Fabrication and characterization of Ce: YIG thin film

合集下载

氟化钙 光学级

氟化钙 光学级

氟化钙光学级1. 介绍氟化钙(Calcium Fluoride,CaF2)是一种重要的无机化合物,具有广泛的应用领域。

其中,光学级的氟化钙是一种高纯度的氟化钙,主要用于光学器件和光学涂层等领域。

本文将详细介绍氟化钙光学级的性质、制备方法、应用以及相关的研究进展。

2. 性质氟化钙具有以下主要性质:•化学式:CaF2•分子量:78.08 g/mol•外观:白色结晶固体•密度:3.18 g/cm³•熔点:1418 °C•折射率:1.4345(可见光)•透明范围:0.13 - 10 μm氟化钙具有优异的光学性能,其低散射和高透明度使其成为优选的光学材料。

3. 制备方法氟化钙光学级的制备方法主要包括以下几种:3.1 熔融法熔融法是最常用的氟化钙制备方法之一。

该方法将高纯度的氟化钙粉末加热至熔点,然后冷却结晶得到光学级氟化钙。

熔融法制备的氟化钙具有较高的晶体质量和透明度。

3.2 水热法水热法是另一种常用的氟化钙制备方法。

该方法通过在高温高压条件下将氟化钙前驱体溶解在水中,然后冷却结晶得到光学级氟化钙。

水热法制备的氟化钙具有较高的纯度和均匀性。

3.3 溶胶-凝胶法溶胶-凝胶法是一种制备高纯度氟化钙的有效方法。

该方法通过将氟化钙前驱体溶解在溶剂中,然后经过凝胶化和热处理得到光学级氟化钙。

溶胶-凝胶法制备的氟化钙具有较高的纯度、均匀性和可控性。

4. 应用氟化钙光学级广泛应用于以下领域:4.1 光学器件氟化钙光学级可制备成透镜、窗口、棱镜等光学器件。

其高透明度和低散射性能使其在激光器、光谱仪、红外传感器等设备中得到广泛应用。

4.2 光学涂层氟化钙光学级可用作光学涂层的基底材料。

通过在氟化钙表面镀膜,可以增强其特定波长范围的反射或透射性能,用于激光器、光学仪器等领域。

4.3 光学纤维氟化钙光学级在光学纤维中的应用也日益重要。

其高透明度和低散射性能使其成为传输光信号的理想材料,用于通信、传感等领域。

纳米纺织材料课题组

纳米纺织材料课题组

纳米纺织材料课题组[1] ZHOU H, NAEEM M A, LV P, et al. Effect Effect of pore distribution on the lithium storage properties of porous C/SnO2 nanofibers [J]. Journal of Alloys and Compounds, 2017, 711(414-23.[2] ZHANG J, YANG Q, CAI Y, et al. Fabrication and characterization of electrospun porous cellulose acetate nanofibrous mats incorporated with capric acid as form-stable phase change materials for storing/retrieving thermal energy [J]. International Journal of Green Energy, 2017, 14(12): 1011-9.[3] ZHANG J, HOU X, PANG Z, et al. Fabrication of hierarchical TiO2 nanofibers by microemulsion electrospinning for photocatalysis applications [J]. Ceramics International, 2017, 43(17): 15911-7.[4] ZHANG J, CAI Y, HOU X, et al. Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries [J]. Beilstein Journal of Nanotechnology, 2017, 8(1297-306.[5] ZHANG J, CAI Y, HOU X, et al. Fabrication and Characterization of Porous Cellulose Acetate Films by Breath Figure Incorporated with Capric Acid as Form-stable Phase Change Materials for Storing/Retrieving Thermal Energy [J]. Fibers and Polymers, 2017, 18(2): 253-63.[6] YUAN X, XU W, HUANG F, et al. Structural colors of fabric from Ag/TiO2 composite films prepared by magnetron sputtering deposition [J]. International Journal of Clothing Science and Technology, 2017, 29(3): 427-35.[7] SHAO D, GAO Y, CAO K, et al. Rapid surface functionalization of cotton fabrics by modified hydrothermalsynthesis of ZnO [J]. Journal of the Textile Institute, 2017, 108(8): 1391-7.[8] SHA S, JIANG G, CHAPMAN L P, et al. Fast Penetration Resolving for Weft Knitted Fabric Based on Collision Detection [J]. Journal of Engineered Fibers and Fabrics, 2017, 12(1): 50-8.[9] QIAO H, XIA Z, LIU Y, et al. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites [J]. Applied Surface Science, 2017, 400(492-7.[10] QIAO H, XIA Z, FEI Y, et al. Electrospinning combined with hydrothermal synthesis and lithium storage properties of ZnFe2O4-graphene composite nanofibers [J]. Ceramics International, 2017, 43(2): 2136-42.[11] PANG Z, NIE Q, YANG J, et al. Ammonia sensing properties of different polyaniline-based composite nanofibres [J]. Indian Journal of Fibre & Textile Research, 2017, 42(2): 138-44.[12] PANG Z, NIE Q, WEI A, et al. Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers [J]. Journal of Materials Science, 2017, 52(2): 686-95.[13] PANG Z, NIE Q, LV P, et al. Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values [J]. Nanotechnology, 2017, 28(22):[14] LV X, LI G, LI D, et al. A new method to prepare no-binder, integral electrodes-separator, asymmetric all-solid-state flexible supercapacitor derived from bacterial cellulose [J]. Journal of Physics and Chemistry of Solids, 2017, 110(202-10.[15] LV P, YAO Y, ZHOU H, et al. Synthesis of novel nitrogen-doped carbon dots for highly selective detection of iron ion [J]. Nanotechnology, 2017, 28(16):[16] LV P, YAO Y, LI D, et al. Self-assembly of nitrogen-dopedcarbon dots anchored on bacterial cellulose and their application in iron ion detection [J]. Carbohydrate Polymers, 2017, 172(93-101.[17] LUO L, QIAO H, XU W, et al. Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries [J]. Journal of Solid State Electrochemistry, 2017, 21(5): 1385-95.[18] LUO L, LI D, ZANG J, et al. Carbon-Coated Magnesium Ferrite Nanofibers for Lithium-Ion Battery Anodes with Enhanced Cycling Performance [J]. Energy Technology, 2017, 5(8): 1364-72.[19] LU H, WANG Q, LI G, et al. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties [J]. Materials Science & Engineering C-Materials for Biological Applications, 2017, 74(86-93.[20] LI G, NANDGAONKAR A G, WANG Q, et al. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation [J]. Journal of Membrane Science, 2017, 525(89-98.[21] LI G, NANDGAONKAR A G, HABIBI Y, et al. An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds [J]. Rsc Advances, 2017, 7(23): 13678-88.[22] LI G, NANDGAONKAR A G, HABIBI Y, et al. An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds (vol 7, pg 13678, 2017) [J]. Rsc Advances, 2017, 7(27): 16737-.[23] HUANG X, MENG L, WEI Q, et al. Effect of substrate structures on the morphology and interfacial bonding properties of copper films sputtered on polyester fabrics [J]. InternationalJournal of Clothing Science and Technology, 2017, 29(1): 39-46.[24] CAI Y, SONG X, LIU M, et al. Flexible cellulose acetate nano-felts absorbed with capric-myristic-stearic acid ternary eutectic mixture as form-stable phase-change materials for thermal energy storage/retrieval [J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(2): 661-73.[25] CAI Y, HOU X, WANG W, et al. Effects of SiO2 nanoparticles on structure and property of form-stable phase change materials made of cellulose acetate phase inversion membrane absorbed with capric-myristic-stearic acid ternary eutectic mixture [J]. Thermochimica Acta, 2017, 653(49-58.[26] ZHOU J, WANG Q, LU H, et al. Preparation and Characterization of Electrospun Polyvinyl Alcohol-styrylpyridinium/beta-cyclodextrin Composite Nanofibers: Release Behavior and Potential Use for Wound Dressing [J]. Fibers and Polymers, 2016, 17(11): 1835-41.[27] ZHOU H, LI Z, NIU X, et al. The enhanced gas-sensing and photocatalytic performance of hollow and hollow core-shell SnO2-based nanofibers induced by the Kirkendall effect [J]. Ceramics International, 2016, 42(1): 1817-26.[28] ZHOU H, LI Z, NIU X, et al. The enhanced gas-sensing and photocatalytic performance of hollow and hollow core shell SnO2-based nanofibers induced by the Kirkendall effect (vol 42, pg 1817, 2016) [J]. Ceramics International, 2016, 42(6): 7897-.[29] ZHANG J, SONG M, WANG X, et al. Preparation of a cellulose acetate/organic montmorillonite composite porous ultrafine fiber membrane for enzyme immobilizatione [J]. Journal of Applied Polymer Science, 2016, 133(33):[30] ZHANG J, SONG M, LI D, et al. Preparation of Self-clustering Highly Oriented Nanofibers by NeedlelessElectrospinning Methods [J]. Fibers and Polymers, 2016, 17(9): 1414-20.[31] YUAN X, XU W, HUANG F, et al. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering [J]. Applied Surface Science, 2016, 390(863-9.[32] YUAN X, WEI Q, CHEN D, et al. Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering [J]. Textile Research Journal, 2016, 86(8): 887-94.[33] YU J, ZHOU T, PANG Z, et al. Flame retardancy and conductive properties of polyester fabrics coated with polyaniline [J]. Textile Research Journal, 2016, 86(11): 1171-9.[34] YANG J, LI D, PANG Z, et al. Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone [J]. Nano, 2016, 11(12):[35] YANG J, LI D, FU J, et al. TiO2-CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection [J]. Journal of Electroanalytical Chemistry, 2016, 766(16-23.[36] WANG X, WANG Q, HUANG F, et al. The Morphology of Taylor Cone Influenced by Different Coaxial Composite Nozzle Structures [J]. Fibers and Polymers, 2016, 17(4): 624-9.[37] QIU Y, QIU L, CUI J, et al. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing [J]. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59(303-9.[38] QIAO H, FEI Y, CHEN K, et al. Electrospun synthesis and electrochemical property of zinc ferrite nanofibers [J]. Ionics, 2016, 22(6): 967-74.[39] PANG Z, YANG Z, CHEN Y, et al. A room temperatureammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2016, 494(248-55.[40] NIE Q, PANG Z, LU H, et al. Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature [J]. Beilstein Journal of Nanotechnology, 2016, 7(1312-21.[41] NARH C, LI G, WANG Q, et al. Sulfanilic acid inspired self-assembled fibrous materials [J]. Colloid and Polymer Science, 2016, 294(9): 1483-94.