八年级数学上册滚动周练卷一同步训练新版新人教版[001]
第5周——2023-2024学年人教版数学八年级上册周周练(含答案)

第五周——2023-2024学年人教版数学八年级上册周周练考查范围:13.1 1.“认识交通标志,遵守交通规则”,下列交通标志中,是轴对称图形的是( )A. B. C. D.2.下列微信表情图标属于轴对称图形的是( )A. B. C. D.3.如图,与关于直线MN对称,P为MN上任一点,下列结论中错误的是( )A.是等腰三角形B.MN垂直平分,C.与面积相等D.直线AB、的交点不一定在MN上4.如图,与关于直线l对称,已知,的面积是,则边上的高是( )A.1.5cmB.3cmC.4cmD.6cm5.如图所示,点P为内一点,分别作出P点关于OA、OB的对称点,,连接交OA于M,交OB于N,,则的周长为( )A.23B.24C.25D.266.已知,用尺规在线段BC上确定一点P,使得,则符合要求的作图痕迹是( )A. B.C. D.7.如图,在Rt△ABC中,观察作图痕迹,若BF=2,则CF的长为( )A...4B.3C.2D.H8.如图,在中,,,与关于直线AD对称,,连接,则的度数是( )A.45°B.40°C.35°D.30°9.如图,四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,,.则四边形ABCD的周长为_______cm.10.如图,在的正方形网格中,有4个小正方形已经涂黑,再涂黑任意1个白色的小正方形,使新构成的黑色图形是轴对称图形,这样的涂法有___________种.11.如图,在中,D为上一点,且,则点D在线段的垂直平分线上.12.阅读下列材料,完成相应任务.已知:如图,线段m,.求作:的平分线OP.作法:①以点0为圆心,以线段m的长为半径作弧,分别交OM,ON于点A,B;②分别作线段OA,OB的中垂线,两条中垂线交于点P;③作射线OP.则射线OP就是所求作的平分线.(1)任务一:请你使用无刻度的直尺和圆规,依上述作法补全图形(保留作图痕迹);(2)任务二:根据上述作法,证明射线OP就是所求作的平分线.答案以及解析1.答案:B解析:A.不是轴对称图形,所以本选项不符合题意,错误;B.是轴对称图形,所以本选项符合题意,正确;C.不是轴对称图形,所以本选项不符合题意,错误:D.不是轴对称图形,所以本选项不符合题意,错误.故选:B.2.答案:C解析:A项,不是轴对称图形,故本选项错误;B项,不是轴对称图形,故本选项错误;C项,是轴对称图形,故本选项正确;D项,不是轴对称图形,故本选项错误.故选:C.3.答案:D解析:由题意与关于直线MN对称,P为MN上任意一点,对称轴上的任何一点到两个对应点之间的距离相等,,是等腰三角形,选项A正确,不符合题意;轴对称图形对应点所连的线段被对称轴垂直平分,MN垂直平分,,选项B正确,不符合题意;轴对称图形对应的角、线段都相等,与是全等三角形,面积也必然相等,选项C选项正确,不符合题意;直线AB、关于直线MN对称,因此交点一定在MN上.选项D错误,符合题意.故选D.4.答案:B解析:与关于直线l对称,,的面积是,,的面积也是,边上的高为.故选B.5.答案:C解析:P点关于OA、OB的对称点,,,,则的周长为:,故选:C.6.答案:D解析:因为,所以,所以点P在线段AB的垂直平分线上.故选D.7.答案:C解析:由图可得,直线DE为线段BC 的垂直平分线,,,故选 : C.8.答案:B解析:,,与关于直线AD对称,,,,,故选:B.9.答案:10解析:四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,,,,,四边形ABCD的周长为,故答案为:10.10.答案:2解析:如图所示,当分别将1,2位置涂黑,构成的黑色图形是轴对称图形,共有2种情况.11.答案:解析:,又,,点D在线段的垂直平分线上.12解析:(1)如图.(2),CP垂直平分OA,PD垂直平分OB,,.又,,,射线OP就是所求作的平分线.。
新人教版数学八年级上册 周滚动练(13.1~13.2)

周滚动练( 13.1~13.2)( 时间:45分钟满分:100分)一、选择题( 每小题4分,共28分)1.点A( 3,5 )关于x轴对称的点的坐标为( A)A.( 3,-5 )B.( -3,-5 )C.( -3,5 )D.( -5,3 )2.下列交通标志中,是轴对称图形的是( C)3.等腰直角三角形是轴对称图形,它的对称轴有( A)A.1条B.2条C.3条D.无数条4.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换( 如图1 ).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形( 如图2 )的对应点所具有的性质是( B)A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行5.如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,交AC于点D,连接BD,且DE∶BD=1∶2.若DE=2,则AC的值为( B)A.4B.6C.8D.106.到三角形三个顶点的距离相等的点是( D)A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点7.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是( A)A.115°B.105°C.75°D.50°二、填空题( 每小题5分,共20分)8.如图,D,E分别为△ABC的两边AB,AC上的点,将△ABC沿线段DE折叠,使点A落在BC边上的点F处.已知DE∥BC,∠B=55°,则∠BDF=70°.9.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D.若AB=10,CD=3,则△ABD的面积是15.10.( 改编)甲和乙下棋,甲执圆子,乙执方子.如图,棋盘中心方子的位置用( 2,0 )表示,左下角方子的位置用( 1,-1 )表示,甲将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,则他放的位置是( 2,1 ).11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余的小正方形任意涂黑一个,使整个图案构成一个轴对称图形的涂法有5种.三、解答题( 共52分)12.( 8分)如图所示,在平面直角坐标系xOy中,A( -1,5 ),B( -3,0 ),C( -4,3 ).( 1 )作出△ABC关于y轴对称的图形△A'B'C';( 2 )写出点C关于y轴的对称点C'的坐标.解:( 1 )图略.( 2 )C'( 4,3 ).13.( 10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=DC.延长AD到点E,使DE=AB.( 1 )求证:∠ABC=∠EDC;( 2 )连接AC,求证:△ABC≌△EDC.证明:( 1 )在四边形ABCD中,∵∠BAD=∠BCD=90°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠EDC.