判断正确的是( ) A .若α⊥β,β⊥γ,则α∥γ B .若α⊥β,l ∥β,则l ∥α C .若m ∥α,n ∥α,则m ∥n D .若m ⊥α,n ⊥α,则m ∥n [答案] D[解析] A 错,两平面还可垂直;B 错,还可能有l ⊂α;C 错,两直线m ,n 的位置关系不确定;D 正确,垂直于同一平面的两直线互相平行.7.(2015·临沂八校质检)若四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 的中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积之比为()A.13 B .12C.23 D .14[答案] D[解析] 本题考查空间几何体的体积.四棱锥P -ABCD 的体积易求,关键是把三棱锥P -ANC 的体积用四棱锥P -ABCD 的高和底面积表示出来.设正方形ABCD 的面积为S ,PD =h ,则所求体积之比为V 三棱锥P -ANC V 四棱锥P -ABCD=V 四棱锥P -ABCD -V 三棱锥N -ABC -V 三棱锥P -ADC V 四棱锥P -ABCD=13Sh -13·12S ·12h -13·12Sh 13Sh =14.8.如图,正△ABC 的中线AF 与中位线DE 相交于G ,已知△A ′ED 是△AED 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A ′在平面ABC 上的投影在线段AF 上B .恒有平面A ′GF ⊥平面BCEDC .三棱锥A ′-FED 的体积有最大值 D .异面直线A ′E 与BD 不可能垂直 [答案] D[解析] 由题意,DE ⊥平面AGA ′, ∴A 、B 、C 正确,故选D .9.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 为AB 的中点,则点C 到平面A 1DM 的距离为( )A.63a B .66a C.22a D .12a[答案] A[解析] 设点C 到平面A 1DM 的距离为h ,则由已知得DM =A 1M =a 2+(a 2)2=52a ,A 1D=2a ,S △A 1DM =12×2a ×(52a )2-(22a )2=64a 2,连接CM ,S △CDM =12a 2,由VC -A 1DM =VA 1-CDM ,得13S △A 1DM ·h =13S △CDM ·a ,即64a 2·h =12a 2·a ,得h =63a ,所以点C 到平面A 1DM的距离为63a ,选A. 10.(2015·河南六市联考)一个几何体的三视图如下图所示,则这个几何体的体积是( )A .1B .2C .3D .4[答案] D[解析] 由三视图知该几何体是如图所示的四棱锥P -ABCD ,其中底面ABCD 是直角梯形,侧面ABP 是Rt △,且侧面P AB ⊥底面ABCD ,故其体积为V =13×12(2+4)×2×2=4.11.(2015·潍坊市质检)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,底面△ABC 是边长为1的正三角形,棱SC 是球O 的直径且SC =2,则此三棱锥的体积为( )A.26 B .36 C.23D .22[答案] A[解析] 过点B 作BD ⊥SC 于点D ,连接AD ,因为△SBC ≌△SAC ,所以AD ⊥SC ,又BD ∩AD =D ,所以SC ⊥平面ABD ,因为SB ⊥BC ,SC =2,BC =1,所以BD =AD =sin60°=32,又AB =1,所以S △ABD =12×1×(32)2-(12)2=24,所以V 三棱锥S -ABC =13×S △ABD ×SC =13×24×2=26.12.如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1, E 、F 分别是棱AA ′、CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM =x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x =12时,四边形MENF 的面积最小;③四边形MENF 周长L =f (x ),x ∈[0,1]是单调函数; ④四棱锥C ′-MENF 的体积V =h (x )为常函数; 以上命题中假命题的序号为( )A .①④B .②C .③D .③④[答案] C[解析] AC ⊥平面BDD ′B ′,EF ∥AC ,∴EF ⊥平面BDD ′B ′,∴①正确;∵EF 为所在棱的中点,由对称性及条件知四边形EMFN 为菱形,其面积随着对角线MN 的增大而增大,当x =12时,M 为BB ′的中点,此时MN 取最小值,∴②正确,③错误;V 四棱锥C ′-MENF =2V C ′-MEF=2V E -MFC ′为常数,∴V =h (x )为常函数.二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的正(主)视图与侧(左)视图的面积的比值为________.[答案] 1[解析] 依题意得三棱锥P -ABC 的主视图与左视图均为三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都相等,因此三棱锥P -ABC 的主视图与左视图的面积之比等于1.14.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.[答案]30[解析]本题考查三视图及柱体体积公式.由三视图知该几何体由一个棱长为3,4,2的长方体和一个底面是直角梯形高为4的直棱柱组成,则体积V=3×4×2+2+12×1×4=30.15.已知四棱锥P-ABCD的底面ABCD是矩形,P A⊥底面ABCD,点E、F分别是棱PC、PD的中点,则①棱AB与PD所在直线垂直;②平面PBC与平面ABCD垂直;③△PCD的面积大于△P AB的面积;④直线AE与平面BF是异面直线.以上结论正确的是________.(写出所有正确结论的编号)[答案]①③[解析]由条件可得AB⊥平面P AD,∴AB⊥PD,故①正确;若平面PBC⊥平面ABCD,由PB⊥BC,得PB⊥平面ABCD,从而P A∥PB,这是不可能的,故②错;S△PCD=12CD·PD,S△P AB=12AB·P A,由AB=CD,PD>P A知③正确;由E、F分别是棱PC、PD的中点,可得EF∥CD,又AB∥CD,∴EF∥AB,故AE与BF共面,④错,故填①③.16.(2014·邯郸一模)已知直角梯形ABCD,AB⊥AD,CD⊥AD,AB=2AD=2CD=2沿AC折成三棱锥,当三棱锥体积最大时,求此时三棱锥外接球的体积________.[答案]4 3π[解析] 在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,∴AB =2,AD =1,CD =1,∴AC =2,BC =2,∴BC ⊥AC ,取AC 的中点E ,AB 中点O ,当三棱锥体积最大时,平面DCA ⊥平面ACB ,∴OA =OB =OC =OD ,∴OB =1,∴V =43πR 3=43π.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)在四棱锥P -ABCD 中,PC ⊥平面ABCD ,DC ∥AB ,DC =1,AB =4,BC =23,∠CBA =30°.(1)求证:AC ⊥PB ;(2)当PD =2时,求此四棱锥的体积. [解析] (1)∵PC ⊥平面ABCD ,∴PC ⊥AC , 又∠CBA =30°,BC =23,AB =4, ∴AC =AB 2+BC 2-2AB ·BC cos ∠CBA=16+12-2×4×23×32=2,∴AC 2+BC 2=4+12=16=AB 2, ∴∠ACB =90°,故AC ⊥BC .又∵PC 、BC 是平面PBC 内的两条相交直线, 故AC ⊥平面PBC ,∴AC ⊥PB .(2)当PD =2时,作CE ⊥AB 交AB 于E , 在Rt △CEB 中,CE =CB ·sin30°=23×12=3,又在Rt △PCD 中,DC =1,∴PC =3,∴V P-ABCD=13·PC·S ABCD=13×3×12(1+4)× 3=5 2.18.(本题满分12分)(2014·山西太原检测)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH//平面AEF;(3)求多面体ABCDEF的体积.[解析](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又因为平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G、H分别是CE、CF的中点,所以GH∥EF,又因为GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH,在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF . (3)解:由(1),得AC ⊥平面BDEF ,又因为AO =2,四边形BDEF 的面积S BDEF =3×22=62, 所以四棱锥A -BDEF 的体积V 1=13×AO ×S BDEF =4.同理,四棱锥C -BDEF 的体积V 2=4. 所以多面体ABCDEF 的体积V =V 1+V 2=8.19.(本题满分12分)(2015·洛阳市期末) 如图,在四棱锥P -ABCD中,P A ⊥平面ABCD ,底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,M 是PD 的中点,且AB =2,∠BAD =60°.(1)求证:OM ∥平面P AB ; (2)求证:平面PBD ⊥平面P AC ; (3)当三棱锥M -BCD 的体积等于34时,求PB 的长. [解析] (1)∵在△PBD 中,O 、M 分别是BD 、PD 的中点, ∴OM 是△PBD 的中位线,∴OM ∥PB , OM ⊄平面P AB ,PB ⊂平面P AB , ∴OM ∥平面P AB .(2)∵P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD . ∵底面ABCD 是菱形,∴BD ⊥AC ,AC ⊂平面P AC ,P A ⊂平面P AC ,AC ∩P A =A , ∴BD ⊥平面P AC .∵BD ⊂平面PBD ,∴平面PBD ⊥平面P AC ,(3)因为底面ABCD 是菱形,M 是PD 的中点,所以V M -BCD =12V M -ABCD =14V P -ABCD ,从而V P -ABCD = 3. 又AB =2,∠BAD =60°,所以S 菱形ABCD =2 3.∵四棱锥P -ABCD 的高为P A ,∴13×23×P A =3,得P A =32, ∵P A ⊥平面ABCD ,AB ⊂平面ABCD ,∴P A ⊥AB .在Rt △P AB 中,PB =P A 2+AB 2=⎝⎛⎭⎫322+22=52. 20.(本题满分12分)(2014·威海两校质检)如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱P A ⊥底面ABCD ,且P A =2,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)如果E 是P A 的中点,求证PC ∥平面BDE ;(3)是否不论点E 在侧棱P A 的任何位置,都有BD ⊥CE ?证明你的结论.[解析] (1)∵P A ⊥平面ABCD ,∴V P -ABCD =13S 正方形ABCD ·P A =13×12×2=23. 即四棱锥P -ABCD 的体积为23. (2)连接AC 交BD 于O ,连接OE .∵四边形ABCD 是正方形,∴O 是AC 的中点.又∵E 是P A 的中点,∴PC ∥OE .∵PC ⊄平面BDE ,OE ⊂平面BDE ,∴PC ∥平面BDE .(3)不论点E 在何位置,都有BD ⊥CE .证明如下:∵四边形ABCD 是正方形,∴BD ⊥AC .∵P A ⊥底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥P A .又∵AC ∩P A =A ,∴BD ⊥平面P AC .∵不论点E 在何位置,都有CE ⊂平面P AC .∴不论点E 在何位置,都有BD ⊥CE .21.(本题满分12分)(2015·海淀区期末)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,又AD ∥BC ,AD ⊥DC ,且BC =PD =3AD =3.(1)画出四棱锥P -ABCD 的正视图;(2)求证:平面P AD ⊥平面PCD ;(3)求证:棱PB 上存在一点E ,使得AE ∥平面PCD ,并求PE EB的值. [解析] (1)四棱锥P -ABCD 的正视图如图所示.(2)证明:因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD ⊥AD .因为AD ⊥DC ,PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD ,所以AD ⊥平面PCD .因为AD ⊂平面P AD ,所以平面P AD ⊥平面PCD .(3)证明:当PE EB =12时,AE ∥平面PCD .理由如下:分别延长CD ,BA 交于点O ,连接PO .因为AD ∥BC ,BC =3AD ,所以OA OB =AD BC =13,即OA AB =12. 所以OA AB =PE EB,所以AE ∥OP . 因为OP ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .22.(本题满分12分)如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BB 1=BC ,AC 1⊥平面A 1BD ,D 为AC 的中点.(1)求证:B 1C ∥平面A 1BD ;(2)求证:B 1C 1⊥平面ABB 1A 1;(3)在CC 1上是否存在一点E ,使得∠BA 1E =45°,若存在,试确定E 的位置,并判断平面A 1BD 与平面BDE 是否垂直?若不存在,请说明理由.[分析] (1)连接AB 1,交A 1B 于M ,则MD 就是平面A 1BD 内与B 1C 平行的直线;(2)需在平面ABB 1A 1中找两条相交直线都与B 1C 1垂直,由直三棱柱的概念,知BB 1⊥B 1C 1,另一条的寻找,从AC 1⊥平面A 1BD ,以平行四边形ABB 1A 1为正方形入手,证明A 1B ⊥平面AB 1C 1从而得出A 1B ⊥B 1C 1.(3)用余弦定理解△A 1BE .[解析] (1)连接AB 1与A 1B 相交于M ,则M 为AB 1的中点.连接MD ,又D 为AC 的中点,∴B 1C ∥MD ,又B 1C ⊄平面A 1BD ,MD ⊂平面A 1BD ,∴B 1C ∥平面A 1BD .(2)∵AB =B 1B ,∴平行四边形ABB 1A 1为正方形,∴A 1B ⊥AB 1.又∵AC 1⊥平面A 1BD ,∴AC 1⊥A 1B ,∴A 1B ⊥平面AB 1C 1,∴A 1B ⊥B 1C 1.又在直三棱柱ABC -A 1B 1C 1中,BB 1⊥B 1C 1,∴B 1C 1⊥平面ABB 1A 1.(3)设AB =a ,CE =x ,∵B 1C 1⊥A 1B 1,在Rt △A 1B 1C 1中有A 1C 1=2a ,同理A 1B =2a ,∴C 1E =a -x ,∴A 1E =2a 2+(a -x )2=x 2+3a 2-2ax ,BE =a 2+x 2, ∴在△A 1BE 中,由余弦定理得BE 2=A 1B 2+A 1E 2-2A 1B ·A 1E ·cos45°,即a 2+x 2=2a 2+x 2+3a 2-2ax -22a3a 2+x 2-2ax ·22, ∴3a 2+x 2-2ax =2a -x , ∴x =12a ,即E 是C 1C 的中点, ∵D 、E 分别为AC 、C 1C 的中点,∴DE ∥AC 1.∵AC 1⊥平面A 1BD ,∴DE ⊥平面A 1BD .又DE ⊂平面BDE ,∴平面A 1BD ⊥平面BDE .[方法点拨] 空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直,最终达到目的,其转化关系为线线垂直判定定理性质定理线面垂直判定定理性质定理面面垂直.。