[42] LV P, XU W, LI D, et al. Metal-based bacterial cellulose of sandwich nanomaterials for anti-oxidation electromagnetic interference shielding [J]. Materials & Design, 2016, 112(374-82.[43] LV P, WEI A, WANG Y, et al. Copper nanoparticles-sputtered bacterial cellulose nanocomposites displaying enhanced electromagnetic shielding, thermal, conduction, and mechanical properties [J]. Cellulose, 2016, 23(5): 3117-27.[44] LV P, FENG Q, WANG Q, et al. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application [J]. Materials, 2016, 9(3):[45] LV P, FENG Q, WANG Q, et al. Preparation of Bacterial Cellulose/Carbon Nanotube Nanocomposite for Biological Fuel Cell [J]. Fibers and Polymers, 2016, 17(11): 1858-65.[46] LUO L, XU W, XIA Z, et al. Electrospun ZnO-SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes [J]. Ceramics International, 2016, 42(9): 10826-32.[47] LI W, LIU X, LIU C, et al. Preparation and Characterisation of High Count Yak Wool Yarns Spun by Complete Compacting Spinning and Fabrics Knitted from them [J]. Fibres & Textiles inEastern Europe, 2016, 24(1): 30-5.[48] LI G, WANG Q, LV P, et al. Bioremediation of Dyes Using Ultrafine Membrane Prepared from the Waste Culture of Ganoderma lucidum with in-situ Immobilization of Laccase [J]. Bioresources, 2016, 11(4): 9162-74.[49] LI G, SUN K, LI D, et al. Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2016, 509(408-14.[50] LI G, NANDGAONKAR A G, LU K, et al. Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy [J]. Rsc Advances, 2016, 6(47): 41420-7.[51] LI D, ZANG J, ZHANG J, et al. Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol [J]. Materials, 2016, 9(4):[52] LI D, AO K, WANG Q, et al. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection [J]. Molecules, 2016, 21(5):[53] KE H, PANG Z, PENG B, et al. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver [J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1293-307.[54] KE H, GHULAM M U H, LI Y, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy [J]. Renewable Energy, 2016, 99(1-9.[55] KE H, FELDMAN E, GUZMAN P, et al. Electrospun polystyrene nanofibrous membranes for direct contactmembrane distillation [J]. Journal of Membrane Science, 2016, 515(86-97.[56] HUANG F, LIU W, LI P, et al. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery [J]. Materials, 2016, 9(2):[57] ZONG X, CAI Y, SUN G, et al. Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval [J]. Solar Energy Materials and Solar Cells, 2015, 132(183-90.[58] ZHENG H, ZHANG J, DU B, et al. Effect of treatment pressure on structures and properties of PMIA fiber in supercritical carbon dioxide fluid [J]. Journal of Applied Polymer Science, 2015, 132(14):[59] ZHENG H, ZHANG J, DU B, et al. An Investigation for the Performance of Meta-aramid Fiber Blends Treated in Supercritical Carbon Dioxide Fluid [J]. Fibers and Polymers, 2015, 16(5): 1134-41.[60] XU C, HINKS D, SUN C, et al. Establishment of an activated peroxide system for low-temperature cotton bleaching using N- 4-(triethylammoniomethyl)benzoyl butyrolactam chloride [J]. Carbohydrate Polymers, 2015, 119(71-7.[61] WANG Q, NANDGAONKAR A, LUCIA L, et al. Enzymatic bio-fuel cells based on bacterial cellulose (BC)/MWCNT/laccase (Lac) and bacterial cellulose/MWCNT/glucose oxidase (GOD) electrodes [J]. Abstracts of Papers of the American Chemical Society, 2015, 249([62] WANG H, XU Y, WEI Q. Preparation of bamboo-hat-shaped deposition of a poly(ethylene terephthalate) fiber web by melt-electrospinning [J]. Textile Research Journal, 2015, 85(17):1838-48.[63] SIGDEL S, ELBOHY H, GONG J, et al. Dye-Sensitized Solar Cells Based on Porous Hollow Tin Oxide Nanofibers [J]. Ieee Transactions on Electron Devices, 2015, 62(6): 2027-32.[64] QIAO H, LUO L, CHEN K, et al. Electrospun synthesis and lithium storage properties of magnesium ferrite nanofibers [J]. Electrochimica Acta, 2015, 160(43-9.[65] QIAO H, CHEN K, LUO L, et al. Sonochemical synthesis and high lithium storage properties of Sn/CMK-3 nanocomposites [J]. Electrochimica Acta, 2015, 165(149-54.[66] NANDGAONKAR A, WANG Q, KRAUSE W, et al. Photocatalytic and biocatalytic degradation of dye solution using laccase and titanium dioxide loaded on bacterial cellulose [J]. Abstracts of Papers of the American Chemical Society, 2015, 249([67] LUO L, QIAO H, CHEN K, et al. Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries [J]. Electrochimica Acta, 2015, 177(283-9.[68] LUO L, FEI Y, CHEN K, et al. Facile synthesis of one-dimensional zinc vanadate nanofibers for high lithium storage anode material [J]. Journal of Alloys and Compounds, 2015, 649(1019-24.[69] LUO L, CUI R, LIU K, et al. Electrospun preparation and lithium storage properties of NiFe2O4 nanofibers [J]. Ionics, 2015, 21(3): 687-94.[70] LI W, SU X, ZHANG Y, et al. Evaluation of the Correlation between the Structure and Quality of Compact Blend Yarns [J]. Fibres & Textiles in Eastern Europe, 2015, 23(6): 55-67.[71] LI D, LV P, ZHU J, et al. NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications [J]. Sensors, 2015, 15(11): 29419-33.[72] LI D, LI G, LV P, et al. Preparation of a graphene-loaded carbon nanofiber composite with enhanced graphitization and conductivity for biosensing applications [J]. Rsc Advances, 2015, 5(39): 30602-9.[73] HUANG F, XU Y, PENG B, et al. Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery [J]. Acs Sustainable Chemistry & Engineering, 2015, 3(5): 932-40.[74] GONG J, QIAO H, SIGDEL S, et al. Characteristics of SnO2 nanofiber/TiO2 nanoparticle composite for dye-sensitized solar cells [J]. Aip Advances, 2015, 5(6):[75] GAO D, WANG L, WANG C, et al. Electrospinning of Porous Carbon Nanocomposites for Supercapacitor [J]. Fibers and Polymers, 2015, 16(2): 421-5.[76] FU J, PANG Z, YANG J, et al. Hydrothermal Growth of Ag-Doped ZnO Nanoparticles on Electrospun Cellulose Nanofibrous Mats for Catechol Detection [J]. Electroanalysis, 2015, 27(6): 1490-7.[77] FU J, PANG Z, YANG J, et al. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application [J]. Applied Surface Science, 2015, 349(35-42.[78] FU J, LI D, LI G, et al. Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol [J]. Journal of Electroanalytical Chemistry, 2015, 738(92-9.[79] DU B, ZHENG L-J, WEI Q. Screening and identification of Providencia rettgeri for brown alga degradation and anion sodium alginate/poly (vinyl alcohol)/tourmaline fiber preparation[J]. Journal of the T extile Institute, 2015, 106(7): 787-91.[80] CUI J, QIU L, QIU Y, et al. Co-electrospun nanofibers of PVA-SbQ and Zein for wound healing [J]. Journal of Applied Polymer Science, 2015, 132(39):[81] CHEN X, LI D, LI G, et al. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor [J]. Applied Surface Science, 2015, 328(444-52.[82] CAI Y, SUN G, LIU M, et al. Fabrication and characterization of capric lauric palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval [J]. Solar Energy, 2015, 118(87-95.[83] CAI Y, LIU M, SONG X, et al. A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric-myristic-stearic acid ternary eutectic mixture for thermal energy storage/retrieval [J]. Rsc Advances, 2015, 5(102): 84245-51.[84] ZHANG P, WANG Q, ZHANG J, et al. Preparation of Amidoxime-modified Polyacrylonitrile Nanofibers Immobilized with Laccase for Dye Degradation [J]. Fibers and Polymers, 2014, 15(1): 30-4.[85] XIA X, WANG X, ZHOU H, et al. The effects of electrospinning parameters on coaxial Sn/C nanofibers: Morphology and lithium storage performance [J]. Electrochimica Acta, 2014, 121(345-51.[86] WANG Q, NANDGAONKAR A G, CUI J, et al. Atom efficient thermal and photocuring combined treatments for the synthesis of novel eco-friendly grid-like zein nanofibres [J]. Rsc Advances, 2014, 4(106): 61573-9.[87] WANG Q, LI G, ZHANG J, et al. PAN Nanofibers Reinforced with MMT/GO Hybrid Nanofillers [J]. Journal of Nanomaterials, 2014,[88] WANG Q, CUI J, LI G, et al. Laccase Immobilized on a PAN/Adsorbents Composite Nanofibrous Membrane for Catechol Treatment by a Biocatalysis/Adsorption Process [J]. Molecules, 2014, 19(3): 3376-88.[89] WANG Q, CUI J, LI G, et al. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry [J]. Polymers, 2014, 6(9): 2357-70.[90] PANG Z, FU J, LV P, et al. Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers [J]. Sensors, 2014, 14(11): 21453-65.[91] PANG Z, FU J, LUO L, et al. Fabrication of PA6/TiO2/PANI composite nanofibers by electrospinning-electrospraying for ammonia sensor [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2014, 461(113-8.[92] NANDGAONKAR A G, WANG Q, FU K, et al. A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites [J]. Green Chemistry, 2014, 16(6): 3195-201.