( 2 )由( 1 )证得∠ABC=∠EDC,在△ABC和△EDC中,∴△ABC≌△EDC( SAS ).14.( 10分)如图,已知线段AB.( 1 )用尺规作图的方法作出线段AB的垂直平分线l( 保留作图痕迹,不要求写出作法); ( 2 )在( 1 )中所作的直线l上任意取两点M,N( 线段AB的上方),连接AM,AN,BM,BN.求证:∠MAN=∠MBN.略15.( 12分)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C'的位置上.( 1 )折叠后,DC的对应线段是BC',CF的对应线段是C'F;( 2 )若∠1=50°,求∠2,∠3的度数;( 3 )若AE=6,求CF的长度.解:( 2 )∠2=50°,∠3=80°.( 3 )在长方形ABCD中,根据折叠得BC'=DC,CF=C'F,∠C'=∠C,∠EBC'=∠D=90°,∴∠ABC=∠EBC',∴∠ABE=∠C'BF.又∵AB=DC=BC',∠A=∠C',∴△ABE≌△C'BF( ASA ),∴C'F=AE,∴CF=C'F=AE=6.16.( 12分)如图,已知△ABC中BC边的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB,交AB的延长线于点F,EG⊥AC交AC于点G.求证:( 1 )BF=CG;( 2 )AF=( AB+AC).证明:( 1 )连接BE,CE.∵AE平分∠BAC,EF⊥AB,EG⊥AC,∴EF=EG.∵DE垂直平分BC,∴EB=EC.在Rt△EFB和Rt△EGC中,∴Rt△EFB≌Rt△EGC( HL ),∴BF=CG.( 2 )∵BF=CG,∴AB+AC=AB+BF+AG=AF+AG.易证Rt△AEF≌Rt△AEG( HL ),∴AF=AG=( AB+AC).。
八年级数学上册周周练检测试题一(含答案)

八年级数学(上)周周练(1.1~1.3)(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.下列图案中,是轴对称图形的是( )2.下列四幅图案中,不是轴对称图形的是( )3.下列图案中,是轴对称图形的有( )A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴最多的是( )5.如图是小华在镜子中看到的身后墙上的钟,你认为实际时问最接近8点的是( )6.把一个图形先沿着一条直线进行轴对称变换。
再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图①).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图②)的对应点所具有的性质是( )A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行7.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是( )A.正三角形B.正方形C.正五边形D.正六边形8.下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧,其中正确的是( )A.①B.①③C.①②③D.①③④9.剪纸是中国的民间艺术,剪纸的方法很多,如图是一种剪纸方法的图示,先将纸折叠,然后再剪,展开即得到图案,则下列的四个图案中,不能用上述方法剪出的是( )10.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+OBCD的度数为( )A.150°B.300°C.210°D.330°二、填空题(每小题2分,共16分)11.长方形有______条对称轴,正方形有_______条对称轴,圆有______条对称轴.12.在缩写符号SOS、CCTV、BBC、WWW、TNT中,成轴对称图形的是___________.13.计算器上显示的0~9这十个数字中,是轴对称图形的是__________.14.如图,把图中某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.第14题第15题第16题15.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时钟表示的时间是___________________(按12小时制填写).16.张军是学校足球队的运动员,他在镜子里看到衣服上的号码如图所示,则他是________号运动员.17.如图,桌面上有A、B两个球,若要将B球射向桌面任意一边,使一次反弹后击中A 球,则图中的8个点中,可以瞄准的点有__________个.第17题第18题18.如图,直线l是四边形ABCD的对称轴.若AD∥BC,则下列结论:①AB∥CD;②AB=BC;③A B⊥BC;④AO=OC,其中正确的是____________________(填序号).三、耐心解一解(共64分)19.(10分)在下列图形中找出轴对称图形,并找出它的两组对应点.20.(8分)已知点A和点B关于某条直线对称,请你画出这条直线.21.(8分)如图是方格纸中画出的树形的一半,请你以树干为对称轴画出图形的另一半.22.(12分)如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,可以移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,那么怎样移动才能使所构成的图形具有尽可能多的对称轴?23.(13分)如图,A是锐角∠MON内的一点,试分别在OM、ON上确定点B、C,使△ABC的周长最小.写出你作图的主要步骤,并标明你所确定的点(要求画出草图,保留作图痕迹).24.(13分)某居民小区搞绿化,要在一块矩形空地上铺草坪,现征集设计方案,要使设计的图案由圆或正方形组成(圆和正方形的个数、大小不限),并且使整个矩形场地成轴对称图形,请在矩形中画出你设计的方案.参考答案—、1.C 2.A 3.C 4.A 5.D 6.B 7.D 8.B 9.D 10.B二、11.2 4 无数12.BBC、WWW 13.0、1、3、8 14.如图所示15.下午1:30 16.16 17.2 18.①②④三、19.①、②、③、⑤都是轴对称图形,对应点略20.图略连接AB,作出线段AB 的垂直平分线l,即为它们的对称轴21.如图所示22.不是轴对称图形.将小的等边三角形移动到大的等边三角形内部图略23.分别作点A关于OM、ON的对称点A′、A″,连接A′A″,分别交OM、ON于点B、C,连接AB、AC.则点B、C即为所求.如图所示24.答案不唯一,如图所示。
八年级数学上册滚动周练卷三同步训练新版新人教版[001]
![八年级数学上册滚动周练卷三同步训练新版新人教版[001]](https://img.taocdn.com/s3/m/46e6a32df18583d048645908.png)