2016届高考数学(浙江专用理科)二轮专题精练专题五解析几何5-1Word版含解析

2016届高考数学(浙江专用理科)二轮专题精练专题五解析几何5-1Word版含解析

专题五解析几何第1讲直线与圆(建议用时:60分钟)一、选择题1.(2015·广东卷)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是().A.2x-y+5=0或2x-y-5=0B.2x+y+5=0或2x+y-5=0C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0解析设所求切线方程为2x+y+c=0,依题有|0+0+c|22+12=5,解得c=±5,所以所求切线的直线方程为2x+y+5=0或2x+y-5=0,故选D.答案 D2.“a=b”是“直线y=x+2与圆(x-a)2+(x-b)2=2相切”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由直线与圆相切,得|a-b+2|2=2,即|a-b+2|=2,所以由a=b可推出|a-b+2|=2,即直线与圆相切,充分性成立;反之|a-b+2|=2,解得a=b 或a-b=-4,必要性不成立.答案 A3.(2014·浙江卷)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是().A.-2 B.-4 C.-6 D.-8解析由圆的方程x2+y2+2x-2y+a=0可得,圆心为(-1,1),半径r=2-a.圆心到直线x+y+2=0的距离d=|-1+1+2|2= 2.由r2=d2+⎝⎛⎭⎪⎫422得2-a=2+4,所以a=-4.答案 B4.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是().A.10 6 B.20 6 C.30 6 D.40 6解析配方可得(x-3)2+(y-4)2=25,其圆心为(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2r2-12=46,且有AC⊥BD,则四边形ABCD的面积为S=12AC×BD=20 6.答案 B5.(2015·金华质检)已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为().A.(x-1)2+y2=6425B.x2+(y-1)2=6425C.(x-1)2+y2=1 D.x2+(y-1)2=1解析因为抛物线y2=4x的焦点坐标为(1,0),所以a=1,b=0.又根据|3×1+4×0+2|32+42=1=r,所以圆的方程为(x-1)2+y2=1.答案 C6.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为().A.52-4 B.17-1C.6-2 2 D.17解析两圆心坐标分别为C1(2,3),C2(3,4).C1关于x轴对称的点C1′的坐标为(2,-3),连接C2C1′,线段C2C1′与x轴的交点即为P点.(|PM|+|PN|)min=|C2C1′|-R1-R2=(3-2)2+(4+3)2-1-3=50-4=52-4(R 1,R 2分别为两圆的半径).故选A.答案 A7.(2015·山东卷)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( ).A .-53或-35B .-32或-23 C .-54或-45D .-43或-34解析 圆(x +3)2+(y -2)2=1的圆心为(-3,2),半径r =1.(-2,-3)关于y 轴的对称点为(2,-3).如图所示,反射光线一定过点(2,-3)且斜率k 存在,∴反射光线所在直线方程为y +3=k (x -2),即kx -y -2k -3=0.∵反射光线与已知圆相切, ∴|-3k -2-2k -3|k 2+(-1)2=1,整理得12k 2+25k +12=0,解得k =-34或k =-43. 答案 D 二、填空题8.(2014·湖北卷)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=__________.解析 依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点,则∠AOB =90°.如图,此时a =1,b =-1,满足题意,所以a 2+b 2=2.答案 29.若直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是________.解析 由题意知,ab =12,半径r =a 2+b 2≥2ab =1,故面积的最小值为π. 答案 π10.(2014·重庆卷)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析 圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以⎝ ⎛⎭⎪⎫|a +a -2|a 2+12+12=22,解得a =4±15. 答案 4±1511.(2015·新课标全国Ⅱ卷改编)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=________.解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+ (-1)×(-9)=0,所以AB→⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=4 6. 答案 4 612.(2015·绍兴检测)若直线l :4x +3y -8=0过圆C :x 2+y 2-ax =0的圆心且交圆C 于A ,B 两点,O 坐标原点,则△OAB 的面积为________.解析 由题意知,圆C :x 2+y 2-ax =0的圆心为⎝ ⎛⎭⎪⎫a 2,0.又直线l :4x +3y -8=0过圆C 的圆心⎝ ⎛⎭⎪⎫a 2,0,∴4×a2+3×0-8=0.∴a =4.∴圆C 的方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.∴|AB |=2r =4.又点O (0,0)到直线l :4x +3y -8=0的距离d =|0+0-8|42+32=85,∴S △OAB =12|AB |·d =12×4×85=165. 答案 165 三、解答题13.已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解 (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2, 化简可得(x -5)2+y 2=16,即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图.由直线l 2是此圆的切线,连接CQ ,则|QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.14.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上. (1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值. 解 (1)曲线y =x 2-6x +1与坐标轴的交点为(0,1),(3±22,0).故可设圆心坐标为(3,t ),则有32+(t -1)2=()222+t 2.解得t =1,则圆的半径为32+(1-1)2=3. 所以圆的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组 ⎩⎨⎧x -y +a =0,(x -3)2+(y -1)2=9,消去y 得到方程2x 2+(2a -8)x +a 2-2a +1=0, 由已知可得判别式Δ=56-16a -4a 2>0,由根与系数的关系可得x 1+x 2=4-a ,x 1x 2=a 2-2a +12,①由OA ⊥OB 可得x 1x 2+y 1y 2=0.又y 1=x 1+a ,y 2=x 2+a .所以2x 1x 2+a (x 1+x 2)+a 2=0.由①②可得a =-1,满足Δ>0,故a =-1.15.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程; (3)在(2)的条件下,设P ,Q 分别是直线l :x +y +2=0和圆C 上的动点,求|PB |+|PQ |的最小值及此时点P 的坐标.(1)证明 由题设知,圆C 的方程为(x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t ,∴S △AOB =12|OA |·|OB |=12|2t |·⎪⎪⎪⎪⎪⎪4t =4为定值. (2)解 ∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C ,H ,O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.(3)解 点B (0,2)关于直线x +y +2=0的对称点为B ′(-4,-2),则|PB |+|PQ |=|PB ′|+|PQ |≥|B ′Q |,又B ′到圆上点Q 的最短距离为|B ′C |-r =(-6)2+(-3)2-5=35-5=2 5.所以|PB |+|PQ |的最小值为25,直线B ′C 的方程为y =12x ,则直线B ′C 与直线x +y +2=0的交点P 的坐标为⎝ ⎛⎭⎪⎫-43,-23.。