[93] MENG L, WEI Q, LI Y, et al. Effects of plasma pre-treatment on surface properties of fabric sputtered with copper [J]. International Journal of Clothing Science and Technology, 2014, 26(1): 96-104.[94] LUO L, CUI R, QIAO H, et al. High lithium electroactivity of electrospun CuFe2O4 nanofibers as anode material for lithium-ion batteries [J]. Electrochimica Acta, 2014, 144(85-91.[95] LI X-J, WEI Q, WANG X. Preparation of magnetic polyimide/maghemite nanocomposite fibers by electrospinning[J]. High Performance Polymers, 2014, 26(7): 810-6.[96] LI X, WANG X, WANG Q, et al. Effects of Imidization Temperature on the Structure and Properties of Electrospun Polyimide Nanofibers [J]. Journal of Engineered Fibers and Fabrics, 2014, 9(4): 33-8.[97] LI D, YANG J, ZHOU J, et al. Direct electrochemistry of laccase and a hydroquinone biosensing application employing ZnO loaded carbon nanofibers [J]. Rsc Advances, 2014, 4(106): 61831-40.[98] LI D, PANG Z, CHEN X, et al. A catechol biosensor based on electrospun carbon nanofibers [J]. Beilstein Journal of Nanotechnology, 2014, 5(346-54.[99] LI D, LUO L, PANG Z, et al. Novel Phenolic Biosensor Based on a Magnetic Polydopamine-Laccase-Nickel Nanoparticle Loaded Carbon Nanofiber Composite [J]. Acs Applied Materials & Interfaces, 2014, 6(7): 5144-51.[100] LI D, LUO L, PANG Z, et al. Amperometric detection of hydrogen peroxide using a nanofibrous membrane sputtered with silver [J]. Rsc Advances, 2014, 4(8): 3857-63.[101] KE H, PANG Z, XU Y, et al. Graphene oxide improved thermal and mechanical properties of electrospun methyl stearate/polyacrylonitrile form-stable phase change composite nanofibers [J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1): 109-22.[102] KASAUDHAN R, ELBOHY H, SIGDEL S, et al. Incorporation of TiO2 Nanoparticles Into SnO2 Nanofibers for Higher Efficiency Dye-Sensitized Solar Cells [J]. Ieee Electron Device Letters, 2014, 35(5): 578-80.[103] HUANG X, MENG L, WEI Q, et al. Morphology and properties of nanoscale copper films deposited on polyestersubstrates [J]. International Journal of Clothing Science and Technology, 2014, 26(5): 367-76.[104] GAO D, WANG L, YU J, et al. Preparation and Characterization of Porous Carbon Based Nanocomposite for Supercapacitor [J]. Fibers and Polymers, 2014, 15(6): 1236-41.[105] FU J, QIAO H, LI D, et al. Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection [J]. Sensors, 2014, 14(2): 3543-56.[106] FENG Q, ZHAO Y, WEI A, et al. Immobilization of Catalase on Electrospun PVA/PA6-Cu(II) Nanofibrous Membrane for the Development of Efficient and Reusable Enzyme Membrane Reactor [J]. Environmental Science & Technology, 2014, 48(17): 10390-7.[107] FENG Q, WEI Q, HOU D, et al. Preparation of Amidoxime Polyacrylonitrile Nanofibrous Membranes and Their Applications in Enzymatic Membrane Reactor [J]. Journal of Engineered Fibers and Fabrics, 2014, 9(2): 146-52.[108] DUAN F, ZHANG Q, WEI Q, et al. Control of Photocatalytic Property of Bismuth-Based Semiconductor Photocatalysts [J]. Progress in Chemistry, 2014, 26(1): 30-40.[109] CUI J, WANG Q, CHEN X, et al. A novel material of cross-linked styrylpyridinium salt intercalated montmorillonite for drug delivery [J]. Nanoscale Research Letters, 2014, 9([110] CAI Y, ZONG X, ZHANG J, et al. THE IMPROVEMENT OF THERMAL STABILITY AND CONDUCTIVITY VIA INCORPORATION OF CARBON NANOFIBERS INTO ELECTROSPUN ULTRAFINE COMPOSITE FIBERS OF LAURIC ACID/POLYAMIDE 6 PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE [J]. International Journal of Green Energy, 2014, 11(8): 861-75.[111] XIA X, LI S, WANG X, et al. Structures and properties ofSnO2 nanofibers derived from two different polymer intermediates [J]. Journal of Materials Science, 2013, 48(9): 3378-85.[112] WANG X, LI S, WANG H, et al. Progress in Research of Melt-electrospinning [J]. Polymer Bulletin, 2013, 7): 15-26.[113] WANG X, HE T, LI D, et al. Electromagnetic properties of hollow PAN/Fe3O4 composite nanofibres via coaxial electrospinning [J]. International Journal of Materials & Product Technology, 2013, 46(2-3): 95-105.[114] WANG Q, PENG L, LI G, et al. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes [J]. International Journal of Molecular Sciences, 2013, 14(6): 12520-32.[115] WANG Q, PENG L, DU Y, et al. Fabrication of hydrophilic nanoporous PMMA/O-MMT composite microfibrous membrane and its use in enzyme immobilization [J]. Journal of Porous Materials, 2013, 20(3): 457-64.[116] WANG Q, DU Y, FENG Q, et al. Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning [J]. Journal of Applied Polymer Science, 2013, 128(2): 1152-7.[117] SHAO D, WEI Q, TAO L, et al. PREPARATION AND CHARACTERIZATION OF PET NONWOVEN COATED WITH ZnO-Ag BY ONE-POT HYDROTHERMAL TECHNIQUES [J]. Tekstil Ve Konfeksiyon, 2013, 23(4): 338-41.[118] QIAO H, YAO D, CAI Y, et al. One-pot synthesis and electrochemical property of MnO/C hybrid microspheres [J]. Ionics, 2013, 19(4): 595-600.[119] LIU H, CHEN D, WEI Q, et al. An investigation into thebust girth range of pressure comfort garment based on elastic sports vest [J]. Journal of the Textile Institute, 2013, 104(2): 223-30.[120] LI D, PANG Z, WANG Q, et al. Fabrication and Characterization of Polyamide6-room Temperature Ionic Liquid (PA6-RTIL) Composite Nanofibers by Electrospinning [J]. Fibers and Polymers, 2013, 14(10): 1614-9.[121] KUMAR D N T, WEI Q. Analysis of Quantum Dots for Nano-Bio applications as the Technological Platform of the Future [J]. Research Journal of Biotechnology, 2013, 8(5): 78-82.[122] KE H, LI D, ZHANG H, et al. Electrospun Form-stable Phase Change Composite Nanofibers Consisting of Capric Acid-based Binary Fatty Acid Eutectics and Polyethylene Terephthalate [J]. Fibers and Polymers, 2013, 14(1): 89-99.[123] KE H, LI D, WANG X, et al. Thermal and mechanical properties of nanofibers-based form-stable PCMs consisting of glycerol monostearate and polyethylene terephthalate [J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(1): 101-11.[124] KE H, CAI Y, WEI Q, et al. Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form-stable phase change materials for storage and retrieval of thermal energy [J]. International Journal of Energy Research, 2013, 37(6): 657-64.[125] HUANG F, ZHANG H, WEI Q, et al. Preparation and characterization of PVDF nanofibrous membrane containing bimetals for synergistic dechlorination of trichloromethane [J]. Abstracts of Papers of the American Chemical Society, 2013, 246( [126] HUANG F, XU Y, LIAO S, et al. Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application forAdsorption of Metal Ions [J]. Materials, 2013, 6(3): 969-80.[127] GAO D, WANG L, XIA X, et al. Preparation and Characterization of porous Carbon/Nickel Nanofibers for Supercapacitor [J]. Journal of Engineered Fibers and Fabrics, 2013, 8(4): 108-13.[128] FENG Q, WANG Q, TANG B, et al. Immobilization of catalases on amidoxime polyacrylonitrile nanofibrous membranes [J]. Polymer International, 2013, 62(2): 251-6.[129] CAI Y, ZONG X, ZHANG J, et al. Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy [J]. Solar Energy Materials and Solar Cells, 2013, 109(160-8.[130] CAI Y, ZONG X, BAN H, et al. Fabrication, Structural Morphology and Thermal Energy Storage/Retrieval of Ultrafine Phase Change Fibres Consisting of Polyethylene Glycol and Polyamide 6 by Electrospinning [J]. Polymers & Polymer Composites, 2013, 21(8): 525-32.[131] CAI Y, GAO C, ZHANG T, et al. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats [J]. Renewable Energy, 2013, 57(163-70.[1]张权,董建成,陈亚君,王清清,魏取福.水热反应温度对PMMA/TiO_2复合纳米纤维膜的形貌和性能的影响[J].材料科学与工程学报,2017,(05):785-789.[2]周建波,卢杭诣,张权,代雅轩,王清清,魏取福.醋纤基载药纳米纤维膜制备及药物缓释行为研究[J].化工新型材料,2017,45(10):223-225.[3]盛澄成,徐阳,魏取福,乔辉.Cu/Al_2O_3复合薄膜的制备及其抗氧化性能[J].材料科学与工程学报,2017,35(04):596-599+606.[4]张金宁,何慢,陈昀,曹建华,杨占平,宋明玉,魏取福.二醋酸纤维/OMMT复合增强纳米纤维膜及其过滤性能研究[J].化工新型材料,2017,45(08):84-86.[5]周建波,卢杭诣,张权,王清清,魏取福.CA/β-CD复合纳米纤维的制备与表征研究[J].化工新型材料,2017,45(07):244-246.[6]敖克龙,李大伟,吕鹏飞,王清清,魏取福.载钯细菌纤维素纳米纤维的制备及表征[J].化工新型材料,2017,45(07):214-216.[7]盛澄成,徐阳,魏取福,乔辉.双面结构电磁屏蔽材料的制备及抗氧化性能研究[J].化工新型材料,2017,45(07):57-59.[8]刘文婷,宁景霞,李沛赢,魏取福,黄锋林.PVDF-HFP/LLTO复合锂离子电池隔膜的电化学性能研究[J].化工新型材料,2017,45(07):50-53.[9]邱玉宇,蔡维维,邱丽颖,王清清,魏取福.负载王不留行黄酮苷纳米纤维作为创伤敷料的研究[J].生物医学工程学杂志,2017,34(03):394-400.[10]俞俭,李祥涛,高大伟,刘丽,魏取福,林洪芹.木棉/棉混纺机织物的服用性能[J].丝绸,2017,54(06):22-26.[11]盛澄成,徐阳,魏取福.层状复合电磁屏蔽材料的制备及性能研究[J].化工新型材料,2017,45(05):61-63.[12]张权,董建成,马梦琴,王清清,魏取福.柔性PMMA/TiO_2复合超细纤维的制备及表征[J].化工新型材料,2017,45(05):90-92.[13]张金宁,宋明玉,王小宇,陈昀,曹建华,杨占平,魏取福.多孔二醋酸超细纤维膜的固定化酶及染料降解性能[J].化工新型材料,2017,45(05):173-175.[14]高大伟,王春霞,林洪芹,魏取福,李伟伟,陆逸群,姜宇.二氧化钛纳米管的制备及其光催化性能[J].纺织学报,2017,38(04):22-26.[15]柯惠珍,李永贵,王建刚,袁小红,陈东生,魏取福.磁控溅射法提高定型相变材料的储热和放热速率[J].功能材料,2017,48(03):3163-3167.[16]张权,代雅轩,马梦琴,王清清,魏取福.光敏抗菌型静电纺丙烯酸甲酯/丙烯酸纳米纤维的制备及其性能表征[J].纺织学报,2017,38(03):18-22.。