八年级数学上册滚动周练卷三同步训练新版新人教版[001][时间:45分钟测试范围:13.1~13.2 分值:100分]一、选择题(每题5分,共30分)1.[2016·松北模拟]下列平面图形中,不是轴对称图形的是( )A B C D2.[2016·奉贤区二模]下列说法中,正确的是( )A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称3.[2016春·户县期末]如图1,△ABC与△A′B′C′关于直线l成轴对称,则下列结论中错误的是( )图1A.AB=A′B′B.∠B=∠B′C.AB∥A′C′D.直线l垂直平分线段AA′4.[2016·龙岩模拟]如图2,在△ABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧分别交于点D,E,则直线DE是( )图2A.∠A的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线5.[2016·深圳期末]如图3,△ABC中,AB的垂直平分线交AC于D,如果AC =5 cm,BC=4 cm,那么△DBC的周长是( )图3A.6 cm B.7 cm C.8 cm D.9 cm6.[2016·邹城市一模]若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在( )A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题(每题4分,共24分)7.[2016·临河校级月考]在直角坐标系中,点P(-3,2)关于x轴对称的点Q 的坐标是____.8.下面是在计算器上出现的一些数字,其中是轴对称图形的是___.图49.[2016·黄岛期末]如图5,点P在∠AOB内,点M,N分别是点P关于AO,BO 的对称点,若△PEF的周长等于20 cm,则MN的长为____.图510.[2016·永新期末]如图6,AD是△ABC的对称轴,点E,F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是____.图611.[2016·祁阳期末]△ABC与△DEF关于直线m对称,AB=4,BC=6,△DEF 的周长是15,则AC=____.12.[2016·江阴期中]如图7,△ABC的边BC的垂直平分线MN交AC于D,若△ADB。
2023-2024学年全国初中八年级上数学新人教版同步练习(含解析)

2023-2024学年全国八年级上数学同步练习考试总分:36 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1. 将下列长度的三根木棒首尾顺次连接,能组成三角形的是 A.,,B.,,C.,,D.,,2. 一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形3. 作中边上的高,下列作法正确的是 A. B. C.()1248641265336△ABC BC AD ()D.4. 在下列各图形中,分别画出了中边上的高,其中正确的是( ) A. B. C. D.5. 已知三角形的两边长分别为和,则下列数据中能作为第三边长的是( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )6.如图,在中,,,为中线,则与的周长之差________.△ABC BC AD 5934514△ABC AB =2013AC =2010AD △ABD △ACD =7. 若等腰三角形的两边长分别为和,则它的周长为__________;若等腰三角形的两边长分别是和,则它的周长为________.8. 已知等腰三角形的两条边长分别是和,则此三角形的周长为________.9. 如图,是的中位线,是的中点,的延长线交于点,则________.10.如图,在中,,,为中点,则线段的范围是________.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )11. 已知,在中,==,平分,点是的中点,在上取点,使得=,与的延长线交于点.(1)当=时,①求的长;②求的大小.(2)当时,探究与的数量关系.12. 若等腰三角形一腰上的中线把它的周长分为或的两部分,求这个等腰三角形的底边和腰的长.373436DE △ABC M DE CM AB N :=S △DMN S 四边形ANME D △ABC AB AC 5AD ∠BAC M AC AD E DE AM EM DC F ∠BAC 90∘AE ∠F ∠BAC ≠90∘∠F ∠BAC 6cm 9cm参考答案与试题解析2023-2024学年全国八年级上数学同步练习一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1.【答案】B【考点】三角形三边关系【解析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:、,不能组成三角形,故此选项错误;、,能组成三角形,故此选项正确;、,不能组成三角形,故此选项错误;、,不能组成三角形,故此选项错误.故选.2.【答案】D【考点】等边三角形的判定【解析】根据等腰三角形的性质易得这个三角形的三边都相等,然后根据等边三角形的判定方法可得这个三角形必为等边三角形.【解答】解:∵一个三角形任意一边上的高都是这边上的中线,即三角形任意一边上的高与中线重合,∴这个三角形的三边都相等,∴这个三角形必为等边三角形.故选.3.A 1+2<4B 6+4>8C 6+5<12D 3+3=6B DD【考点】三角形的高【解析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.【解答】解:根据高的定义:从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,可得,正确.故选.4.【答案】D【考点】三角形的高【解析】根据三角形高的定义,逐项判定即可.【解答】解:过一个顶点作垂直于它对边所在直线的线段,叫做三角形的高线.作中边上的高过点且垂直于对边,只有选项正确.故选.5.【答案】C【考点】三角形三边关系【解析】利用两边之和大于第三边,两边之差小于第三边即可求解D D △ABC BC AD A BC D D解:设第三边长为,则,即,满足条件的只有选项.故选.二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )6.【答案】【考点】三角形的角平分线、中线和高【解析】根据三角形中线的定义可得,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵为中线,∴,∴与的周长之差,∵,,∴与的周长之差.故答案为:.7.【答案】,或【考点】三角形三边关系【解析】此题暂无解析【解答】解:当等腰三角形的腰长为,底边为时,不满足三角形的三边关系.当等腰三角形的腰长为,底边为时,满足三角形的三边关系则该等腰三角形的周长.所以当等腰三角形的两边长分别为和时,它的周长为.当等腰长为,底边为时,满足三角形的三边关系,则该等腰三角形的周长.