高考数学二轮复习专题1.5立体几何(测)文

高考数学二轮复习专题1.5立体几何(测)文

专题1.5 立体几何总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.如图,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则()A. MN∥PDB. MN∥PAC. MN∥ADD. 以上均有可能【答案】B角形,则四棱锥侧面中最大侧面的面积是()A.34 B. 1 C. 2 D. 74【答案】D【解析】3.设,αβ是两个不同的平面, l 是一条直线,以下命题正确的是( ) A. 若,l ααβ⊥⊥,则l β⊂ B. 若,//l ααβ⊥,则l β⊥ C. 若//,//l ααβ,则l β⊂ D. 若//,l ααβ⊥,则l β⊥ 【答案】B【解析】若l ⊥α,α⊥β,则l ⊂β或l ∥β,故A 错误;若l ⊥α,α∥β,由平面平行的性质,我们可得l ⊥β,故B 正确; 若l ∥α,α∥β,则l ⊂β或l ∥β,故C 错误; 若l ∥α,α⊥β,则l ⊥β或l ∥β,故D 错误; 故选:C.4.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,则点A 1到平面AB 1D 1的距离是( ) A. 1 B. 43 C. 169D. 2 【答案】B【解析】设点A 1到平面AB 1D 1的距离为h ,因为V A1-AB1D1=V A -A1B1D1,所以13S △AB1D1h =13S △A1B1D1×AA 1,所以h =()11111122212244213224222A B D AB D SAA S⨯⨯⨯⨯==⨯⨯+-故选B. 点睛:点面距离往往转化为对应棱锥的高,通过等体积法求高得点面距离.5.【2018届吉林省实验中学高三上学期第五次月考(一模)】四棱锥P­ABCD 的三视图如图所示,四棱锥P­ABCD 的五个顶点都在一个球面上, E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22 ,则该球的表面积为( )A. 12πB. 24πC. 36πD. 48π 【答案】A6.祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为( )A. 165B.325C. 3D. 6【答案】B7.已知△ABC的三个顶点在以O为球心的球面上,且AB=2,AC=4,BC=2,三棱锥O-ABC的体积为,则球O的表面积为( )A. 22πB.C. 24πD. 36π【答案】D【解析】△ABC中,AB=2,AC=4,BC=25,由勾股定理可知斜边BC中点O′就是△ABC的外接圆的圆8.已知在四棱锥P-ABCD中,ABCD是矩形,PA⊥平面ABCD,则在四棱锥P-ABCD的任意两个顶点的连线中,互相垂直的异面直线共有( )A. 3对B. 4对C. 5对D. 6对【答案】C【解析】因为ABCD是矩形,PA⊥平面ABCD,所以PA⊥BC,PA⊥CD,AB⊥PD,BD⊥PA,AD⊥PB.共5对.9.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论中错误的是()EFGH平面ABCDA. 平面//B. 直线BE,CF相交于一点C. EF//平面BGDPA平面BGDD. //【答案】C【解析】把图形还原为一个四棱锥,如图所示,EH AB GH BC,根据三角形中位线的性质,可得//,//EFGH平面ABCD,A正确;平面//在△PAD中,根据三角形的中位线定理可得EF∥AD,又∵AD∥BC,∴EF∥BC,因此四边形EFBC是梯形,故直线BE与直线CF相交于一点,所以B是正确的;连接AC,设AC中点为M,则M也是BD的中点,因为MG∥PA,且直线MG在平面BDG上,所以有PA∥平面BDG,所以D是正确的;∵EF∥BC,∵EF⊄平面PBC,BC⊂平面PBC,∴直线EF∥平面PBC,再结合图形可得:直线EF 与平面BDG不平行,因此C是错误的.故选C10.在四棱锥P-ABCD中,四条侧棱长均为2,底面ABCD为正方形,E为PC的中点.若异面直线PA与BE所成的角为45°,则该四棱锥的体积是( )A. 4B. 23C. 43D.233【答案】D11.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( )A. ①②B. ②③C.①③D. ①②③【答案】C【解析】直线AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC-A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BCC1B1,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案 C.12.如图,在△ABC中,AB=BC=6,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( )A. 7πB. 5πC. 3πD. π【答案】A二、填空题(4*5=20分)13. 【2018届西藏拉萨市高三第一次模拟考试(期末)】中国古代数学瑰宝《九章算术》中有这样一道题:“今有堑堵(底面为直角三角形的直棱柱)下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”其意思为:“今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”已知1丈为10尺,则题中的堑堵的外接球的表面积为__________平方尺.【答案】35621π【解析】根据题意可将此堑堵补成一个长方体,且长、宽、高分别为186尺,20尺,25尺,则外接球的直径为222186202535621++=,外接球的面积为2356214356212ππ⎛⎫=⎪⎪⎝⎭.14.如图,三棱柱ABC-A1B1C1的各条棱长都是2,且顶点A1在底面ABC上的射影O为△ABC的中心,则三棱锥A1-ABC的体积为________.【答案】1 3【解析】如图,由题意可知,底面三角形ABC为正三角形,15.已知m,n是两条不同的直线,α,β是两个不同的平面.给出下列命题:(1)若m⊂α,m⊥β,则α⊥β;(2)若m⊂α,α∩β=n,α⊥β,则m⊥n;(3)若m∥α,m⊂β,α∩β=n,则m∥n.其中真命题是________(填序号). 【答案】(1)(3)【解析】(2)中,m ∥n ,m 与n 相交都有可能.16.将正方形ABCD 沿对角线BD 折成直二面角A BD C --, AC BD O ⋂=有如下四个结论:①AC BD ⊥;②ACD 是等边三角形;③AB 与CD 所成的角为90︒,④取BC 中点E ,则AEO ∠为二面角A BC D --的平面角.其中正确结论是__________.(写出所有正确结论的序号) 【答案】①②④如上图所示,由题意可得: AB AC =,则AE BC ⊥, 由,,BE EC BO OD BC CD ==⊥可得OE BC ⊥, 据此可知: AEO ∠为二面角A BC D --的平面角, 说法④正确. 故答案为:①②④.三、解答题(共6道小题,共70分)17. 如图,正方体ABCD -A 1B 1C 1D 1中,点E 是A 1D 1的中点,点F 是CE 的中点. (Ⅰ)求证:平面ACE⊥平面BDD 1B 1; (Ⅱ)求证:AE∥平面BDF.【答案】(1)见解析(2)见解析点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.=,点F为CE的中点.18.如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC CEAE平面BDF.(1)证明://?若存在,确定点P的位置,并加以(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM BE证明;若不存在,请说明理由.【答案】(1)见解析;(2)中点【解析】试题分析:OF AE,再由线面平行的判定定理可证;(1)连接AB交BD于O,连接OF,利用ABCD是矩形得到//∵P为AE的中点,H为BE的中点,∴PH∥AB,又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD∥平面BCE,CD⊥BC∴CD⊥平面BCE,又BE⊂平面BCE,∴CD⊥BE∵BC=CE,H为BE的中点,∴CH⊥BE,∴BE⊥平面DPHC,又PM⊂平面DPHC,∴BE⊥PM即PM⊥BE.19.如图,在直三棱柱ABCA1B1C1中,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若AB⊥AC,AB=AC=1,AA1=2,求几何体ABD-A1B1C1的体积.【答案】(1)详见解析(2)5 620.【2018届西藏拉萨市高三第一次模拟考试(期末)】如图,四棱锥P ABCD -底面为等腰梯形, //AD BC 且24BC AD ==,点E 为PC 中点.(1)证明: //DE 平面PAB ;(2)若PA ⊥平面ABCD , 60ABC ∠=︒,直线PB 与平面ABCD 所成角的正切值为32,求四棱锥P ABCD -的体积V .【答案】(1)见解析;(2)33.即在PAB ∆中,有32PA AB =,则3PA =. 所以,四棱锥P ABCD -的体积13ABCD V S PA =⋅梯形 ()243133332+⨯=⨯⨯=. 21.如图1,在梯形ABCD 中,AD∥BC,AD⊥DC,BC =2AD ,四边形ABEF 是矩形,将矩形ABEF 沿AB 折起到四边形ABE 1F 1的位置,使平面ABE 1F 1⊥平面ABCD ,M 为AF 1的中点,如图2. (1)求证:BE 1⊥DC; (2)求证:DM∥平面BCE 1;(3)判断直线CD 与ME 1的位置关系,并说明理由.【答案】(1)见解析;(2)见解析.(3)相交,理由详见解析所以平面ADM∥平面BCE1.因为DM⊂平面ADM,所以DM∥平面BCE1.(3)解直线CD与ME1相交,理由如下:取BC的中点P,CE1的中点Q,连接AP,PQ,QM,22.如图:设一正方形纸片ABCD边长为2分米,切去阴影部分所示的四个全等的等腰三角形,剩余为一个正方,O为正形和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ四棱锥底面中心.(Ⅰ)若正四棱锥的棱长都相等,求这个正四棱锥的体积V;(Ⅱ)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积S表示为x的函数,并求S的范围.【答案】(1)243403-立方分米(2)02S<<平方分米。

2016届高三数学二轮复习(新课标)第一部分:专题五立体几何(含解析)

2016届高三数学二轮复习(新课标)第一部分:专题五立体几何(含解析)