含能复合材料

含能复合材料

Fabrication and Characterization of PMMA/HMX-BasedMicrocapsules Via in Situ Polymerization Xinlei JIA,Conghua HOU,Yingxin TAN*,Jingyu WANG,Baoyun YESchool of Chemical Engineering and EnvironmentNorth University of China,Taiyuan,030051,Shanxi,P.R.China *E-mail:1004024260@Abstract:The microcapsule technology was applicated in the nitramine explosives to improve performances in the paper.PolymethylMethacrylate(PMMA)was selected for the fabrication of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)based microcapsules,the PMMA/HMX-based microcapsules were prepared via a facile in situ polymerization of PMMA on the surface of HMX crystals.Structural characterizations of the PMMA/HMX microcapsules were systematically studied by scanning electron microscopy(SEM),X-ray diffraction(XRD),fourier-transform infrared(FT-IR) spectra,and its thermal durability as well as mechanical sensitivities were measured.The results indicated that spherical microcapsules were formed with PMMA as the capsule wall and HMX as the core material.The results of SEM showed that the grain of the PMMA/HMX microcapsules were spherical and the particle distribution was homogeneous.XRD and FT-IR analyses indicated that the polymorph of HMX maintained the optimalβ-form during the whole preparing process.The results of DSC showed that the PMMA/HMX microcapsules have high performance of pyrolysis due to its stable activation,and the apparent activation energy of(thermal decomposition)microcapsules has increased by47.3KJ/mol compared to the thinning HMX,and its thermal stability has greatly improved.In addition,the drop height(H50)increased from30.45cm to58.49cm,an increase of65.81%.Herein,microcapsule technology will have a very wide range of applications in reducing sensitivity of the high energy material in the future.Keywords:Fabrication,Characterization,HMX,PMMA,Microcapsules1IntroductionMicro-encapsulation is a new technology which solid,liquid,or gas particles are surrounded by a layer of natural or synthetic polymers to give micron-size capsules[1].It is mainly used to protecting unstable or susceptible functional materials[2],isolation of a core from its surroundings[3],retarding leaching or volatilization risks of a volatile core [4],and improving the handling properties of a sticky material[5].Also,it has been found different applications in pharmaceutical[6],food[7],paper[8],and textile industries[9] recently.Up to now,micro-encapsulation has raised increasing interests and been frequently used whenever the functionality of an active substance needs to be protected or a controlled release is demanded[10.11].Researchers from different study groups have adopted recrystallizing or coating technologies to desensitize the existing explosives[12-15],and several strategies have been developed for the synthesis of polymer coated core-shell microcapsules but the mostapplied and industrially relevant is the in situ polymerization[16.17].With RDX as the core material,water soluble protein for cyst wall,microcapsules were prepared through single coacervation by Lee Jiangcun et al.[18]in2007.Although the preparation of microcapsule has good rheological behavior and high encapsulation rate,morphology of microcapsules crystal was irregular.Cheng Zhengwei et al.have discussed the methodsfor the preparation of hydrophobic core materials[19],which laid a theoretical foundation for the preparation of HMX/PMMA microcapsules.HMX was coated via in situ crystallization with polyurethane by Gui Yu Zeng et al.[20]in2011.The crystal morphology of HMX is complete but in great defects.The composites of Graphene oxide/poly(methyl methacrylate)(GO/PMMA)are prepared through blending with simple solutions by jing Dai etc al[21],the results provided reference for the preparation of the HMX/PMMA microcapsule.Hongguang Li et al have prepared TiO2precursor microcapsule via interfacial crosslinking method[22],and explored formation mechanism of the microcapsule.Microcapsule has been more widely adopted in aspects of medicine, but still relatively scarce in the energetic materials.Microcapsule,starting from internal composition and crystal structure of explosive, is able to increase the oxygen balance,the critical heat and safety of the partial explosive, which can be used in the preparation of high-energy insensitive ammunition.Based on the theory of microcapsule preparation,the spherical HMX/PMMA microcapsules were prepared by in situ polymerization.The properties were characterized.It is used to provide reference for the application of microcapsule technology in energetic materials. 2Materials and Methods2.1MaterialsHMX was provided by Gansu Yinguang Chemical Industry Group Co.,Ltd.Methyl methacrylate(MMA)was obtained by Sinopharm Chemical Reagent Co.,Ltd. Azobisisobutyronitrile(AIBN)and polyvinyl alcohol(PVA)were purchased from Tianjin guangfu Fine Chemical Industry Research Institute.Tween-80and ethanol were providedfrom Tianjin Shen Tai Chemical Reagent Co.,Ltd.Span-80was obtained from Tianjin Damao chemical reagent factory.2.2Experimental processPMMA/HMX-Based microcapsules were prepared via in situ polymerization.The experimental apparatus is shown in Fig.1.The experimental procedures were as follows: (1)Prepared the HMX emulsion.Thinning HMX(4g)and purified water(150ml)were added to a four mouth flask respectively;Amount of self-made composite emulsifier (0.2g,the formula was M(Tween-80):M(Span-80)=53:47)and auxiliary emulsifier(0.1g PVA) were added to the flask.The mixed solution was stirred evenly for40min with the speed of500rad/min under temperature of the water is45°C.Herein,uniform W/O emulsion was obtained.(2)The initiator(0.0086g AIBN)was dissolved in methyl methacrylate (0.268ml MMA),and then was dropped to the four mouth flask at the rate of0.2ml/min by rubber dropper.(3)The system was gradually heated to75°C and adjusted350 rad/min in the process.The reaction was maintained for6h in the nitrogen atmosphere (because poly reaction would been resisted when oxygen at lower than100°C,the whole process need nitrogen protection).(4)The reaction was terminated and cooled for10h in deionized water.After filtration,the products were dried for7h in the freeze dryer.And then,HMX/PMMA microcapsules were obtained.HMX/F2602and HMX/PMMA particles were prepared by water suspension coating method in order to compared with the properties of the HMX/PMMA microcapsules,and the experiment formulas was M(thinning HMX):M(F2602)=95:5,M(thinning HMX):M(PMMA)=95:5.1,cooling water connection;2,pentrough;3,condenser outlet device;4,condenser;5,core material of microcapsule emulsion;6,muddler;7,S312digital mixter;8,motor;9,prepolymer in microcapsule wall;10,device connected nitrogen pretection;11,constant-voltage funnel;12, four-mouth flask;13,digital intelligent thermosttat oil bath;14,control valve reduced nitrogen pressure;15,nitrogen tank.Fig.1.Experimental apparatus of the preperation microcapsules.2.3CharacterizationField emission scanning electron microscope(FESEM,S4700Hitachi,Ltd.Japan) was used to investigate the morphology,size and micro-structure of capsules.The prepared HMX/PMMA microcapsules were dispersed on conductive carbon adhesive tapes to attach to a FESEM stub,and then gold-coated.The crystal form of HMX/PMMA microcapsules were detected by X-ray powder diffraction.X-ray diffraction(XRD) patterns were recorded on a Bruker D8Advance diffractomerter with Cu Kαradiation. The infrared spectrum was measured on a Nicolet380Fourier transform infrared(FTIR) spectrometer(KBr pellet,Thermo Fisher Scientific,Waltham,MA,USA).FTIR transmission spectra were generated using an FTIR spectrophotometer(Nicolet6700, Thermo Scientific).The thermal properties were characterized by a Setaran DSC-131 (Setaram,Hillsborough Township,NJ,USA).The conditions of DSC were as follows:sample mass:0.7mg;heating rate:5,10,20K/min;nitrogen atomosphere(flow rate:20 ml/min).The impact sensitivity test conditions are:drop weight,5kg;sample mass,35mg. The impact sensitivity of each test sample was characterized by the drop height of50% explosion probability(H50).In this way,higher H50value represents reduced impact sensitivity.3Results and Discussion3.1Reaction principle of PMMA micro-capsulesAs shown in figure2,HMX was dispersed into emulsion droplets under the mechanical agitation and emulsification;then,by dissolving the AIBN into PMMA and adding appropriate water,the prepolymer was formed;acting under catalytic agent, prepolyers have an addition polymerization,it forms the water-soluble prepolymer;the prepolymer gradually deposit on the surface of the HMX droplet,and formed a capsule wall,with the continuously deposition and polymerization of prepolymer on the surface of the HMX,the density of capsule wall become greater and it coated to form a microcapsules.emulsion droplets prepolymerin situ polymerization microcapsulesFig.2Proposed schematic mechanism for the core-shell coating via in situ polymerization3.2Morphology analysisField emission scanning election microscope(FESEM,HITACHI S4700)was used to display typical SEM images of the HMX in the Fig.3,and energetic microcapsules coated by PMMA correspondingly.The raw HMX,which was purified by a careful recrystallization process,was uniform in size distribution with smooth crystal surface, and the particle size about1μm.Figure3displays typical SEM images of thinning HMX(Code a),coated HMX with PMMA and F2602respectively by the water suspension coating method(Code b and c), HMX microcapsules via in situ polymerization of PMMA(Code d).Obviously,the SEM image showed that thinning HMX had a polyhedral morphology and agglomeration.It can be clearly seen that the HMX based microcapsules exhibited obvious core-shell structures,which indicated that microcapsules were successfully encapsulated by PMMA. Moreover,the PMMA form compact and uniform coating shells around the whole surface of HMX,and exhibiting high degree of coverage for HMX(Fig.3d).During the formation of O/W emulsion,HMX ions interacted with each other by friction and collisions in high speed inert gases N2.Then the homogeneously dispersed HMX emulsion was formedassisted with