Battery Models Parameter Estimation based on Matlab-Simulink
电化学模型参数估计方法

电化学模型参数估计方法
电化学模型参数估计方法主要包括以下几种:
1. 最小二乘法:最小二乘法是一种常用的参数估计方法,通过最小化预测值与实际观测值之间的平方差,得到最优参数值。
这种方法简单易行,适用于线性回归模型。
2. 最大似然法:最大似然法是一种基于概率的参数估计方法,通过最大化似然函数,即观测数据的概率分布,来估计参数。
这种方法适用于各种类型的模型,包括非线性模型和混合模型。
3. 梯度下降法:梯度下降法是一种优化算法,通过迭代计算目标函数的梯度,逐步逼近最优解。
在电化学模型中,梯度下降法可以用于优化模型的参数,以最小化预测值与实际观测值之间的误差。
4. 遗传算法:遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机制,寻找最优解。
在电化学模型中,遗传算法可以用于搜索模型的参数空间,找到最优的参数组合。
以上方法各有优缺点,具体应用时需要根据模型的复杂性和数据的特性选择合适的参数估计方法。
锂电池SOC估算方法的研究(续1)

摘要:由于锂离子电池在各种储能单元中性能表现突出,被广泛地使用在电动汽车中。
作为电池管理系统的核心功能,SOC 估算精度的提高对电池安全和节能起到了至关重要的作用。
所以,文章结合国内外研究现状对锂电池SOC 的估算方法进行 了综述。
从SOC 估算的研究流程出发,分别介绍了常用的几种电池模型的机理和特点以及参数辨识的一般流程。
重点分析了现阶段的几种SOC 估算方法,将原理、优缺点以及特点进行了归纳和总结。
最后,基于研究现状提出了锂电池SOC 估算方法进一步的研究方向。
关键词:SOC 估算;电池模型;EKF 算法;BP 神经网络算法Research on SOC Estimation Method of Lithium Battery *(Continued 1)Abstract : Lithium-ion batteries are widely used in electric vehicles due to their outstanding performance in various energy storageunits. As the core function of battery management system, the improvement of SOC estimation accuracy plays a crucial role in batterysafety and energy saving. Therefore, based on the research status at home and abroad, the estimation methods of lithium battery SOC were reviewed in the paper. Based on the research flow of SOC estimation, the mechanism and characteristics of several commonlyused battery models and the general flow of parameter identification are introduced respectively. The paper focuses on the analysis of several SOC estimation methods at the present stage, and summarizes the principles, advantages and disadvantages as well ascharacteristics. Finally, based on the current research situation, the further research direction of SOC estimation method for lithiumbatteries is proposed.Key words : SOC estimation; Battery model; EKF algorithm; BP neural network algorithm锂电池在各类动力电池中,具有比能量高、充电 快、使用寿命长、以及对环境“友好”等优点,已经广泛 应用于电动汽车中。
工程用太阳电池模型及参数确定法

工程用太阳电池模型及参数确定法随着时代的发展,绿色能源和可再生能源已成为重要的话题。
太阳能是一种可再生能源,能够有效地提供相关领域的电能需求。
太阳电池是太阳能系统中的关键部分,用于将太阳能转化为电能。
由于太阳电池具有复杂的物理和化学特性,因此准确的模拟和评估太阳电池的特性和功率输出非常重要。
太阳电池模型和参数确定法主要用于模拟太阳电池的电子特性,以及提供了一种有效的参数确定算法来改善太阳电池的模拟精度。
此方法的基本原理是建立电路模型,其中包含了一些电子元件,如二极管、电容等。
这些元件的参数是关键因素,需要准确地确定。
目前,主要有两种方法可用于参数确定,即基于逆变技术的参数确定,和基于非线性最小二乘法的参数确定。
基于逆变技术的参数确定方法比较简单,它利用外接电路产生一组逆变调制波,用以测量太阳电池输出电压和电流,从而确定参数。
此方法最大的优点是只需要一定的实验环境和太阳电池系统,而无需进行复杂的理论分析工作。
但是,这种方法仅能确定简单的参数,并且受到噪声和其他环境干扰的影响。
基于非线性最小二乘法(NLS)的参数确定方法非常有效,它可以用于优化复杂的太阳电池模型。
通过收集太阳电池的额定参数,通过给出的参数,在太阳电池的条件下,仿真模型,从而找到最优参数,从而有效地改善模型的准确性。
这种确定方法的缺点是其参数确定的过程比较复杂,耗时较长,并且需要许多实验数据,增加了系统的复杂度。
基于上述两种参数确定方法,结合此前已有的模型,有一些技巧可以有效地优化太阳电池模型。
例如,在定义模型参数时,可以使用一些简化的方法,如使用具有少量参数的时域模型,或者使用扩展的电路模型来描述太阳电池的行为。
此外,使用正确的控制参数,如温度、光照度、海拔等,还可以有效地改善太阳电池的模型准确度。
最后,建立准确的太阳电池模型和参数确定方法对于太阳能系统的设计具有重要意义。
目前有多种参数确定方法,从简单的逆变方法到复杂的非线性最小二乘方法,能够很好地支撑太阳电池模型的确定过程。
锂电池寿命预测模型建立