当等腰三角形的腰长为,底边为时,满足三角形的三边关系,则该等腰三角形的周长x 9−5<x <9+54<x <14C C 3BD =CD AD BD =CD △ABD △ACD =(AB +AD +BD)−(AC+AD+CD)=AB −AC AB =2013AC =2010△ABD △ACD =2013−2010=331711103773=7+7+3=17371734=3+3+4=1043.所以当等腰三角形的两边长分别为和,则它的周长为和.故答案为,和.8.【答案】【考点】等腰三角形的判定与性质三角形三边关系【解析】因为已知长度为和两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当为底时,其它两边都为,,,可以构成三角形,周长为;当为腰时,其它两边为和,∵,所以不能构成三角形,故舍去,∴答案只有.故答案为:.9.【答案】【考点】平行线分线段成比例三角形中位线定理【解析】此题暂无解析【解答】此题暂无解答10.【答案】【答【考点】=4+4+3=11341011171011153636366153363+3=615151∶53<AD <6三角形三边关系【解析】延长至,使,根据三角形中线的定义可得,然后利用“边角边”证明和全等,根据全等三角形对应边相等可得,再根据三角形的任意两边之和大于第三边,任意两边之差小于第三边求出.的范围,然后求解即可.【解答】解:如图,延长至,使:是中边上的中线,.在和中,:故答案为:三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )11.【答案】当=时,①=;②连接.∵=,=,平分,∴,=.∵点是的中点,∴===,,∴==,∴=,∴==;当时,=.理由如下:∵=,平分,∴=.设=,则=.∵点是的中点,∴===,∴==,AD E DE =AD BD =CD △ABD △ECD CE =AB AE AD E DE =ADAD △ABC BC BD =CD△ABD △ECD AD =DE∠ADB =∠EDCBD =CD△ABD ≅△ECD(SAS)CE =AB =9AC =39+3=129−3=66<AE <123<AD <63<AD <6C∠BAC 90∘AE AD −DE =AB −DE =−2–√252–√252DM AB AC ∠BAC 90∘AD ∠BAC AD ⊥BC AD DC M AC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠BAC 4∠F AB AC AD ∠BAC ∠ADC 90∘∠BAC 4x ∠DAC 2x M AC DM MC AM DE ∠ADM ∠DAC 2x DEM =(−2x)1∴=,∴===,∴=.【考点】等腰三角形的性质【解析】(1)①先根据等腰直角三角形的性质求出,根据线段中点的定义得出=,再代入=即可;②连接,根据等腰直角三角形的性质以及已知条件得出,=,===,,==,利用三角形内角和定理以及等边对等角求出=,那么==;(2)当时,先根据等腰三角形的性质得出=.设=,则=.根据直角三角形斜边中线的性质得出===,利用三角形内角和定理以及等边对等角求出==,=,那么===,从而得出=.【解答】当=时,①=;②连接.∵=,=,平分,∴,=.∵点是的中点,∴===,,∴==,∴=,∴==;当时,=.理由如下:∵=,平分,∴=.∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F AD =AB =2–√252–√2DE AM =52AE AD −DE DM AD ⊥BC AD DC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠ADC 90∘∠BAC 4x ∠DAC 2x DM MC AM DE ∠ADM ∠DAC 2x ∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F ∠BAC 90∘AE AD −DE =AB −DE =−2–√252–√252DM AB AC ∠BAC 90∘AD ∠BAC AD ⊥BC AD DC M AC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠BAC 4∠F AB AC AD ∠BAC ∠ADC 90∘∠BAC ∠DAC设=,则=.∵点是的中点,∴===,∴==,∴=,∴===,∴=.12.【答案】解:设等腰三角形的腰长、底边长分别为,.依题意,得 或 解得’或故这个等腰三角形的腰长为,底边长为 或腰长为,底边长为.【考点】等腰三角形的性质与判定【解析】此题暂无解析【解答】解:设等腰三角形的腰长、底边长分别为,.依题意,得 或 解得’或故这个等腰三角形的腰长为,底边长为 或腰长为,底边长为.∠BAC 4x ∠DAC 2x M AC DM MC AM DE ∠ADM ∠DAC 2x ∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F xcm ycm x +x =9,12x +y =612 x +x =6,12x +y =912{x =6y =3{x =4y =76cm 3cm 4cm 7cm xcm ycm x +x =9,12x +y =612 x +x =6,12x +y =912{x =6y =3{x =4y =76cm 3cm 4cm 7cm。
人教八上练案阶段滚动练(一)

阶段滚动练(一)第十一、十二章(90分钟 100分)测控导航表知识点题号三角形的概念及三边关系与三角形有关的边与角及三角形的稳定性多边形的边与角全等三角形的概念及性质全等三角形的判定角平分线的性质与判定三角形综合训练一、选择题:(10个×3分=30分)1.如图所示,图中三角形的个数共有()A.1个 B.2个 C.3个 D.4个解析:本题考查三角形定义答案:C2.已知△ABC的一个外角为50°,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.锐角三角形或钝角三角形解析:50°角的邻补角是130°,所以三角形的一内角是钝角,三角形是钝角三角形。
答案:B3.若△ABC三条边分别为m、n、p,且|m-n|+(n-p)2=0,则这个三角形为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形解析:由题意知m=n=p,所以三角形是等边三角形。
答案:B4.下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角解析:本题三角形的内角和等于180°来进行验证。