co-emulsifier(8%PVA also can work as the stable dispersing agent).What’s more,through polymerization initiator,spherical microcapsules that were core-HMX and shell-PMMA were formed.Fig.3SEM images of thinning HMX(a),F2602/HMX(b),PMMA/HMX(c)andPMMA/HMX-based microcapsules(d)3.3XRD and FT-IR AnalysesXRD and FT-IR analyses were conducted to investigate the crystal structure and component state of energetic microcapsules prepared in this work.And the results were shown in Fig.4and Fig.5,respectively.Figure4shows the XRD patterns of thinning HMX,F2602/HMX,PMMA/HMX and PMMA/HMX-based microcapsules.While the HMX show a clear crystalline property, with the characteristic diffraction peaks as determine in previous work.As can be seen from Fig.4,thinning HMX,F2602/HMX,PMMA/HMX and PMMA/HMX-based microcapsules had similar diffraction angles peaks,which indicates that the thinning HMX,F2602/HMX,PMMA/HMX and PMMA/HMX-based microcapsules did not change the crystal form of HMX and its structure was stillβ-phase.It is interesting that the diffraction intensity of some peaks was slight changed after thinning and coating(e.g. PMMA/HMX-based microcapsules:decreased intensity at2θof18.3°and21.1°; PMMA/HMX:increased intensity at2θof26.8°.Such change can be attributed to after coating the quality of HMX than declined which is very common in crystallography.In order to further study the crystal of the core-shell coating products,FTIR spectrometry was used to characterize and manifest the samples,as can be seen from Figure5.The characteristic peaks at1145cm-1,2950cm-1,and1715cm-1were C-O-C, -CH3,-C=O in PMMA infrared spectrum respectively;however,the characteristic vibration peaks at1569cm-1and2980cm-1separately in HMX infrared spectrum.And the stretching vibration peaks of the C-O-C,-NO2,-C=O,-CH2and-CH3band at1200cm-1、1565cm-1、1720cm-1、2984cm-1、3035cm-1can keep shifting to lower frequency respectively.The characteristic bands of infrared spectrum in microcapsules and PMMA/HMX include all the characteristic peaks of PMMA and HMX,i.e.,the crystal structure of microcapsules was stillβ-phase,which demonstrated microcapsules weremicrocapsules3.4Thermodynamic analysisThermal stability is widely considered as a key performance for energetic materials[23].Herein,DSC analysis of thinning HMX,F2602/HMX,PMMA/HMX and PMMA/HMX-based microcapsules samples is shown in Fig6.As shown in Fig.7,a straight line is obtained when the values of ln(b/Tp2)are plotted against1/Tp,the activation energy can be calculated from the slope(–E/R),the pre-exponential factor can be calculated from the intercept[ln(AR/E)].The fitting degree of thinning HMX,F2602/HMX,PMMA/HMX and PMMA/HMX-based microcapsules activation energy were all more than99%,showing that the measurement data was accurate and reliable.As indicated in table1,compared to thinning HMX,the apparent activation energy of coating HMX and PMMA/HMX-based microcapsules were all increased,similarly. The frequency factors were also addition.The interesting thing was the apparent activation energy of PMMA/HMX-based microcapsules has most remarkably increased. More specifically,compared to thinning HMX,the apparent activation energy of PMMA/HMX-based microcapsules increased by47.3kJ/mol,but that of F2602/HMX and PMMA/HMX has increased by3.96kJ/mol、15.26kJ/mol respectively which means that microcapsules have better thermal stability than coated HMX.It can be explained by the fact that the cocrystal has higher crystal density due to microencapsulation.It is well known that the enthalpy change depends on the particle size,and the diameter of microcapsules was smaller than the coated.The smaller the particle size is,the greater the surface area is,so the decrease of adsorption capacity between the particles made their activation energy increase.Besides,the fluid temperature of PMMA is about160°C,and rising temperatures have generated free radicals.The instability of PMMA radicals had reduced the stability of the transition state,then activation energy would increase.Fig.6DSC curves of thinning HMX(a),F 2602/HMX(b),PMMA/HMX(c)andPMMA/HMX-based microcapsules (d)1/T p ln(b/Tp 2)1/T pln(b/Tp 2)1/T p ln(b/Tp 2)1/T p ln(b/Tp 2)Fig.7The linear fitting line of thinning HMX(a),F 2602/HMX(b),PMMA/HMX(c)and PMMA/HMX-based microcapsules (d)Table1Thermal decomposition kinetic parameters of different HMX samplesSamples E a /(kJ/mol )A T p0/℃T b /℃Thinning HMX390.06 4.11*10^35276.24277.89F 2602/HMX 394.02 1.11*10^37274.9276.5PMMA/HMX 405.32 3.00*10^37276.20276.2Microcapsules437.361.43*10^41276.05277.513.5Impact sensitivity analysisThe impact sensitivity of thinning HMX,F 2602/HMX,PMMA/HMX and PMMA/HMX -based microcapsules were tested respectively.The results are shown in table 2.It can been seen from table 2that compared to thinning HMX,the drop height for coating HMX has significantly improved.More specifically,H 50of F 2602/HMX and PMMA/HMX are 1.54times and 1.19times than that of thinning HMX,but H 50of the microcapsule is 1.72times than that of thinning HMX,and the impact sensitivity has increasingly reduced.This is because of the same quality of HMX,the smaller the particle size is,the stronger the spherical effect is,therefore it is widely distributed [26].The pressure on HMX from the same height the ball falling became less,so H50of the microcapsules has remarkably enhanced compared to HMX that was ordinarily coated.PMMA/HMX40.470.061Microcapsules58.490.0524.ConclusionSpherical microcapsules were formed with PMMA as the capsule wall and HMX as the core material;The results of SEM showed that the grain of the PMMA/HMX microcapsules were soiled spherical and the particle distribution was homogeneous.XRD and FT-IR analyses showed that the polymorph of HMX maintained the optimalβ-form during the whole preparing process.The apparent activation energy(thermal decomposition)of microcapsules has increased by47.3KJ/mol compared to the thinning HMX,and the thermal stability of microcapsules has greatly improved.H50increased from30.45cm to58.49cm,and the impact sensitivity decreased by65.81%.In the future, microcapsule technology will have a very wide range of applications in reducing sensitivity of the high energy material.References[1]Kondo A.Microcapsule processing and technology[M].Marcel Dekker,1979.[2]Microencapsulation:methods and industrial applications[M].CRC Press,2005.[3]Lu R,Dou H,Qiu Y,et al.Polymeric microcapsules with internal cavities for ultrasonic imaging:efficient fabrication and physical characterization[J].Colloid and Polymer Science,2009,287(6): 683-693.[4]Griss P,Andersson H,Stemme G.Expandable microspheres for the handling of liquids[J].Lab on aChip,2002,2(2):117-120.[5]Kim Y D,Morr C V.Microencapsulation properties of gum arabic and several food proteins:spray-dried orange oil emulsion particles[J].Journal of Agricultural and Food Chemistry,1996, 44(5):1314-1320.[6]Cook M T,Tzortzis G,Charalampopoulos D,et al.Microencapsulation of probiotics forgastrointestinal delivery[J].Journal of Controlled Release,2012,162(1):56-67.[7]Nazzaro F,Orlando P,Fratianni F,et al.Microencapsulation in food science and biotechnology[J].Current Opinion in Biotechnology,2012,23(2):182-186.[8]Aziz F R A,Jai J,Raslan R,et al.Microencapsulation of Essential Oils Application in Textile:AReview[J].Advanced Materials Research,2015,1113.[9]Vandegaer J E.Microencapsulation:processes and applications[M].Springer Science&BusinessMedia,2012.[10]M.P.NeoDauer.M.Poehlmann.A.Fery.Microcapsule mechanics:from stability to function.Adv.Colloid interface207(2014)65-80.[11]M.Pretazl,M.Neubauer,M.Tekaat.C.Kunert,C.Kuttner.G.Leon.D.Berthier.P.Erni,L.Quali,A.Fery.Formation and mechanical characterization of aminoplast core-shell microcapsules.ACS Appl.Mater.Interface4(2012)2940-2948.[12]Kröber H,Teipel U.Crystallization of insensitive HMX[J].Propellants,Explosives,Pyrotechnics,2008,33(1):33-36.[13]Van der Heijden A E D M,Creyghton Y L M,Marino E,et al.Energetic materials:crystallization,characterization and insensitive plastic bonded explosives[J].Propellants,Explosives,Pyrotechnics, 2008,33(1):25-32.[14]Song X,Wang Y,An C,et al.Dependence of particle morphology and size on the mechanicalsensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine[J].Journal of hazardous materials,2008,159(2):222-229.[15]Ji W,Li X,Wang J,et al.Preparation and Characterization of the Solid Spherical HMX/F2602bythe Suspension Spray-Drying Method[J].Journal of Energetic Materials,2016,34(4):357-367. [16]JF.Su.E.Schlangen.Synthesis and physicochemical properties of high compact microcapsulescontaining rejuvenator applied in asphalt.Chem.Eng.J.198(2012)289-300.[17]H.Roghani-Mamaqani.V.Haddadi-Asl,M.Salami-kalajahi.In situ controlled radicalpolymerization:a review on synthesis of well-defined nanocomposites.Polvm.Rev, 52(2012)142-188[18]LI Jiang-cun,JIAO Qing-jie,REN Hui.Study on processing parameters of RDX micro-capsulecoated by protein[J].Initia Tors&Pyrotechnics.(2007):1-5.[19]CHENG Zheng-wei,BAO Zong-hong.Fabrication and Characterization of solid-core materialmicrocapsulation[J].Polymer Bulletin.(2010):55-60.[20]ZENG Gui-yu,NIE Fu-de.In situ crystallization coating HMX by polyurethane[J].ChineseJournal of Energetic Materials.(2011):138-141.[21]DAI Jing,LANG Mei-dong.Preparation and mechanical properties of graphene Oxide/PMMAand surface-functionalized Graphene/PMMA composites[J].ACTA CHIMICA SINICA,(2012): 1237-1244.[22]LI Hong-guang,YAN-Jun,WANG Ming-qiu.Microcapsulation of TiO2precursor and itsperformance as inhibitor of erosion[J].Journal of Inorganic Materials.(2015):47-52.[23]Q.L.Yan,S.Zeman.Theoretical evaluation of sensitivity and thermal stability for highexplosives based on quantum chemistry methods:a brief review.Lnt.J.Quantum Chem.113(2013)1049-1061.[24]Kissinger HE,Reaction Kinetics in differential themral analysis[J].Analytical chemistry,1957,29(11);1702-1706.[25]W.Sha,Determination of activation energy of phase transformation and recrystallization using amodified Kissinger method.Metallurgical and Materials Transactions A32(2001)2903-2904. [26]M.Doherty,D.S.Watt,Relationship between RDX properties and sensitivity.Propellants Explos.Pyrotech.33(2008)4-13.。