第1讲 空间几何体的三视图、表面积及体积1.(2014·江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )【解析】 由三视图的知识得B 正确. 【答案】 B2.(2015·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3 D.403cm 3 【解析】 该几何体为四棱柱和四棱锥的组合,所以其体积V =V 四棱柱+V 四棱锥,故V =23+13×22×2=323(cm 3). 【答案】 C3.(2015·山东高考)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C.22πD.42π【解析】由题意,该几何体可以看作是两个底面半径为2、高为2的圆锥的组合体,其体积为2×13×π×(2)2×2=42π3.【答案】 B4.(2014·全国大纲高考)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9π D.27π4【解析】易知EF=4,AF=1222+22=2,在直角三角形AOF中,设球的半径为R,则(4-R)2+22=R2,∴R=94,∴S球=4πR2=81π4.【答案】 A考什么怎么考题型与难度1.空间几何体的三视图与直观图关系的确认主要考查空间几何体的三视图与直观图间对应关系题型:选择题难度:基础题2.空间几何体的表面积与体积主要考查以三视图为载体的空间几何体的表面积与体积的计算题型:选择题或填空题难度:中档题3.多面体与球的切、接问题主要考查多面体与球的结构特征及空间的点、线、面间的位置关系题型:选择题或填空题难度:中档题空间几何体的三视图与直观图关系的确认(自主探究型) 的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解析】将三视图还原为几何体即可,考查空间想象能力.由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱.故选B.【答案】 B2.(2014·湖北高考)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C.④和③D.④和②【解析】根据正视图、俯视图的投影规则,找出它们各个顶点的坐标即可.在空间直角坐标系O —xyz 中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.【答案】 D【规律感悟】 1.由直观图确认三视图的策略根据空间几何体三视图的定义及画法规则和摆放规则确认. 2.由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.空间几何体的表面积与体积(多维探究型)【典例1】 (2015·新课标Ⅰ高考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【解析】 本题是一个实际应用问题,考查了圆锥的体积计算以及考生的理解与计算能力.由l =14×2πr =8得圆锥底面的半径r =16π≈163,所以米堆的体积V =14×13πr 2h =14×2569×5=3209,所以堆放的米有3209÷1.62≈22斛.故选B.【答案】 B命题角度二 根据三视图求空间几何体的表面积与体积【典例2】 (1)(2015·陕西高考)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4(2)(2015·湖南高考)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.827π C.24(2-1)3πD.8(2-1)3π【解析】 (1)本题主要考查空间几何体的三视图与直观图的概念和性质,考查计算能力.由三视图知该几何体是半个圆柱,其表面积为S 表=2π×1×22+π×12+2×2=3π+4.故选D.(2)本题主要考查三视图、圆锥的体积及正方体的体积等知识,解答此题的关键是作出轴截面,利用比例关系求出正方体的棱长.由三视图知,原工件为圆锥,要使正方体新工件的体积最大,则正方体下底面在圆锥底面上,上底面是平行于圆锥底面的截面圆的内接正方形,过正方体的顶点作轴截面如图,且AB 为上底面正方形的对角线,设正方体的棱长为a ,则AB =2a ,又圆锥的高为32-12=22,所以2a2=22-a22,得a=223,正方体体积为V=a3=16227,圆锥的体积为13×π×12×22=22π3,故原工件的材料利用率为1622722π3=89π.故选A.【答案】(1)D (2)A【规律感悟】 1.求解几何体的表面积及体积的技巧(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.2.根据几何体的三视图求其表面积与体积的三个步骤(1)根据给出的三视图判断该几何体的形状.(2)由三视图中的大小标示确定该几何体的各个度量.(3)套用相应的面积公式与体积公式计算求解.[针对训练]1.(2015·安徽高考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3 B.1+2 2C.2+ 3 D.2 2【解析】在长、宽、高分别为2,1,1的长方体中,所求四面体即如图所示的三棱锥P—ABC,其表面积为12×2×1×2+34×(2)2×2=2+ 3.【答案】 C2.(2015·重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2πB.13π6C.7π3D.5π2【解析】 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =12×13×π×12×1+π×12×2=13π6.故选B. 【答案】 B多面体与球的切、接问题【典例3】 (1)(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4πC .2π D.4π3(2)(2015·新课标Ⅱ高考)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥OABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【解析】 (1)找出球心,求出球的半径代入体积公式求解.考查空间想象能力和运算求解能力.连接AC ,BD 相交于O 1,连接A 1C 1,B 1D 1,相交于O 2并连接O 1O 2,则线段O 1O 2的中点为球心.∴半径R =|OB |=|OO 1|2+|O 1B |2=⎝ ⎛⎭⎪⎪⎫222+⎝ ⎛⎭⎪⎪⎫222=1,∴V 球=43πR 3=4π3.故选D.(2)本题主要考查球的性质、三棱锥的体积、球的表面积等基础知识,意在考查考生的空间想象能力与运算求解能力、推理论证能力.三棱锥V O —ABC =V C —OAB =13S △OAB ×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB 是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O —ABC =V C —OAB =13×12×R 3=36,其中R 为球O 的半径,所以R =6,所以球O 的表面积S =4πR 2=144π.故选C.【答案】 (1)D (2)C [一题多变]若题(2)变为:已知正四棱锥O ­ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.【解析】 V 四棱锥O ­ABCD =13×3×3h =322,得h =322,∴OA 2=h 2+(AC 2)2=184+64=6.∴S 球=4πOA 2=24π. 【答案】 24π【规律感悟】 多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,理清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.[针对训练]1.(2015·长春模拟)在正三棱锥S ­ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S ­ABC 外接球的表面积是( )A.12πB.32πC.36πD.48π【解析】取AC的中点为D连结BD,SD,知BD⊥AC,SD⊥AC,∴AC⊥平面BDS,∴AC⊥BS,又MN⊥AM,∴BS⊥AM,∴BS⊥平面ACS,由S-ABC是正三棱锥知BS,AS,CS两两垂直,则4R2=3·(23)2,∴4R2=36,∴S表=4πR2=36π.故选C.【答案】 C2.(2015·河北唐山统考)如图,直三棱柱ABC­A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )A.2 B.1C. 2D.2 2【解析】连结BC1,B1C,交于点O,则O为面BCC1B1的中心.由题意知,球心为侧面BCC1B1的中心O,BC为截面圆的直径,所以∠BAC=90°,则△ABC的外接圆圆心N 位于BC的中点,同理,△A1B1C1的外接圆圆心M位于B1C1的中点,设正方形BCC1B1的边长为x,在Rt△OMC1中,OM=x2,MC1=x2,OC1=R=1(R为球的半径),所以⎝⎛⎭⎪⎫x22+⎝⎛⎭⎪⎫x22=1,即x=2,则AB=AC=1,所以侧面ABB1A1的面积为2×1= 2.故选C.【答案】 C转化与化归思想求解空间几何体的体积[思想诠释]空间几何体的体积用到转化与化归思想的常见题型:1.求某些三棱锥、四棱锥体积:求解过程中当高不易求时,常需转换顶点利用等体积法解决.2.不规则几何体的体积的求解:求解时, 常结合所给几何体的结构特征及条件,通过割、补等手段转化为规则几何体体积的和、差求解.[典例剖析]【典例】 (2015·烟台模拟)如图所示,四棱锥P ­ABCD 中 ,底面ABCD 为正方形,PD ⊥平面ABCD ,PD =AB =2,E ,F ,G 分别为PC ,PD ,BC 的中点.则(1)四棱锥E ­ABCD 的体积为________; (2)三棱锥P ­EFG 的体积为________.【审题策略】 (1)看到E 到平面ABCD 的距离不易求,想到转化与化归思想,EF ∥平面ABCD 转化为求V F ­ABCD ;(2)看到P 到平面EFG 的距离不易求,想到转化与化归思想转化为求V G ­PEF .【解析】 (1)因为E ,F 分别为PC ,PD 的中点,所以EF ∥DC ,又DC ⊂平面ABCD ,所以EF ∥平面ABCD ,又PD ⊥平面ABCD ,所以FD ⊥平面ABCD ,且FD =12PD =1,S 正方形ABCD =2×2=4,所以V E ­ABCD =V F ­ABCD =13×4×1=43.(2)因为PD ⊥平面ABCD ,GC ⊂平面ABCD , 所以GC ⊥PD .因为ABCD 为正方形,所以GC ⊥CD . 因为PD ∩CD =D ,所以GC ⊥平面PCD . 因为PF =12PD =1,EF =12CD =1,所以S △PEF =12EF ×PF =12.因为GC =12BC =1,所以V P ­EFG =V G ­PEF=13S △PEF ·GC =13×12×1=16.【答案】 (1)43 (2)16[针对训练](2015·哈尔滨模拟)一个空间几何体的三视图如图所示,该几何体的体积为12π+853,则正(主)视图中x 的值为( )A .5B .3C .4D .2【解析】 由三视图知,几何体是一个组合体,上面是一个正四棱锥,四棱锥的底面是一个对角线为4的正方形,侧棱长是3,根据勾股定理知正四棱锥的高是32-22=5,下面是一个圆柱,底面直径是4,母线长是x ,因为几何体的体积为12π+853,所以x ×4π+13×(22)2×5=12π+853,x =3.故选B.【答案】 B1.必记公式 (1)表面积公式表面积=侧面积+底面积,其中 ①多面体的表面积为各个面的面积的和.②圆柱的表面积公式:S =2πr 2+2πrh =2πr (r +h )(其中,r 为底面半径,h 为圆柱的高). ③圆锥的表面积公式:S =πr 2+πrl =πr (r +l )(其中圆锥的底面半径为r ,母线长为l ). ④圆台的表面积公式:S =π(r l 2+r 2+r ′l +rl )(其中圆台的上、下底面半径分别为r ′和r ,母线长为l ).⑤球的表面积公式:S =4πR 2(其中球的半径为R ). (2)体积公式①V 柱体=Sh (S 为底面面积,h 为高).②V 锥体=13Sh (S 为底面面积,h 为高).③V 球=43πR 3(其中R 为球的半径).2.重要结论(1)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.(2)三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面. 3.易错提醒(1)未注意三视图中实、虚线的区别:在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.(2)不能准确分析组合体的结构致误对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差. 限时训练(十二)建议用时 实际用时错题档案40分钟一、选择题1.(2014·福建高考)某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱 【解析】 易知圆柱不论如何放置正视图不可能为三角形.故选A. 【答案】 A2.(2014·陕西高考)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【解析】 ∵圆柱侧面展开图为矩形,底面圆半径为1,S 侧=2πr ·l =2π×1×1=2π.故选C.【答案】 C3.(2015·北京高考)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1 B. 2 C. 3 D .2【解析】 由题中三视图知,此四棱锥的直观图如图所示,其中侧棱SA ⊥底面ABCD ,且底面是边长为1的正方形,SA =1,所以四棱锥最长棱的棱长为SC =3.故选C.【答案】 C4.(2015·新课标Ⅱ高考)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【解析】 由三视图可知,该几何体是一个正方体截去了一个三棱锥,即截去了正方体的一个角.设正方体的边长为1,则正方体的体积为1,截去的三棱锥的体积为V 1=13×12×1×1×1=16,故剩余部分的体积为V 2=56,所求比值为V 1V 2=15.【答案】 D5.(2015·福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+22 D .15【解析】 由题中三视图可知,该几何体是底面为直角梯形、高为2的直四棱柱,所以其表面积为S表面积=S 侧面积+2S 下底面积=(1+1+2+2)×2+2×12×(1+2)×1=11+2 2.