答案:A5.某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A.1,3,5 B.1,2,3 C.2,3,4 D.3,4,5解析:设三角形第三边为X,则1<X<5,所以X的整数解为2,3,4答案:C6.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高解析补充于稿纸上7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短解析补充于稿纸上8.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是()A.1个 B.2个 C.3个 D.4个解析补充于稿纸上9.如图是“北大西洋公约组织”标志的主体部分(平面图),它是由四个完全相同的四边形OABC拼成的.测得AB=BC,OA=OC,OA⊥OC,∠ABC=36°,则∠OAB的度数是()A.116°B.117°C.118°D.119°解析:∵AB=BC,OA=OC,OB=OB,∴△AOB≌△COB,∴∠OAB=∠OCB=(360-90-36)÷2=117°.答案:B.10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68解析补充于稿纸上二、填空题:(8个×3分=24分)11.已知△ABC中,AD是BC边上中线,若AC比AB长4cm,则△ABD的周长比△ADC的周长少 cm.解析补充于稿纸上12.补充于稿纸13.如图,D、E分别是AB、AC上的点,若∠A=70°,∠B=60°,DE∥BC.则∠AED的度数是度.解析补充于稿纸上14.题目补充于稿纸15.(2012娄底)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE= 度.解析补充于稿纸上16.(2012嘉兴)在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为.解析补充于稿纸上17.题目补充于稿纸18.题目补充于稿纸三、解答题(6个小题,共 46分)19.(5分)如图,A、E、F、C在一条直线上,△AED≌△CFB,你能得出哪些结论?(答出5个即可,不需证明)解析补充于稿纸上M D E C BA 20.题目补充于稿纸21.(8分)(2012佛山)如图,已知AB=DC ,DB=AC(1)求证:∠ABD=∠DCA .注:证明过程要求给出每一步结论成立的依据.(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?解析补充于稿纸上22.(8分) 如图,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC ,∠ADC 的度数. 解析补充于稿纸上ABC 中,o 90C ∠=,点D 是AB 23.(9分)(2012云南)如图,在△边上一点,D M A B ⊥且DM AC =,过点M 作ME ∥BC 交AB 于点E.求证:.△ABC ≌△MED证明:补充于稿纸上24.题目补充于稿纸四、选做题:2个25.题目补充于稿纸26.(2010玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD 之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.解析补充于稿纸上。
八年级上第1周周练数学试卷含答案解析
八年级(上)第1周周练数学试卷一、选择题1.下列各组中是全等形的是()A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个面积相等的直角三角形D.两个周长相等的圆2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②4.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO ≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ6.在下列说法中,正确的有()①三角分别相等的两个三角形全等;②三边分别相等的两个三角形全等;③两角及其中一组等角的对边分别相等的两个三角形全等;④两边及其中一组等边的对角分别相等的两个三角形全等.A.1个B.2个C.3个D.4个7.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二、填空题(共10小题,每小题4分,满分22分)10.如图,△ABC和△AED全等,AB=AE,∠C=20°,∠DAE=130°,则∠D=°,∠BAC=°.11.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,则AC= cm.12.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.13.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)14.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.19.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.三、简答题20.如图,AB=AC,AD=AE,∠EAB=∠DAC,问:△ABD与△ACE是否全等?∠D 与∠E有什么关系?为什么?21.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?22.如图,点E、F在AC上,AB∥CD,AB=CD,AE=CF.求证:(1)△ABF≌△DCE.(2)BF∥DE.23.已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE∥AC,DF∥AB,求证:BE=DF,DE=CF.24.已知:如图,△ABC≌△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线.求证:AD=A′D′.25.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.26.如图,AB=CD,AD=CB.求证:∠B=∠D.27.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以1.5cm/s的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)2016-2017学年江苏省无锡市江阴市夏港中学八年级(上)第1周周练数学试卷参考答案与试题解析一、选择题1.下列各组中是全等形的是()A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个面积相等的直角三角形D.两个周长相等的圆【考点】全等图形.【分析】根据能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、不一定是全等形,故此选项错误;B、不一定是全等形,故此选项错误;C、不一定是全等形,故此选项错误;D、是全等形,故此选项正确;故选:D.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积【考点】全等图形.【分析】根据能够互相重合的两个图形叫做全等图形解答.【解答】解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选A.【点评】本题考查了全等图形,熟记全等图形的概念是解题的关键.3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.【点评】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.4.