陶瓷膜分子量单位

陶瓷膜分子量单位

陶瓷膜分子量单位陶瓷膜是一种特殊的薄膜材料,具有许多独特的特性和应用领域。

在研究陶瓷膜的过程中,分子量是一个重要的参数,可以用来表征膜材料的分子结构和性质。

本文将介绍陶瓷膜分子量的单位以及一些相关参考内容。

一、分子量单位陶瓷膜的分子量可以用不同的单位来表示,常见的单位有原子单位(au)、摩尔单位(mol)和克分子单位(g/mol)。

1. 原子单位(au):原子单位是一种相对单位,定义为12g碳12同位素中含有的碳原子的质量。

陶瓷膜分子量以原子单位表示时,通常是指膜中单个单位晶胞的分子量。

2. 摩尔单位(mol):摩尔单位是国际标准单位制(SI单位制)中的一个单位,定义为包含6.02214076 × 10^23个实体的物质的量。

陶瓷膜分子量以摩尔单位表示时,通常是指摩尔质量。

3. 克分子单位(g/mol):克分子单位是一种将分子质量表示为克的单位,它等于摩尔质量,即1 g/mol。

二、参考内容以下是关于陶瓷膜分子量的一些参考内容,供读者参考:1. 期刊论文- Newman R.C, Zheng T.L, Dar iS.D. Mol. Wt. and numbers of molecules in unit cell, oxide ions in oxide perovskites. Journal ofMaterials Science Letters. 1988; 7(3): 217-218.- Luo Y.H, Liu Y.Q, Jin C.L, et al. Influence of the molecular weight of polyimide on fouling of ultrafiltration membranes. Journal of Membrane Science. 2002; 206(1-2): 267-275.2. 书籍- Hench L.L, West J.K. Principles of Electronic Ceramics. 2nd ed. Wiley, 1990. (对于陶瓷膜的分子量相关参数进行了基本介绍)- AdrianoLES L, Hart E. Chemistry of the Formation of Porous Ceramic Membranes for Gas Separation: A Review. Membranes. 2020; 10(6): 143. (综述性文献,对于陶瓷膜制备和特性进行了详细讨论)3. 会议报告- Zhang Y.F, Zhitomirsky I. Fabrication of ceramic membranes for gas separation using electrophoretic deposition. In: Proceedings of the International Conference on Chemical Engineering and Advanced Materials (CEAM 2016); 2016 Oct 21-23; Beijing, China. Singapore: Springer, 2017. p. 77-85. (介绍了一种利用电泳沉积法制备陶瓷膜的方法)4. 博士论文- Wang S.H. Fabrication and Characterization of Pervaporation Ceramic Membranes. [博士论文]. Waterloo: University of Waterloo; 2010. (博士论文,对于陶瓷膜的制备和性能进行了深入研究)综上所述,陶瓷膜的分子量是评价其分子结构和性质的重要参数之一。