故选B.【答案】 B6.(2015·山西康杰中学3月模拟)已知某锥体的正视图和侧视图如图所示,其体积为233,则该锥体的俯视图可能是( )【解析】由正视图得该锥体的高是h=22-12=3,因为该锥体的体积为233,所以该锥体的底面面积是S=23313h=23333=2,A项的正方形的面积是2×2=4,B项的圆的面积是π×12=π,C项的大三角形的面积是12×2×2=2,D项不可能是该锥体的俯视图.故选C.【答案】 C7.(2014·湖南高考)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1 B.2 C.3 D.4【解析】由题意知,几何体为三棱柱,设最大球的半径为R.∴2R=(6+8)-10=4,∴R=2.【答案】 B8.(2015·江西铁路中学二模)某几何体的三视图如图所示,则该几何体的体积为( )A.16π3B.20π3C.40π3D .5π【解析】 观察三视图可知,该几何体为一个球和一个圆锥的组合体,球半径为1,圆锥底面半径为2,圆锥高为3,所以该几何体的体积为43π×13+13π×22×3=16π3.故选A. 【答案】 A9.(2015·新课标Ⅰ高考)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8【解析】 由题中的三视图可知,该几何体由一个半圆柱与一个半球拼接而成,其表面积为2r ×2r +2πr 2+2πr 2+πr 2=4r 2+5πr 2=16+20π,解得r =2.故选B.【答案】 B10.(2013·全国新课标Ⅰ高考)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3 cm 3【解析】利用球的截面性质结合直角三角形求解.如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5,∴V 球=43π×53=5003π(cm 3). 【答案】 A 二、填空题11.(2015·天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.【解析】 该几何体是一个组合体,中间是一个圆柱,左、右两侧是两个一样的圆锥,其体积为V =2×13×π×12×1+π×12×2=8π3(m 3).【答案】 8π312.(2015·山西运城教学检测)若一个空间几何体的三视图是三个边长为2的正方形,则以该空间几何体各个面的中心为顶点的多面体的体积为________.【解析】 由题意可知,该空间几何体为正方体,以正方体各个面的中心为顶点的多面体是两个相同的正四棱锥组成的几何体,如图,该四棱锥的高是正方体高的一半,底面面积是正方体一个面面积的一半,故所求多面体的体积V =2×13×1×2·2=43.【答案】 4313.(预测题)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________.(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥⑥圆柱【解析】 三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,其余的正视图均不是三角形.【答案】 ①②③⑤14.(2015·江苏高考)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.【解析】 底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π×r 2×4+π×r 2×8=28π3r 2=196π3,解得r =7.【答案】715.(2015·广西三市4月联考)三棱锥P ­ABC 中,PA ⊥AB ,PA ⊥AC ,∠BAC =120°,PA =AB =AC =2,则此三棱锥外接球的体积为________.【解析】 设△ABC 外接圆的半径为r ,三棱锥外接球的半径为R ,∵AB =AC =2,∠BAC =120°,∴BC =AB 2+AC 2-2AB ·AC cos ∠BAC=4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,∴2r =2332=4,∴r =2,由题意知PA ⊥平面ABC ,则将三棱锥补成三棱柱可得R =⎝ ⎛⎭⎪⎫PA 22+r 2=5,∴此三棱锥外接球的体积为43π·(5)3=2053π.【答案】 2053π第2讲 点、直线、平面之间的位置关系1.(2015·湖北高考)l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【解析】 两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件.故选A.【答案】 A2.(2013·安徽高考)在下列命题中,不是..公理的是( ) A .平行于同一个平面的两个平面相互平行 B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 【解析】 A .不是公理,是个常用的结论,需经过推理论证; B .是平面的基本性质公理; C .是平面的基本性质公理; D .是平面的基本性质公理. 【答案】 A3.(2014·浙江高考)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ⊥n ,n ∥α,则m ⊥α B .若m ∥β,β⊥α,则m ⊥α C .若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α【解析】 选项A ,若m ⊥n ,n ∥α,则m ⊂α或m ∥α或m ⊥α,错误;选项B ,若m ∥β,β⊥α,则m ⊂α或m ∥α 或m ⊥α,错误;选项C ,若m ⊥β,n ⊥β,n ⊥α,则m ⊥α,正确;选项D,若m⊥n,n⊥β,β⊥α,则m⊥α或m⊂α或m∥α,错误.故选C.【答案】 C4.(2015·江苏高考)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【证明】(1)由题意知,E为B1C的中点,又D为AB1的中点,因此BD∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC­A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.考什么怎么考题型与难度1.与空间位置关系有关的命题真假的判断主要考查线面平行、垂直与面面平行、垂直判定定理、性质定理的应用题型:选择题难度:中档题2.证明平行关系主要考查直线、线面、面面平行关系的证明题型:解答题难度:基础题或中档题3.证明垂直关系主要考查线线、线面、面面垂直关系的证明与应用题型:解答题难度:基础题或中档题与空间位置关系有关的命题真假的判断(自主探究型)β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【解析】本题主要考查线面位置关系,意在考查考生的空间想象能力和推理能力.对于面面垂直的判定,主要是两个条件,即l⊂α,l⊥β,如果这两个条件存在,则α⊥β.【答案】 A2.(2015·广东佛山二模)在空间中,有如下四个命题:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面α内有不共线的三点到平面β的距离相等,则α∥β;④过平面α的一条斜线有且只有一个平面与平面α垂直.其中正确的命题是( )A.①③B.②④C.①④D.②③【解析】①平行于同一个平面的两条直线,可能平行,相交或异面,不正确;②垂直于同一条直线的两个平面是平行平面,由面面平行的判定定理知正确;③若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知④正确.故选B.【答案】 B【规律感悟】判断与空间位置关系有关的命题真假的两大方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.证明平行关系(师生共研型)【典例1】(2015·陕西高考)四面体ABCD及其三视图如图所示,平行于棱AD,BC 的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.【解】 (1)以△BDC 为底面,AD 为高,利用体积公式求解;(2)先利用线面平行的性质定理证明四边形EFGH 为平行四边形,再证明为矩形.(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =CD =2,AD =1,∴AD ⊥平面BDC ,∴四面体体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH , 平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形. 又∵AD ⊥平面BDC , ∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形. [一题多变] 若本例变为:如图,在四面体PABC 中,PC ⊥AB ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形.【证明】 (1)因为D ,E 分别为AP ,AC 的中点, 所以DE ∥PC .又因为DE ⊄平面BCP , 所以DE ∥平面BCP .(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.【规律感悟】 1.证明线线平行的常用方法(1)利用三角形中位线定理证明:即遇到中点时,常找中位线,利用该定理证明.(2)利用平行四边形对边平行证明:即要证两线平行,以两线为对边构造平行四边形证明.(3)利用平行公理证明:即要证两线平行,找第三线并证明其分别与要证两线平行即可.2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证明线线平行.(2)利用面面平行的性质定理,把证明线面平行转化为证明面面平行.3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个平面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.[针对训练](2015·河北石家庄二中一模)如图,在四棱锥P­ABCD中,PA⊥平面ABCD,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E为PD的中点,F在AD上,且∠FCD=30°.(1)求证:CE∥平面PAB;(2)若PA=2AB=2,求四面体P­ACE的体积.【解】(1)证明:∵∠ACD=90°,∠CAD=60°,∴∠FDC=30°.又∠FCD=30°,∴∠ACF=60°,∴AF=CF=DF,即F为AD的中点.又E为PD的中点,∴EF∥PA,∵AP⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB.又∠BAC=∠ACF=60°,∴CF∥AB,可得CF∥平面PAB.又EF∩CF=F,∴平面CEF∥平面PAB,而CE⊂平面CEF,∴CE ∥平面PAB .(2)∵EF ∥AP ,AP ⊂平面APC ,EF ⊄平面APC , ∴EF ∥平面APC .又∠ABC =∠ACD =90°,∠BAC =60°,PA =2AB =2, ∴AC =2AB =2,CD =ACtan 30°=23.∴V P ­ACE =V E ­PAC =V F ­PAC =V P ­ACF =13×12×S △ACD ·PA =13×12×12×2×23×2=233.证明垂直关系(多维探究型)命题角度一 利用线面垂直的性质证明线线垂直【典例2】 (2015·河北唐山一模)如图,在斜三棱柱ABC ­A 1B 1C 1中,侧面ACC 1A 1与侧面CBB 1C 1都是菱形,∠ACC 1=∠CC 1B 1=60°,AC =2.(1)求证:AB 1⊥CC 1; (2)若AB 1=6,求四棱锥A ­BB 1C 1C 的体积.【解】 本题主要考查线线垂直、线面垂直、四棱锥的体积等基础知识,意在考查考生的空间想象能力、逻辑推理能力、运算求解能力.(1)证明:连接AC 1,CB 1,则 △ACC 1和△B 1CC 1皆为正三角形. 取CC 1的中点O ,连接OA ,OB 1, 则CC 1⊥OA ,CC 1⊥OB 1, 则CC 1⊥平面OAB 1,则CC 1⊥AB 1. (2)由(1)知,OA =OB 1=3,又AB 1=6,所以OA 2+OB 21=AB 21,所以OA ⊥OB 1.又OA ⊥CC 1,OB 1∩CC 1=O ,所以OA ⊥平面BB 1C 1C .S ▱BB 1C 1C =BC ×BB 1sin 60°=23,故VA ­BB 1C 1C =13S ▱BB 1C 1C ×OA =2.命题角度二 证明线面垂直、面面垂直【典例3】 (2015·新课标Ⅰ高考)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积.【解】 本题主要考查空间直线与平面、平面与平面垂直的性质与判定及三棱锥体积与侧面积的计算等基础知识,考查考生的推理论证能力、空间想象能力、运算求解能力.求解第(1)问时,根据菱形的性质,易知AC ⊥BD ,由直线BE ⊥平面ABCD ,得AC ⊥BE ,进而得到AC ⊥平面BED ,再根据面面垂直的判定定理得平面AEC ⊥平面BED ;求解第(2)问时,首先根据AE ⊥EC 、菱形的性质及三棱锥的体积求出菱形的边长,再求三棱锥的侧面积.(1)因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)证明:设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥EACD 的体积V EACD =13×12AC ·GD ·BE =624x 3=63.故x =2.从而可得AE =EC =ED =6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥EACD 的侧面积为3+25.【规律感悟】 1.证明线线垂直的常用方法(1)利用特殊平面图形的性质:如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直.(2)利用勾股定理逆定理.(3)利用线面垂直的性质:即要证明线线垂直,只需证明一线垂直于另一线所在平面即可.2.证明线面垂直的常用方法(1)利用线面垂直的判定定理:把线面垂直的判定转化为证明线线垂直. (2)利用面面垂直的性质定理,把证明线面垂直转化为证明面面垂直.。