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO ≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:B.【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.6.在下列说法中,正确的有()①三角分别相等的两个三角形全等;②三边分别相等的两个三角形全等;③两角及其中一组等角的对边分别相等的两个三角形全等;④两边及其中一组等边的对角分别相等的两个三角形全等.A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:①三角分别相等的两个三角形全等,说法错误;②三边分别相等的两个三角形全等,说法正确;③两角及其中一组等角的对边分别相等的两个三角形全等,说法正确;④两边及其中一组等边的对角分别相等的两个三角形全等,说法错误.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】根据平行的性质及全等三角形的判定方法来确定图中存在的全等三角形共有三对:△ABC≌△DCB,△ABE≌△CDE,△BFE≌△CFE.再分别进行证明.【解答】解:∵AB∥EF∥DC,∴∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS);在△ABE和△CDE中,∵,∴△ABE≌△CDE(AAS);在△BFE和△CFE中,∵,∴△BFE≌△CFE.∴图中的全等三角形共有3对.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68【考点】全等三角形的判定与性质.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.【点评】本题考查的是全等三角形的判定的相关知识,是中考常见题型.二、填空题(共10小题,每小题4分,满分22分)10.如图,△ABC和△AED全等,AB=AE,∠C=20°,∠DAE=130°,则∠D=20°,∠BAC=130°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠DAE=∠BAC,∠C=∠D即可.【解答】解:∵△ABC≌△ADE,AB=AE,∴∠DAE=∠BAC,∴∠C=∠D,∵∠C=20°,∠DAE=130°,∴∠D=20°,∠BAC=130°,故答案为:20;130【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.11.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,则AC= 10cm.【考点】全等三角形的性质.【分析】求出DF的长,根据全等三角形的性质得出AC=DF,即可得出答案.【解答】解:∵△DEF周长是32cm,DE=9cm,EF=13cm,∴DF=32cm﹣9cm﹣13cm=10cm,∵△ABC≌△DEF,∴AC=DF=10cm,故答案为:10.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.12.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形稳定性.【考点】三角形的稳定性.【分析】将其固定,显然是运用了三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【点评】注意能够运用数学知识解释生活中的现象,考查三角形的稳定性.13.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是AB=CD 等(答案不唯一).(添一个即可)【考点】全等三角形的判定.【分析】由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE.(不添加辅助线)【考点】全等三角形的判定.【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB 等);【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB 等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.【点评】考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.【点评】本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB 的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.19.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、简答题20.如图,AB=AC,AD=AE,∠EAB=∠DAC,问:△ABD与△ACE是否全等?∠D 与∠E有什么关系?为什么?【考点】全等三角形的判定与性质.【分析】首先证明∠EAC=∠DAB,然后根据SAS证明△ABD≌△ACE,再根据全等三角形的性质可得∠D=∠E.【解答】解:△ABD≌△ACE,∠D=∠E;理由:∵∠EAB=∠DAC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠DAB,在△AEC和△ADB中,,∴△ABD≌△ACE(SAS),∴∠D=∠E.【点评】此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?【考点】全等三角形的判定与性质.【分析】根据AAS即可证明△ABE≌△ACD,再根据全等三角形的性质即可求解.【解答】解:∵∠1=∠2,∴∠ADC=∠AEB,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS)∴AB=AC(全等三角形的对应边相等).【点评】本题考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.如图,点E、F在AC上,AB∥CD,AB=CD,AE=CF.求证:(1)△ABF≌△DCE.(2)BF∥DE.【考点】全等三角形的判定与性质.【分析】(1)根据SAS即可证明△ABF≌△DCE.(2)利用全等三角形的性质即可证明.【解答】证明:(1)∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AF=CE,在△AFB和△CED中,,∴△AFB≌△CED,(2)∵△AFB≌△CED,∴∠AFB=∠CED,∴DE∥BF.【点评】本题考查平行线的性质和判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题,中考常考题型.23.已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE∥AC,DF∥AB,求证:BE=DF,DE=CF.