氧化亚铜的制备与性能

氧化亚铜的制备与性能

纳米Cu2O作为光催化剂的制备与性能摘要:光催化技术是一项新型的技术,与其他传统的技术相比具有降解完全、高效、价廉、稳定等优点,因而具有良好的应用前景。

氧化亚铜是一种重要的无机化工原料,因其独特的性质而在诸多领域有着广泛的应用,研究纳米氧化亚铜的制备及光催化性能有着深远意义。

关键词::纳米氧化亚铜,光催化,㈠纳米氧化亚铜的制备方法氧化亚铜具有能够便于对反应温度的操作和控制。

优点是不使用溶剂、并且还具有高选择性、高产率、节省能源、合成工艺简单, 制备方法有烧结法刚、电化学法、水热法和多元醇法等。

1烧结法刚烧结法又称为干法,该方法是将固体铜粉与氧化铜粉末预先混合,再送入锻烧炉内加热到1073一1173K密闭反应得到CuZO,其反应式为:CuO+Cu分CuZO 由于这种方法用铜粉作还原剂,与固体氧化铜进行固相反应制得,固相反应存在反应不均匀、不彻底等固有缺点,因而制得的CuZO粉末中往往含有铜和氧化铜杂质,难于去除。

该法制备得到的氧化亚铜粉末不仅纯度较低,而且粉末粒度取决于原料Cu粉和CuO粉的粗细,高温反应后得到的氧化亚铜容易板结、难于分散、劳动强度大、能耗高。

2电化学法电化学法也称电解法,该法具有流程短、成本低、操作简单、产量高、工作环境良好和产品质量高的优点,因而具有很好的工业化前景和比较成熟的生产工艺。

Yan沙6]等用电化学法制备纳米氧化亚铜时,两极分别采用含铜99.9%的铜板和铜片,电解液采用NaCI、NaOH和KZCrO7组成的混合液,在YB17ll型电化学装置中进行,并且比较了在不同的电流密度下所制样品的光催化性能。

采用紫铜板作阳极,铜片作阴极,在含有NaOH的NaCI碱性水溶液中电解金属铜。

从电极反应机理来看,氧化亚铜粉末是通过阳极铜溶解,并发生水解沉淀反应而生成的。

同时研究了电解液组成及其浓度、温度以及电流密度等因素对氧化亚铜产品质量的影响,从而得到了电化学法制备氧化亚铜的优化工艺条件。

有关介孔材料的牛人课题组信息及相关文献

有关介孔材料的牛人课题组信息及相关文献

有关介孔材料的牛人课题组信息及相关文献有关介孔材料的牛人课题组信息及相关文献A mesoporous material is a material containing pores with diameters between 2 and 50 nm. Porous materials are classified into several kinds by their size. According to IUPAC notation (see J. Rouquerol et al., Pure & Appl. Chem, 66 (1994) 1739-1758), microporous materials have pore diameters of less than 2 nm and macroporous materials have pore diameters of greater than 50 nm; the mesoporous category thus lies in the middle.Typical mesoporous materials include some kinds of silica and alumina that have similarly-sized fine mesopores. Mesoporous oxides of niobium, tantalum, titanium, zirconium, cerium and tin have also been reported. According to the IUPAC notation, a mesoporous material can be disordered or ordered in a mesostructure.The first mesoporous material, with a long range order, was synthesized in the late 80s/ early 90s, by a research group of the former Mobil Oil Company (see Kresge et al., Nature 359 (1992) 710). Since then, research in this field has steadily grown. Notable examples of prospective applications are catalysis, sorption, gas sensing, optics, and photovoltaics.1. 介孔材料的诞生--1992年MS41系列分子筛(典型的是MCM-41,MCM-48,MCM-50)的合成(严格来讲,应该是1991年日本人合成出来):Nature. 1992, 359, 710-712(J. S. Beck)J Am Chem Soc. 1992, 114: 10834-10843(J. S. Beck)Science. 1993, 261: 1299-1303(霍启升)2.介孔材料制备的另一里程碑--1998年赵东元合成了SBA-15Science. 1998, 279: 548-552(赵东元)J. Am. Chem. Soc. 1998, 120, 6024-6036 (赵东元)3.通过硬模板法合成炭基介孔材料,也是一大重要成绩--1999年由韩国人刘龙完成:J Am Chem Soc. 2002, 124: 1156-1157( Ryoo R.)介孔相关的几个牛人的课题组:/doc/404424603.html,/mrl/info/publication s/(G. D. Stucky)/doc/404424603.html,/~pinnweb/(Thomas J. Pinnavaia)/doc/404424603.html,/staff/GAO/flashed/ menu.htm(Ozin's group)/doc/404424603.html,/~dyzhao/(赵东元)http://rryoo.kaist.ac.kr/pub.html (韩国刘龙(R. Ryoo))/doc/404424603.html,.sg/~chezxs/ ... n.htm (新加坡赵修松Xiusong Zhao)http://www.ucm.es/info/inorg/inv ... iones/2001/2001.htm (西班牙M. Vallet-Regi 首先把介孔材料应用到药物缓释)因为以前不小心把自己的收藏夹弄没了,所以有还有几个课题组现在没有了链接,但是其课题负责人还是记得:台湾的牟中原和他的弟子林弘平;上海硅所的施剑林;吉林大学的肖丰收和裘式伦;大化所的包信和(涉及得不多)推荐几篇介孔材料重要的综述:Chem. Mater. 1996, 8, 1147-1160 Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials(Stucky和霍启升表面活性剂的堆积参数和结构的关系)Chem. Rev. 1997, 97, 2373-2419 From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis (主要介绍介孔作催化载体的应用)Chem. Rev. 2006, 106, 3790-3812 Advances in the Synthesis and Catalytic Applications of Organosulfonic-FunctionalizedMesostructured Materials(有机官能化介孔的合成及在催化中的应用)Acc. Chem. Res. 2002, 35, 927-935Structural and Morphological Control of Cationic Surfactant-T emplated Mesoporous Silica(牟中原具体谈论介孔形貌的形成)Angew. Chem. Int. Ed. 2006, 45, 3216–3251 Silica-Based Mesoporous Organic-Inorganic Hybrid Materials(Frank Hoffmann 所著,非常好)Acc.Chem.Res.2005, 38,305-312 Past, Present, and Future of Periodic Mesoporous Organosilicas-The PMOs(O'zin 重点介绍周期性介孔)NATURE 2002 417 813 Ordered porous materials for emergeing application(大牛Davis所著)Chem. Mater. 1999, 11, 2633-2656 Tailored Porous Materials(Thomas J.)介孔分子筛的应用:介孔分子筛吸附氨基酸:Carbon 44 (2006) 530–536 Adsorption of L-histidine over mesoporous carbon molecular sieves(印度人A. Vinu)Separation and Purification Technology 48 (2006) 197–201 Amino acid adsorption onto mesoporous silica molecular sieves (首篇)介孔分子筛吸附蛋白质(酶)Journal of Molecular Catalysis B-Enzymatic 2(1996) 115- 126 Enzyme immobilization in MCM-4 1 molecular sieve(首篇)J. Am. Chem. Soc. 1999, 121, 9897-9898 Mesoporous Silicate Sequestration and Release of Proteins(stucky)J. AM. CHEM. SOC. 2004, 126, 12224-12225 Protein Encapsulation in Mesoporous Silicate-The Effects of Confinementon Protein Stability, Hydration, and Volumetric Properties J. Phys. Chem. B 2003, 107, 8297-8299 Adsorption of Cytochrome C on New Mesoporous Carbon Molecular Sieves(Vinu, A)介孔分子筛负载催化剂J. Phys. Chem. B 2006, 110, 15212-15217 Fabrication and characterization of mesoporous Co3O4 core-mesoporous silica shell nanocomposites(典型的core-shell结构)CHEM. COMMUN., 2003, 1522–1523 Ultra-thin porous silica coated silver–platinum alloy nano-particle as a new catalyst precursorApplied Catalysis A General 308 (2006) 19–30 Carbon oxide hydrogenation over silica-supported iron-based catalysts Influence of the preparation routeChem. Commun., 2005, 348–350 Metallic Ni nanoparticles confined in hexagonally ordered mesoporous silica material 介孔分子筛在药物可控释放方面的应用Chem. Mater. 2001, 13, 308-311 A New Property of MCM-41, Drug Delivery System (Vallet-Regi 首篇)Nature 2003, 421, 350 –353Photocontrolled reversible release of guest molecules from coumarinmodified modified mesoporous silica(第一次只能化)J. AM. CHEM. SOC. 2005, 127, 8916-8917 Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core-Mesoporous Silica Shell Structure-support(施剑林所谓的“药物分子运输车”)Angew. Chem. Int. Ed. 2005, 44, 5038 –5044 Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanopartic les(Victor S.-Y. Lin* 在智能介孔药物释放方面是贡献巨大)介孔分子筛吸附废水阳离子Chemosphere 59 (2005) 779–786 Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41 Environ. Sci. Technol.2000, 34,4822-4827 Surfactant-Templated Mesoporous Silicate Materials as Sorbents for Organic Pollutants in WaterInd. Eng. Chem. Res. 2004, 43, 1478-1484 Highly Selective Adsorption of Pt2+ and Pd2+ Using Thiol-Functionalized Mesoporous Silica介孔分子筛在色谱中的应用Chem. Commun., 2002, 752 - 753Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatographyElectrophoresis 2006,27,742–748 Large-pore mesoporous SBA-15silica particles with submicrometer size as stationary phases for high-speed CEC seperation介孔分子筛作为硬模板Adv. Mater. 2001, 13,677-681Ordered Mesoporous Carbons (Ryong Ryoo)Microporous and Mesoporous Materials 63 (2003) 1–9 Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures介孔分子筛复合材料(实现光学性能,比如掺入二氧化钛,量子点)J. Phys. Chem. B 2005, 109, 12309-12315 Synthesis and Characterization of Nano titania Particles Embedded in Mesoporous Silica with Both High Photocatalytic Activity and Adsorption CapabilityChem. Mater. 2005, 17, 1269-1271 Preparation of Mesoporous Titania Thin Films with Remarkably High ThermalStabilityJ. AM. CHEM. SOC. 2006, 128, 688-689Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals。