2016年新课标全国卷试题汇编:立体几何--老师专用

2016年新课标全国卷试题汇编:立体几何1.(2016全国高考新课标Ⅱ卷· 理数14T )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) 答案:②③④2. (2016全国高考新课标Ⅰ卷· 文数11T 或者理数11T )平面α过正方体1111ABCD A B C D -的顶点A ,α//平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A.2 B. 2 C.3 D. 13答案:A试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD所成的角,即为60︒,故,m n 所成角的正弦值为2, 选A.3.(2016全国高考新课标Ⅰ卷· 文数18T )(12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB于点G(Ⅰ)证明:G 是AB 的中点;(Ⅱ)在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF的体积解析:(Ⅰ)因为在平面内的正投影为,所以因为在平面内的正投影为,所以 所以平面,故又由已知可得,,从而是的中点.(Ⅱ)在平面内,过点作的平行线交于点,即为在平面内的正投影.理由如下:由已知可得,,又,所以,因此平面,即点为在平面内的正投影.连接,因为在平面内的正投影为,所以是正三角形的中心.由(I )知,是的中点,所以在上,故 由题设可得平面,平面,所以,因此 由已知,正三棱锥的侧面是直角三角形且,可得 在等腰直角三角形中,可得所以四面体的体积4.(2016全国高考新课标Ⅰ卷· 理数18T )(本题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.P ABC D .AB PD ⊥D PAB E .AB DE ⊥AB ⊥PED .AB PG ⊥PA PB =G AB PAB E PB PA F F E PAC PB PA ⊥⊥PB PC //EF PB EF PC ⊥EF ⊥PAC F E PAC CG P ABC D D ABC G AB D CG 2.3=CD CG ⊥PC PAB ⊥DE PAB //DE PC 21,.33==PE PG DE PC 6=PA 2,2 2.==DE PE EFP 2.==EF PF PDEF 114222.323=⨯⨯⨯⨯=VABCDEF(Ⅰ)证明平面ABEF ⊥EFDC ; (Ⅱ)求二面角E -BC -A 的余弦值.解:(Ⅰ)由已知可得,,所以平面. 又平面,故平面平面.(Ⅱ)过作,垂足为,由(I )知平面.以为坐标原点,的方向为轴正方向,为单位长度,建立如图所示的空间直角坐标系.由(I )知为二面角的平面角,故,则,,可得,,,.由已知,,所以平面. 又平面平面,故,.由,可得平面,所以为二面角的平面角,.从而可得.所以,,,. 设是平面的法向量,则,即, 所以可取.设是平面的法向量,则,同理可取.则. F DF A ⊥F F A ⊥E F A ⊥FDC E F A ⊂F ABE F ABE ⊥FDC E D DG F ⊥E G DG ⊥F ABE G GF x GF G xyz -DF ∠E D F -A -E DF 60∠E =DF 2=DG 3=()1,4,0A ()3,4,0B -()3,0,0E -()D 0,0,3//F ABE //AB FDC E CDAB FDC DC E =//CD AB CD//F E //F BE A BE ⊥FDC E C F ∠E C F -BE -C F 60∠E =()C 2,0,3-()C 1,0,3E =()0,4,0EB =()C 3,4,3A =--()4,0,0AB =-(),,n x y z =C B E C 0n n ⎧⋅E =⎪⎨⋅EB =⎪⎩3040x z y ⎧+=⎪⎨=⎪⎩()3,0,3n =-m CD AB C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩()0,3,4m =219cos ,19n m n m n m ⋅==-故二面角的余弦值为. 5.(2016全国高考新课标Ⅱ卷· 文数19T )(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE CF =,EF 交BD 于点H ,将DEF △沿EF 折到D EF '△的位置.(Ⅰ)证明:AC HD '⊥; (Ⅱ)若5AB =,6AC =, 54AE =,22OD '=,求五棱锥D ABCFE '-的体积. 试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(Ⅰ)由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S C E-B -A 21919-所以五棱锥体积16923222.342=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.6.(2016全国高考新课标Ⅱ卷· 理数19T )(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置10OD '=.(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. (Ⅰ)证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF DH ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =,'ABCEF D -∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OHEF H =,∴'D H ⊥面ABCD .(Ⅱ)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =,,,()'133AD =-,,,()060AC =,,,设面'ABD 法向量()1n x y z =,,,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-,,.同理可得面'AD C 的法向量()2301n =,,,∴12129cos 52n n n n θ⋅===, ∴sin θ. 7.(2016全国高考新课标Ⅲ卷· 文数19T )(本小题满分12分)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(Ⅰ)证明MN ∥平面PAB; (Ⅱ)求四面体N -BCM 的体积.解:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ......3分 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB . ....6分(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S . 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分 8.(2016全国高考新课标Ⅲ卷· 理数19T )(本小题满分12分)如图,四棱锥中,地面,,,,为线段上一点,,为的中点.P ABC -PA ⊥ABCD ADBC 3AB AD AC ===4PA BC ==M AD 2AM MD =N PC(I ) 证明平面;(II )(II )求直线与平面所成角的正弦值.【答案】(Ⅰ)见解析;.设为平面的法向量,则,即,可取,于是. MN PAB AN PMN ),,(z y x n =PMN ⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ⎪⎩⎪⎨⎧=-+=-0225042z y x z x )1,2,0(=n 2558|||||,cos |==><AN n AN n AN n考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.。

(通用版)(新课标)高考数学二轮复习作业手册 专题综合训练(五) 专题五 立体几何 理

[专题五 立体几何](时间:60分钟 分值:100分)一、选择题(每小题5分,共40分)1.设m ,n 是两条不同的直线,α,β是两个不同的平面.则下列结论中正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β2.一个几何体的三视图如图Z5-1所示,则该几何体的表面积是( )A .6+8 3B .12+C .12+8 3D .18+图Z5-1图Z5-23.网格纸中的小正方形边长为1,一个正三棱锥的侧视图如图Z5-2所示,则这个正三棱锥的体积为( )A. 3 B .3 3 C.92 D.9234.如图Z5-3所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的( )Z5-3图Z5-4Z5-55.某长方体被一个平面所截,得到的几何体的三视图如图Z5-5所示,则这个几何体的体积为( )A.4 B.4 2C.6 2 D.86.已知m,n是空间两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真的是( )A.若α∥β,m⊂α,n⊂β,则m∥nB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊂β,α⊥β,则m⊥αD.若m⊥β,m∥α,则α⊥β7.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD =2AB=6,则该球的表面积为( )A.16πB.24πC.32 3πD.48π8.已知Rt△ABC,其三边分别为a,b,c(a>b>c).分别以三角形的边a,b,c所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为S1,S2,S3和V1,V2,V3.则它们的大小关系为( )A.S1>S2>S3,V1>V2>V3B.S1<S2<S3,V1<V2<V3C.S1>S2>S3,V1=V2=V3D.S1<S2<S3,V1=V2=V3二、填空题(每小题5分,共20分)9.空间直角坐标系中,已知点P(1,2,3),P点关于平面xOy的对称点为P0,则|PP0|=________.10.若一个球的体积为4 3π,则它内接正方体的表面积是________.11.如图Z5-6所示,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为________.12.已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上.若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________.三、解答题(共40分)13.(13分)如图Z5-7所示,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(1)求证:BE∥平面PAD;(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.14.(13分)如图Z5-8所示,在三棱锥P-ABC中,AB=BC=6,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD= 3.(1)证明:△PBC为直角三角形;(2)求直线AP与平面PBC15.(14分)如图Z5-9所示,在多面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.(1)求证:BE⊥平面DEFG;(2)求证:BF∥平面ACGD;(3)求二面角F-BC-A的余弦值.专题综合训练(五)1.C [解析] 直线m ,n 同时与平面α平行时,m ,n 可能平行,也可能相交,也可能异面;只要直线m 平行于平面α,β的交线,就满足选项B 中的已知,但此时α,β不平行;根据直线与平面垂直的性质定理,当两条平行线中的一条垂直于一个平面时,另一条也垂直于这个平面,选项C 中的结论正确;α⊥β时,与平面α平行的直线m 可能与平面β垂直,也可能斜交,也可能平行,也可能在平面β内.2.C [解析] 该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 3,两个底面三角形的面积之和是2 3,侧面积是(2+2+2 3)×3=12+6 3,故其表面积是12+8 3.3.B [解析] 该三棱锥的底面三角形的高为3,故底面边长a 满足32a =3,即a =2 3.又三棱锥的高为3,则体积为13×12×2 3×3×3=3 3.4.D [解析] 这个空间几何体是一个一条侧棱垂直于底面的四棱锥,其直观图为选项D 中的图形.5.D [解析] 割补可得其体积为2×2×2=8.6.D [解析] 分别位于两个平行平面内的两条直线有平行与异面两种位置关系,选项A 中的命题为假;相交的两个平面与第三个平面相交时,只要第三个平面与前面两个平面的交线平行,就符合选项B 中的已知,但此时两个平面相交,选项B 中的命题为假;当m ⊂β,α⊥β时,m 可能与α平行,垂直,相交,也可能在平面α内,C 不正确;根据平面与平面垂直的判定定理可知,选项D 中的命题为真.7.D [解析] 如图所示,O E 为AD 中点.|OE |=|O ′A |=23×3×32=3,|AE |=3,所以球的半径|OA |=2 3,所以所求的球的表面积为4π(2 3)2=48π.8.B [解析] S 1=π⎝ ⎛⎭⎪⎫bc a (b +c ),V 1=13π⎝ ⎛⎭⎪⎫bc a 2a ,S 2=πac +πc 2,V 2=13πbc 2,S 3=πab +πb 2,V 3=13πb 2c .由于a >b >c ,可得S 1<S 2<S 3,V 1<V 2<V 3.9.6 [解析] 易知P 点关于平面xOy 的对称点为P 0(1,2,-3),所以|PP 0|=(1-1)2+(2-2)2+(3+3)2=6.10.24 [解析] 根据球的体积公式43πr 3=4 3π,得r 3=3 3,故r =3,该球的内接正方体的体对角线长为2 3,设正方体的棱长为a ,则3a =2 3,即a =2,故球的内接正方体的表面积是6×22=24.11.23[解析] 折成的四面体是正四面体,画出立体图形,根据中点找平行线,把所求的异面直线所成角转化为一个三角形的内角.如图所示,联结HE ,取HE 的中点K ,联结GK ,PK ,则GK ∥DH ,故∠PGK 即为所求的异面直线所成角或其补角.设这个正四面体的棱长为2,在△PGK中,PG =3,GK =32,PK =12+⎝ ⎛⎭⎪⎫322=72,故cos ∠PGK =(3)2+⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫7222×3×32=23,即异面直线PG 与DH 所成的角的余弦值是23.12.33[解析] 本题主要考查球的概念与性质.解题的突破口为解决好点P 到截面ABC 的距离.由已知条件可知,以PA ,PB ,PC 为棱的正三棱锥可以补充成球的内接正方体,故而PA 2+PB 2+PC 2=()2R 2, 由已知PA =PB =PC, 得到PA =PB =PC =2, 因为V P -ABC =V A -PBC ⇒13h ·S△ABC=13PA ·S △PBC, 得到h =23 3,故而球心到截面ABC 的距离为R -h =33. 13.解:设AB =a ,PA =b A (0,0,0),B (a ,0,0),P (0,0,b ),C (2a ,2a ,0),D (0,2a ,0),E⎛⎪⎫a ,a ,b 2.(1)证明:BE →=⎝⎛⎭⎪⎫0,a ,b 2,AD →=(0,2a ,0),AP →=(0,0,b ),所以BE →=12AD →+12AP →,又BE⊄平面PAD ,AD ⊂平面PAD ,AP ⊂平面PAD ,故BE ∥平面PAD .(2)∵BE ⊥平面PCD ,∴BE ⊥PC ,即BE →·PC →=0,PC →=(2a ,2a ,-b ),∴BE →·PC →=2a 2-b 22=0,即b =2a .在平面BDE 和平面BDC 中,BE →=(0,a ,a ),BD →=(-a ,2a ,0),BC →=(a ,2a ,0), 所以平面BDE 的一个法向量为n 1=(2,1,-1),平面BDC 的一个法向量为n 2=(0,0,1).cos 〈n 1,n 2〉=-66,所以平面EBD 与平面BDC 夹角的余弦值为66.14.解:(1)证明:取AC 中点E ,联结BE ,以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图所示的空间直角坐标系E -xyz ,则B (2,0,0),C (0,2,0),P (0,-1,3).于是BP →=(-2,-1,3),BC →=(-2,2,0).因为BP →·BC →=(-2,-1,3)·(-2,2,0)=0,所以BP →⊥BC →, 所以BP ⊥BC ,所以△PBC 为直角三角形.(2)由(1)可得,A (0,-2,0).于是AP →=(0,1,3),PB →=(2,1,-3),PC →=(0,3,-3). 设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PB →=0,n ·PC →=0,即⎩⎨⎧2x +y -3z =0,3y -3z =0.取y =1,则z =3,x = 2.所以平面PBC 的一个法向量为n =(2,1,3). 设直线AP 与平面PBC 所成的角为θ,则sin θ=|cos 〈AP →,n 〉|=|AP →·n ||AP →|·|n |=42×6=63,所以直线AP 与平面PBC 所成角的正弦值为63. 15.解:(1)证明:∵平面ABC ∥平面DEFG ,平面ABC ∩平面ADEB =AB ,平面DEFG ∩平面ADEB =DE ,∴AB ∥DE .又∵AB =DE ,∴四边形ADEB 为平行四边形,∴BE ∥AD . ∵AD ⊥平面DEFG ,∴BE ⊥平面DEFG .(2)证明:设DG 的中点为M ,联结AM ,MF ,则DM =12DG =2,∵EF =2,EF ∥DG ,∴四边形DEFM ∴MF =DE 且MF ∥DE ,由(1)知,四边形ADEB 为平行四边形,∴AB =DE 且AB ∥DE ,∴AB =MF 且AB ∥MF ,∴四边形ABFM 是平行四边形,即BF ∥AM ,又BF ⊄平面ACGD ,AM ACGD .(3)由已知,AD ,DE ,DG 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,4),B (2,0,4),C (0,1,4),F (2,2,0),故BF →=(0,2,-4),BC →=(-2,1,0). 设平面FBC 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·BF →=2y -4z =0,n 1·BC →=-2x +y =0,令z =1,则n 1=(1,2,1),而平面ABC 的法向量可为n 2=DA →=(0,0,4),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=41+4+1×4=66,由图形可知,二面角F -BC -A 的余弦值为-66.。