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据线段中点的定义可得BD=CD,再根据两直线平行,同位角相等可得∠B=∠CDF,∠C=∠BDE,然后利用“角边角”证明△BDE和△DCF全等,根据全等三角形对应边相等证明即可.【解答】证明:∵D是BC的中点,∴BD=CD,∵DF∥AB,∴∠B=∠CDF,∵DE∥AC,∴∠C=∠BDE,在△BDE和△DCF中,,∴△BDE≌△DCF(ASA),∴BE=DF,DE=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并准确确定出对应的角是解题的关键.24.已知:如图,△ABC≌△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线.求证:AD=A′D′.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出对应边和对应角相等,再利用全等三角形的判定证明即可.【解答】证明:∵△ABC≌△A′B′C′,∴AB=A'B',BC=B'C',∠B=∠B',∵AD和A′D′分别是△ABC和△A′B′C′的BC和B′C′边上的中线,∴BD=B'D',在△ABD与△A′B′D′,,∴△ABD≌△A′B′D′,∴AD=A'D'.【点评】本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.25.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.【考点】全等三角形的判定与性质.【分析】根据垂直的定义得到∠A=∠B=90°,再证明∠C=∠DEB,即可证明△CAE ≌△EBD,根据全等三角形的性质即可证得结论.【解答】证明:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∴∠C+∠CEA=90°,∠D+∠DEB=90°,∵CE⊥DE,∴∠CED=90°,∴∠CEA+∠DEB=90°,∴∠C=∠DEB,在△CAE和△EBD中,∴△CAE≌△EBD(AAS),∴AC=BE,BD=AE,∵AE+BE=AB,∴AC+BD=AB【点评】本题主要考查了互为余角的关系,全等三角形的判定与性质,能根据同角的余角相等证得∠C=∠DEB是解决问题的关键.26.如图,AB=CD,AD=CB.求证:∠B=∠D.【考点】全等三角形的判定与性质.【分析】根据SSS推出△DAC≌△BCA即可【解答】证明:∵在△DAC和△BCA中,∴△DAC≌△BCA,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.27.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以1.5cm/s的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,则经过24秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】(1)由于∠B=∠C,若要△BPD与△CQP全等,只需要BP=CQ或BP=CP,进而求出点Q的速度.(2))因为点Q的速度大于点P速度,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【解答】解:(1)设运动时间为t,点Q的速度为v,∵点D为AB的中点,∴BD=3,∴BP=t,CP=4﹣t,CQ=vt,由于△BPD≌△CQP,且∠B=∠C当BP=CQ时,∴t=vt,∴v=1,当BP=CP时,t=4﹣t,∴t=2,∴BD=CQ∴3=2v,∴v=,综上所述,点Q的速度为1cm/s或cm/s(2)设经过x秒后P与Q第一次相遇,依题意得:1.5x=x+2×6,解得:x=24(秒)此时P运动了24×1=24(cm)又∵△ABC的周长为16cm,24=16+8,∴点P、Q在AC边上相遇,即经过了24秒,点P与点Q第一次在AC边上相遇.故答案为24【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.参与本试卷答题和审题的老师有:sd2011;星期八;wd1899;wenming。
新人教版八上数学课件:周滚动练(15.1.1~15.2.1)
7.化简������21+64-������������2+4
÷
������-4 2������+4
·������������++24,其结果是(
A
)
A.-2
B.2
C.-
(
2 ������+2
)2
D.
(
2 ������+2
)2
8.已知 a4+���1���4=7,则 a2+���1���2等于( A )
3
·(
a-b
).
解:原式=(
������+������ )2( ������-������ ������2������2
)2 ·
(
������3 ������-������
)3 ·(
a-b
)=������(
������+������ ������2
)2.
17.( 10 分 )若 x2-3x+1=0,求 x2+���1���2的值.
解:将 x2-3x+1=0 两边同除以 x,得 x-3+1������=0,
∴x+1������=3,∴x2+���1���2+2=9,∴x2+���1���2=7.
18.( 12 分 )小明和小强一起做分式的游戏,如图所示,他们面前各有 三张牌( 互相可以看到对方的牌 ),自己任选两张牌做分子和分母, 组成一个分式,然后两人取定一个相同的 x 值,再计算分式的值,值大 者为胜.为使分式有意义,他们约定 x 是大于 3 的正整数. ( 1 )请分别写出小明和小强可能组成的分式中,值最大的分式( 直 接写出结果 ); ( 2 )两人分别将值最大的分式拿出来与对方比较,小强思考了一下, 哈哈一笑,说:“虽然我是三张带减号的牌,但我一定是胜者”,小强说 的有道理吗?请你通过计算说明. 小明的牌:x+1x+2x+3 小强的牌:x-1x-2x-3
第7周——2023-2024学年人教版数学八年级上册周周练(含答案)
的度数是( )
A.30°
B.45°
C.60°
D.90°
3.已知
是等边三角形,点 D、E 分别在 AC、BC 边上,且
交于点 F,则
的度数为( )
,AE 与 BD
A.60° 4.如图,
B.45° 是等边三角形,
,则下列结论:
C.75° ,
D.70° 于点 R,
于点 S,
①点 P 在
的平分线上;
②
;
③
第七周——2023-2024 学年人教版数学八年级上册周周练
1.如图,AD 是等边
的中线,
,则
考查范围:13.3.2~13.4 的度数为( )
A.30°
B.20°
C.25°
D.15°
2.如图,
是等边三角形,AD 是 BC 边上的高,E 是 AC 的中点,P 是 AD 上的一
个动点,当 PC 与 PE 的和最小时,
是等边三角形.
故答案为:6.
10.答案:10
解析: 直线 m 垂直平分 BC, B、C 两点关于直线 m 对称,如图,设直线 m 交 AB
于 D,连接 CD,则
.当 P 和 D 重合时,
的值最小,最小值等于 AB 的
长,
的周长的最小值是
.