现代传感技术

2010年春季学期研究生课程考试试题Q1 填空题(共10分,每空1分)a)现代信息技术的三大支柱是传感技术、通讯技术和计算机技术,它们分别构成信息系统的“( ①感觉器官)”、“神经”和“(大脑②)”。

b)往往一种量值在传感或检测技术上的突破,会带来对另外一种量值的突破。

例如,约瑟夫森效应器件的出现,不仅解决了对于10-13T超弱(磁场③)的检测,同时还解决了对微弱(电压④)量的检测。

c)汽车气囊安全系统的启动,应该依据汽车安装的(压力⑤)和(加速度⑥)等传感器输出的信号值。

d)传感技术的发展主要体现在以下几个方面,如集成化智能化、无线化(网络⑦)化、微机械微(电子⑧)化。

e)传感器结构设计采用反馈形式,可以使传感器的延迟时间常数(变小⑨);采用双敏感元件差动方式,不仅可以改善传感器的非线性问题,还可以抑制例如(温度⑩)等变量参数的干扰。

Q2 简答题(共10分,每小题2分)a)如果使用霍尔传感器测量小电流,请简述原理或给出测量示意图。

是霍尔元件在聚集磁路中检测到与原边电流成比例关系的磁通量后输出霍尔电压信号,经放大电路放大后输送到仪表显示或计算机采集来直观反映电流的大小。

b)比较说明热电阻和热敏电阻的测温特点。

热电阻是金属材料,热敏电阻是半导体材料。

热电阻比热敏电阻测温范围大(如铂热电阻-200~960℃,热敏电阻只有-50~300℃左右)。

热电阻线性好,热敏电阻非线性严重,且热敏电阻互换性较差。

热电阻比热敏电阻灵敏度低。

(因热电阻温度系数较小,<1%/℃;热敏电阻-2%/℃至-6%/℃)。

热电阻都是正温度系数(即阻值随温度的上升而上升),而热敏电阻分为负温度系数和正温度系数两种。

c) 无线传感器网络的核心技术问题有哪些?答:关键技术:拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术、嵌入式系统、应用层技术。

核心问题:能源、传感器、封装、部署、资源受限下的网络机制、大规模下的网络机制d) 功能型光纤传感器可以测量哪些物理量?(举3例即可)答:陀螺、声、磁、压力、温度、液面、e) 在传感器静态特性数据分析中,插值和回归的目的分别是什么?答:插值的目的在于减少或增大信息量。

大球形颗粒名词解释

大球形颗粒1. 介绍大球形颗粒是一种具有球形外观和较大尺寸的微小物质。

这些颗粒通常由固体或液体材料构成,具有广泛的应用领域。

它们的特殊形状和尺寸使其在许多工业和科学领域中具有独特的性质和功能。

2. 特点大球形颗粒的主要特点包括以下几个方面:2.1 形状大球形颗粒通常具有近似于球形的外观。

这种球形形状使得它们在堆积和流动时具有良好的性能,因为它们之间的接触面积相对较小,摩擦力也较低。

球形还使得这些颗粒在液体中悬浮更容易,并且能够提供更高的比表面积。

2.2 尺寸大球形颗粒相对于其他微粒而言尺寸较大,通常以毫米或厘米为单位。

这种较大尺寸使得它们在处理过程中更容易被分离、筛选和控制。

它们还可以提供更高的机械强度和稳定性。

2.3 材料大球形颗粒可以由多种材料制成,包括金属、塑料、陶瓷和玻璃等。

这些材料具有不同的物理和化学特性,使得大球形颗粒在不同的应用中具有各自独特的功能。

3. 应用大球形颗粒广泛应用于许多行业和科学领域。

以下是一些常见的应用示例:3.1 填充材料由于大球形颗粒具有较大的体积,因此它们常被用作填充材料。

在建筑行业中,它们可以用于增强混凝土或减轻结构负荷。

在化工工艺中,它们可以被添加到聚合物基质中以改善材料的力学性能。

3.2 催化剂载体大球形颗粒还被广泛应用于催化剂载体领域。

通过在球形表面上沉积活性组分,这些颗粒可以提供更高的比表面积,并提高反应速率和选择性。

这使得它们在石油化工、化学合成和环境保护等领域中具有重要的应用。

3.3 包覆材料由于大球形颗粒的球形形状和较大尺寸,它们常被用作包覆材料。

在农业领域,它们可以用作植物种子的包覆剂,以提高种子的存活率和生长性能。

在制药工业中,它们可以被用于制备缓释药物以延长药效。

3.4 模型粒子大球形颗粒还可以用于模拟和研究微观颗粒在不同环境下的行为。

通过调整颗粒的尺寸、形状和材料等参数,科学家可以更好地理解和预测颗粒在流体力学、物理化学和生物学等过程中的行为。

OLED_5110309436_赵川锐_IEEE


Figure.1 current density -Voltage curve
B.Fabrication of anule, we will fabricate a simple OLED, which is similar to the first practical OLED in the world developed by
Index Terms—OLED
I. INTRODUCTION
A .OLED Operation and Characterization A simple OLED structure composes of an extremely thin organic electroluminescent film, sandwiched between two electrodes. When an external bias is applied on the device, holes and electrons are injected from the anode and the cathode, respectively, into the organic semiconductor layer. The holes and electrons migrate in the organic layer, then meet and recombine to form excitons. Finally, the excitons decay to the ground states radiatively and emit light.
2 >SJTU SEOED REPORT Kodak. We will begin with a glass substrate coated with ITO (indium

SOFC

Fabrication and Characterization of SOFC Anodes formed by aqueous Nickel Impregnation on porous YSZ substrate
C. Anand Singh, Raghav Joshi and Dr. Venkatesan V. Krishnan
Effect of porosity on conductivity
1000
4 probe DC method
C n u tiv (S m o d c itty /c )
100
Constant current source AUTOLAB PGSTAT30
V I
10
1
Graphite, 37.7% porosity Graphite, 45.56% porosity Graphite, 50.5% porosity
200
T ( o C)
400
600
800
At low Ni concentrations Drop in metallic conductivity at 700oC upon soaking, to pure YSZ levels; YSZ behavior/ not Ni Ni is effectively disconnected, due to sintering Stable conductivity at 12 Vol. % Ni-YSZ loadings
Department of Chemical Engineering, IIT Delhi
International Conference on Advances in Energy Research – 2007 IIT Bombay, Mumbai – 12-14 Dec, 2007
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档