高三第二轮专题复习资料:立体几何题型与方法(文科)

专题二:立体几何题型与方法(文科)一、 考点回顾1.平面(1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。

(3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(4)证共面问题一般用落入法或重合法。

(5)经过不在同一条直线上的三点确定一个面. 2. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。

(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(5)两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面) 3. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

2016立体几何高考题及答案【最新资料】

2012年高考立体几何选作1、[2012·课标全国卷] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.222、[2012·辽宁卷] 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.3、[2012·北京卷] 如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.4、[2012·湖北卷] 如图1所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大?(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.5、[2012·全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ; (2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.A BCDA DBCME图1 图2 ACB DEACBE DM 图1 图26、[2012·辽宁卷] 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.7、[2012·天津卷] 如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.8、[2012·福建卷] 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.AB CC/A /B /MN PABED P AB C9、[2012·湖南卷] 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.A A 1B 1C 1D 1 D C EB BCEDPA2012立体几何高考题答案1、A2、333、解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC , 所以DE ⊥A 1C . 又因为A 1C ⊥CD , 所以A 1C ⊥平面BCDE .(2)如右图,以C 为坐标原点,建立空间直角坐标系C -xyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ,因为CM →=(0,1,3),所以sin θ=|cos(n ,CM →)|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM |=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝⎛⎭⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.4、解:(1)方法1:在题图所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后,AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD =12BD·CD=12x(3-x).于是V A-BCD =13AD·S△BCD=13(3-x)·12x(3-x)=112·2x(3-x)(3-x)≤112⎣⎡2x+(3-x)+(3-x)33=23.当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A-BCD的体积最大.方法2:同方法1,得V A-BCD=13AD·S△BCD=13(3-x)·12x(3-x)=16x3-6x2+9x).令f(x)=16(x3-6x2+9x),由f′(x)=12(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f′(x)>0,当x∈(1,3)时,f′(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A-BCD的体积最大.(2)方法1:以点D为原点,建立如图(a)所示的空间直角坐标系D-xyz.由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=DC=2.于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E⎝⎛⎭⎫12,1,0,且BM→=(-1,1,1).设N(0,λ,0),则EN→=⎝⎛⎭⎫-12,λ-1,0.因为EN⊥BM等价于EN→·BM→=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12N⎝⎛⎭⎫0,12,0.所以当DN=12(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由⎩⎪⎨⎪⎧n⊥BN→,n⊥BM→,及BN→=⎝⎛⎭⎫-1,12,0,得⎩⎪⎨⎪⎧y=2x,z=-x.可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由EN→=⎝⎛⎭⎫-12,-12,0,n=(1,2,-1),可得sinθ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪n·EN→|n|·|EN→|=⎪⎪⎪⎪-12-16×22=32,即θ=60°.故EN与平面BMN所成角的大小为60°.方法2:由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=CD=2.如图(b),取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图(c),延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF,因为MF⊥平面BCD,又EN⊂平面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=12(即N是CD的靠近点D的一个四等分点),EN⊥BM.连结MN,ME,由计算得NB=NM=EB=EM=5 2,所以△NMB与△EMB是两个共底边的全等的等腰三角形.如图(d)所示,取BM的中点G.连结EG,NG,则BM⊥平面EGN,在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN.故∠ENH是EN与平面BMN所成的角.在△EGN中,易得EG=GN=NE=22,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.5、解:方法一:(1)因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=22,PA=2,PE=2EC,故PC=23,EC=233,FC=2,从而PCFC=6,ACEC= 6.因为PCFC=ACEC,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面P AB内过点A作AG⊥PB,G为垂足.因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线P A,AG都垂直,故BC⊥平面P AB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD=PA2+AD2=2 2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,A、D两点到平面PBC的距离相等,即d=AG= 2.设PD与平面PBC所成的角为α,则sinα=dPD=12.所以PD与平面PBC所成的角为30°.方法二:(1)以A为坐标原点,射线AC为x轴的正半轴,建立如图所示的空间直角坐标系A-xyz.设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0). 于是PC →=(22,0,-2), BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b,2.因为面PAB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP →=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°. 6、解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A ′M →=0,m ·MN →=0得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎨⎧-λ22+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ= 2. 7、解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h2,所以,310+20 h 2=cos30°=32,解得h =1010, 即AE =1010.方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD . 又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面PAC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △PAC 中,P A =2,AC =1,由此得AH =25.由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD =5,sin ∠ADC =15,故sin ∠AFB =15.在△AFB 中,由BF sin ∠FAB =AB sin ∠AFB ,AB =12,sin ∠FAB =sin135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠FAB ,可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF22BE ·BF,可解得h =1010.所以AE =10108、解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a 21+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.9、解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BFPBPA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD , 所以四边形BCDG 是平行四边形.故GD =BC =3.11于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13S ×PA =13×16×855=128515.解法2:如上图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设PA =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD →,PA →分别是平面PAE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|. 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ), 故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题综合检测(五)(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为(D )A .3πB .4πC .2π+4D .3π+4解析:由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.该几何体的表面积为2×2+2×12×π×12+π×1×2=4+3π.2.利用斜二测画法得到如下结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.其中正确的是(A )A .①②B .①C .③④D .①②③④解析:由斜二测画法规则知,保持平行性、平行x 轴长度保持不变,平行y 轴的长度减半.故①②正确,选A .3.(2015·新课标Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为(D )A .18B .17C .16D .15解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.4.等体积的球与正方体,它们的表面积的大小关系是(C )A .S 球>S 正方体B .S 球=S 正方体C .S 球<S 正方体D .不能确定解析:设正方体与球的体积均为V ,可算出它们的表面积大小(用V 表示),知选C .5.下列命题正确的是(C )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行解析:若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面,两平面可以平行,也可以垂直,故D 错;故选项C 正确.6.