11.答案:5 解析:过点 B 作
于 F,交 CD 于 E,如下图所示,
C.1500 米
D.2000 米
6.如图,在
中,
,
,面积是 10.AB 的垂直平分线 ED 分别交
AC,AB 边于 E、D 两点,若点 F 为 BC 边的中点,点 P 为线段 ED 上一动点,则
周长的最小值为( )
第1周——2023-2024学年人教版数学八年级上册周周练(含答案)
第一周——2023-2024学年人教版数学八年级上册周周练考查范围:11.1 1.如图,以BC为边的三角形有( )个.A.3个B.4个C.5个D.6个2.以下列各组数据为边长,能组成三角形的是( )A.1,1,3B.3,3,8C.3,4,5D.3,10,43.如图, 一扇窗户打开后, 用窗钩AB 可将其固定, 这里所运用的几何原理是( )A.两点之间线段最短B.三角形两边之和大于第三边C.两点确定一条直线D.三角形的稳定性4.如图,在中,边AB上的高是( )A.ADB.GEC.EFD.CH5.下列说法中正确的是( )A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部6.如图,在中,AE是高,BD是角平分线,CF是中线,下列说法不正确的是( )A. B.C. D.7.如图,AD,CE是三角形的两条高,,,,AD 的长为( )A.2cmB.3cmC.4cmD.6cm8.三角形的下列线段中,能将三角形的面积分成相等的两部分的是( )A.中线B.角平分线C.高D.最长边上的高9.若等腰三角形的两边长分别为3cm和8cm,则它的周长是__________.10.在画三角形的三条重要线段:角平分线、中线和高时,不一定画在三角形内部的是__________.11.如图,AD,CE分别是的中线和角平分线,则:____________________;____________________.12.如图所示,已知AD,AE分别是和的高和中线,,,,,试求:(1)和的周长的差.(2)AD的长:(3)直接写出的面积.答案以及解析1.答案:B解析:以BC为边的三角形有,,,.2.答案:C解析:,故A错误;,故B错误;,故C正确;,故D错误.3.答案:D解析:根据三角形的稳定性可知窗钩可以固定窗户,故选D.4.答案:D解析:,在中,边AB上的高是CH.故选:D.5.答案:A解析:A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A.6.答案:A解析:当CF是角平分线时,一定成立,但是CF是中线,所以A选项说法错误;因为BD是角平分线,所以,故B选项说法正确;因为AE 是高,所以,故C选项说法正确;因为CF是中线,所以点F是AB边的中点,即,故D选项说法正确.7.答案:B解析:,,解得:.故选B.8.答案:A解析:三角形的中线把三角形分成两个等底同高的三角形,三角形的中线将三角形的面积分成相等两部分.故选:A.9.答案:解析:等腰三角形的两边长分别为和当腰长是时,则三角形的三边是,,,不满足三角形的三边关系;当腰长是时,三角形的三边是,,,三角形的周长是.故答案为:.10.答案:高解析:三角形的角平分线和中线都在三角形内部,而锐角三角形的三条高均在三角形内部,直角三角形有两条高与直角边重合,另一条高在三角形内部,钝角三角形有两条高在三角形外部,一条高在三角形内部.11.答案:CD;BC;;解析:AD是的中线,D是线段BC的中点,,CE是的角平分线,CE平分,;故答案为:CD;BC;;.12.答案:(1)2(2)4.8(3)12解析:(1)AE是中线,,又的周长,的周长,和的周长的差,又,,和的周长的差.(2),,,,又,AD是高,,,.(3)是中线,,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚动周练卷(一)
[时间:45分钟测试范围:11.1~11.2 分值:100分]
一、选择题(每题5分,共30分)
1.下面给出的四个三角形都有一部分被遮挡,其中不能判断出三角形类型的是( )
A B C D
2.[2016·独山月考]如图1所示,图中三角形的个数为( )
图1
A.3个 B.4个 C.5个 D.6个
3.将一副三角板摆放成如图2所示的样子,则∠1的度数是( )
图2
A.90° B.120° C.135° D.150°
4.[2016·洛江期末]如图3,在△ABC中,∠B=∠DAC,则∠BAC和∠ADC的大小关系是( )
图3
A.∠BAC<∠ADC B.∠BAC=∠ADC
C.∠BAC>∠ADC D.不能确定
5.如图4所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为( )
图4
A.60° B.70° C.80° D.85°
6.[2016·吴中区期末]a,b,c,d四根竹签的长度分别为2 cm,3 cm,4 cm,6 cm,若从中任意选取三根,首尾依次相接围成不同的三角形,则围成的三角形共有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(每题4分,共24分)
7.[2016春·长春校级期末]三角形在日常生活和生产中有广泛的应用,如图5,房屋支架、起重机的臂膀中都有三角形结构,这是利用了三角形的____.
图5
8.如图6,在Rt△ABC中,∠ACB=90°,CD⊥AB,如果∠A=40°,则∠1=____.
图6
9.[2016·涪陵期中]如图7,BF,CF是△ABC的两个外角的平分线,若∠A=50°,则∠BFC=__.
图7
10.[2016·新蔡期末]一个三角形的三边长分别是3,1-2m,8,则m的取值范围是____.
11.[2016·宿州期末]如图8,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,那么∠BDE=____.
图8。