(2015·浙江卷)某集合体的三视图如图所示(单位:cm ),则该几何体的体积是(C )A .8 cm 3B .12 cm 3C .323cm 3 D .403cm 3解析:由题意得,该几何体为一立方体与四棱锥的组合,故体积V =23+13×22×2=323,故选C .7. (2015·天津卷改编)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为(C )A .63π m 3B .85π m 3C .83π m 3 D .94π m 3解析:由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π(m 3).8.如图,三棱锥P­ABC 的高PO =8,AC =BC =3,∠ACB =30°,M ,N 分别在BC 和PO 上,且CM =x ,PN =2CM ,则下面四个图象中大致描绘了三棱锥N­AMC 的体积V 与x 的变化关系(x∈(0,3])的是(A )9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是(B)A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上10.如图,模块①~⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成,现从模块①~⑤中选出3个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体,下列方案中能完成任务的是(A)A.模块①②⑤ B.模块①③⑤C.模块②④⑤ D.模块③④⑤11.(2015·蚌埠模拟)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(B)A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析:对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,又l1与l2相交,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,符合题意,对于选项C,由于m,n 不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意.故选B.12.(2015·深圳调研)在四面体D­ABC中,若AB=CB,AD=CD,且是AC的中点,则下列正确的是(C)A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE且平面ADC⊥平面BDED.平面ABC⊥平面ADC且平面ADC⊥平面BDE解析:因为AB=CB且E是AC的中点,所以BE⊥AC.同理有DE⊥AC.于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,所以选C.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.如图所示,在直三棱柱ABC­A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC =2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.解析:由直三棱柱及D是A1C1的中点,得B1D⊥平面AC1,而CF⊂平面AC1,∴B1D⊥CF.若CF⊥平面B1DF,则必有CF⊥DF,设AF=x(0<x<3a),则CF2=x2+4a2,DF2=a2+(3a-x)2.又CD2=a2+9a2=10a2,∴10a2=x2+4a2+a2+(3a-x)2.解得x=a或2a.答案:a或2a14.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是__________cm3.解析:该几何体是由两个长方体组成,下面长方体的体积为1×3×3=9 (cm3),上面的长方体体积为3×3×1=9 (cm3),因此该几何体的体积为18 cm3.答案:1815.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K 为垂足.设AK=t,则t的取值范围是____________.解析:此题可采用两个极端位置法,即对于F位于DC的中点时,t=1,随着点F到点C 时,因CB⊥AB,CB ⊥DK ,∴CB ⊥平面ADB ,即有CB⊥BD.对于CD =2,BC =1,∴BD = 3.又AD =1,AB =2,因此有AD⊥BD,则有t =12.因此t 的取值范围是⎝ ⎛⎭⎪⎫12,1 . 答案:⎝ ⎛⎭⎪⎫12,116.关于直线m ,n 和平面α,β有以下四个命题: ①当m∥α,n ∥β,α∥β时,m ∥n ; ②当m∥n,m ⊂α,n ⊥β时,α⊥β; ③当α∩β=m ,m ∥n 时,n ∥α且n∥β; ④当m⊥n,α∩β=m 时,n ⊥α或n⊥β. 其中假命题的序号是________. 答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =13,BB 1=BC =6,E ,F 为侧棱AA 1上的两点,且EF =3,求几何体EF­BB 1C 1C 的体积.解析:△ABC 的边BC 上的高等于(13)2-33=2,所以S △ABC =S △A 1B 1C 1=12×6×2=6.由于直三棱柱ABC­A 1B 1C 1的体积V =6×6=36,而三棱锥E­A 1B 1C 1的体积VE ­A 1B 1C 1=13·S△A 1B 1C 1·EA 1,三棱锥F­ABC 的体积V F ­ABC =13·S △ABC ·FA ,所以VE ­A 1B 1C 1+V F ­ABC =13·S △ABC ·(EA 1+FA)=13×6×(6-3)=6.于是几何体EF­BB 1C 1C 的体积等于36-6=30.18.(12分)如图,四棱锥P­ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC.(1)证明:PC⊥平面BED ;(2)设二面角A­PB­C 为90°,求PD 与平面PBC 所成角的大小.解析:(1)因为底面ABCD 是菱形,所以BD⊥AC,又PA ⊥底面ABCD ,所以PA⊥BD,又AC∩PA=A ,AC 、PA ⊂面PAC ,所以BD⊥平面PAC ,所以PC⊥BD.设AC∩BD=F ,连接EF ,因为AC =22,PA =2,PE =2EC ,故PC =23,EC =233,FC= 2.从而PC FC =6,ACEC= 6.因为PC FC =AC EC ,∠FCE =∠PCA,所以△FCE∽△PCA,∠FEC =∠PAC=90°,由此知PC⊥EF.因为PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED.(2)在平面PAB 内过点A 作AG⊥PB,G 为垂足.因为二面角A­PB­C 为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC.因为BC 与平面PAB 内两条相交直线PA ,AG 都垂直,故BC⊥平面PAB ,于是BC⊥AB,所以底面ABCD 为正方形,AD =2,PD =PA 2+AD 2=2 2.设D 到平面PBC 的距离为d.因为AD∥BC,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.19.(12分)(2015·新课标Ⅰ卷)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC⊥平面BED ;(2)若∠ABC=120 °,AE ⊥EC ,三棱锥E­ACD 的体积为63,求该三棱锥的侧面积.解析:(1)因为四边形ABCD 为菱形,所以AC⊥BD.因为BE⊥平面ABCD ,所以AC⊥BE.故AC⊥平面BED.又AC ⊂平面AEC ,所以平面AEC⊥平面BED.(2)设AB =x ,在菱形ABCD 中,由∠ABC=120°,可得AG =GC =32x ,GB =GD =x2,因为AE⊥EC,所以在Rt △AEC 中,可得EG =32x.由BE⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x. 由已知得,三棱锥E­ACD 的体积 V E ­ACD =AC·GD·BE=624x 3=63,故x =2. 从而可得AE =EC =ED =6,所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为5.故三棱锥E­ACD 的侧面积为3+2 5.20.(12分)(2015·福建卷)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证AC⊥平面PDO ;(2)求三棱锥P­ABC 体积的最大值;(3)若BC =2,点E 在线段PB 上,求CE +OE 的最小值.分析:(1)要证明AC⊥平面PDO ,只需证明AC 垂直于面PDO 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明PO⊥AC;又OA =OC ,D 为AC 的中点,可证明AC⊥OD,进而证明结论;(2)三棱锥P­ABC 中,高PO =1,要使得P­ABC 体积最大,则底面ABC 面积最大,又AB =2是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P­ABC 体积;(3)将侧面BCP 绕PB 旋转至平面BC′P,使之与平面ABP 共面,此时线段OC′的长度即为CE +OE 的最小值.解析:解法一 (1)在△AOC 中,因为OA =OC ,D 为AC 的中点,所以AC⊥OD.又PO 垂直于圆O 所在的平面,所以PO⊥AC=O.因为DO∩PO=O ,所以AC⊥平面PDO.(2)因为点C 在圆O 上,所以当CO⊥AB 时,C 到AB 的距离最大,且最大值为1.又AB =2,所以△ABC 面积的最大值为12×2×1=1.又因为三棱锥P­ABC 的高PO =1,故三棱锥P­ABC体积的最大值为13×1×1=13.(3)在△POB 中,PO =BO =1,∠POB =90°, 所以PB =12+12= 2. 同理PC =2,所以PB =PC =BC.在三棱锥P­ABC 中,将侧面BCP 绕PB 旋转至平面BC′P,使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.又因为OP =OB ,C ′P =C′B,所以OC′垂直平分PB ,即E 为PB 中点.从而OC′=OE +EC′=22+62=2+62, 亦即CE +OE 的最小值为2+62. 解法二 (1)、(2)同解法一.(3)在△POB 中,PO =OB =1,∠POB =90°,所以∠OPB=45°,PB =12+12= 2.同理PC = 2.所以PB =PC =BC ,所以∠CPB=60°.在三棱锥P­ABC 中,将侧面BCP 绕PB 旋转至平面BC′P,使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.所以在△OC′P 中,由余弦定理得:OC ′2=1+2-2×1×2×cos (45°+60°)=1+2-22⎝⎛⎭⎪⎫22×12-22×32 =2+ 3.从而OC′=2+3=2+62. 所以CE +OE 的最小值为2+62.21.(12分)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2.将△ADC 沿AC 折起,使平面ADC⊥平面ABC ,得到几何体D­ABC,如图2所示.(1)求证:BC⊥平面ACD ;(2)求几何体D­ABC 的体积.解析:(1)解法一 在图中,可得AC =BC =22,∴AC 2+BC 2=AB 2,故AC⊥BC.如右图,取AC 中点为O ,连接DO ,则DO ⊥AC ,又平面ADC⊥平面ABC ,平面ADC∩平面ABC =AC ,DO ⊂平面ADC ,∴OD ⊥平面ABC.∴OD⊥BC.又AC⊥BC,AC ∩OD =O ,∴BC ⊥平面ACD.解法二 在图中,可得AC =BC =22,∴AC 2+BC 2=AB 2.故AC⊥BC.又∵平面ADC⊥平面ABC ,平面ADC∩平面ABC =AC ,BC ⊂平面ABC ,从而BC⊥平面ACD.(2)由(1)可知BC 为三棱锥B­ACD 的高,BC =22,S △ACD =2.∴V B ­ACD =13·S △ACD ·BC =13×2×22=423. 由等积性可知几何体D­ABC 的体积为423.22.(12分)(2015·陕西卷)如图所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是OC 与BE 的交点,将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1­BCDE.(1)证明:CD⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.分析:(1)在图中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以四边形ABCE 是正方形,故BE ⊥AC ,又在图2中,BE ⊥A 1O ,BE ⊥OC ,从而BE⊥平面A 1OC ,又DE∥BC 且DE =BC ,所以CD∥BE,即可证明CD⊥平面A 1OC ;(2)由已知,平面A 1BE 平面BCDE ,且平面A 1BE ∩平面BCDE =BE ,又由(Ⅰ)知,A 1O ⊥BE ,所以AO⊥平面BCDE ,即A 1O 是四棱锥A 1­BCDE 的高,易求得平行四边形BCDE 面积S =BC·AB=a 2,从而四棱锥A 1­BCDE 的为V =13×S ×A 1O =26a 3,由26a 3=362,得a =6. 解析:(1)在图中,因为AB =BC =12AD =a ,E 是AD 的中点∠BAD=π2,所以BE⊥AC,即在图2中,BE ⊥A 1O ,BE ⊥OC.从而BE⊥平面A 1OC ,又CD∥BE,所以CD⊥平面A 1OC.(2)由已知,平面A 1BE ⊥平面BCDE且平面A 1BE ∩平面BCDE =BE又由(1)知,A 1O ⊥BE ,所以A 1O ⊥平面BCDE ,即A 1O 是四棱锥A 1­BCDE 的高,由图1可知,A 1O =22AB =22a ,平行四边形BCDE 面积S =BC·AB=a 2,从而四棱锥A 1­BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6.。

相关文档
最新文档