锂电池寿命预测模型建立锂电池寿命预测模型建立锂电池是目前最流行的电池类型之一,广泛应用于移动设备、电动车和储能系统等领域。
然而,锂电池的寿命是一个不容忽视的问题,因为它直接影响到电池的可靠性和使用寿命。
为了解决这个问题,科学家们提出了锂电池寿命预测模型。
锂电池寿命预测模型是基于电池在使用过程中的物理特性建立的。
它通过收集电池的运行数据,如电流、电压、温度等,然后利用统计和机器学习方法分析这些数据,从而预测电池的寿命。
首先,锂电池寿命预测模型需要建立一个有效的数据采集系统,用来收集电池的运行数据。
这个系统可以包括传感器、数据采集设备和数据存储设备等,可以实时地采集电池的运行数据。
然后,收集到的数据需要进行预处理和特征提取。
预处理包括数据清洗、去噪和数据对齐等步骤,以确保数据的质量和准确性。
特征提取则是从原始数据中提取有用的特征,如电流波形、电压变化等,用来描述电池的状态。
接下来,利用机器学习算法建立预测模型。
常用的算法包括支持向量机、神经网络和决策树等。
这些算法可以从数据中学习电池的寿命与其它因素之间的关系,并建立预测模型。
最后,通过模型评估和优化,确定最佳的预测模型。
评估可以使用交叉验证和测试集验证等方法,来评估模型的准确性和稳定性。
优化则是针对模型的参数和算法进行调整,以提高预测的精度和可靠性。
锂电池寿命预测模型的建立为电池的管理和维护提供了重要的参考。
通过预测电池的寿命,我们可以提前采取措施,如调整充放电策略、降低温度等,来延长电池的使用寿命。
这对于延长电池寿命、提高电池可靠性和降低成本都具有重要意义。
总而言之,锂电池寿命预测模型的建立是一个复杂而重要的任务。
它需要收集和分析大量的电池运行数据,并利用机器学习算法建立预测模型。
通过预测电池的寿命,我们可以提前采取措施来延长电池的使用寿命,从而提高电池的可靠性和经济性。
这将为电池技术的发展和应用提供有力的支持。
基于分数阶联合卡尔曼滤波的磷酸铁锂电池简化阻抗谱模型参数在线估计

1 等效电路模型的建立
1.1 动力电池使用工况分析 动力电池使用工况的特征在一定程度上决定了
电池模型应有的精细化程度。汽车常见的运行工况 大致可以分为两种:市区工况和城郊工况,对应的 典型测试工况有美国《USABC 电池测试手册》中的 联邦城市(FUDS)工况、FTP75 市区(FTP75 Urban) 工况、FTP75 市郊(FTP75 Suburb)工况等。图 1 对 FTP75 市区和市郊工况的车速、仿真得到的负载 电流及其频率特性做了对比。主要仿真参数有:整 车质量 1 200kg,迎风面积 1.97m2 以及电池组参数 336V/40A·h。
汽车发展方向的电动汽车开始逐渐被推广应用[1], 磷酸铁锂电池因其高安全性而日益广泛地应单元,对其进行有效的监测和管理是电动汽车安全、 高效运行的基本保障[2]。目前,动力电池的状态监 测和管理技术主要有电池荷电状态(State Of Charge, SOC)估计技术[3,4]、峰值功率预测技术[5](State Of
基于Simulink的锂离子动力电池模型参数化开发

基于Simulink的锂离子动力电池模型参数化开发摘要:动力电池的荷电状态是新能源汽车运行过程的一项重要指标,而模型参数化是基于锂离子电池等效电路模型估算电池荷电状态算法实现的基础。
本文介绍了锂离子动力电池模型参数化开发过程,同时针对一款锂离子动力电池,基于Simulink工具进行模型参数化开发,包括数据测试、模型选择、模型搭建及参数化和参数合理性评估验证。
关键词:新能源汽车;模型参数化;锂离子电池等效电路模型;Simulink一、锂离子电池模型参数化概述锂离子电池模型参数化的过程即基于电池测试数据,建立锂离子电池模型,针对锂离子电池模型中存在的非直接标定参数,通过离散数据拟合,获取未知参数的过程。
模型参数化的过程分为电池数据的获取、模型定义及参数确认、建立模型求解参数和参数合理性评估验证四个步骤。
二、电池模型参数化步骤(一)电池数据获取锂离子电池的测试结果主要用于锂离子电池性能评估、行为特性分析和电池管理系统设计分析,同时也决定了电池模型的类型及系数。
参考汽车用电池测试标准,同时基于锂离子电池特性,定义包括测试设备定义及精度要求、测试方法、测试流程等方面内容测试,为模型参数估计提供标准的数据支持。
模型参数化结果的精度基于测试数据的数量及合理性,测试数据越多,同时测试工况对电动汽车驾驶工况覆盖率越大,其参数化结果越精确。
本文采用的测试项目包括如下:①条件适应测试:充分活化电池内部活性物质,根据电池供应商建议定义测试方法;②容量标定测试:涓流充放,标定2次,最大限度获取电池真实容量,取两次充电和放电容量的均值;③充放电性能测试:分析不同充放电电流倍率对电池性能的影响;通过行驶工况中电流分布数据,确定电流倍率表;④单一及组合脉冲性能测试:获取电池的动态响应能力;测试表中的电流值需要根据单芯特性更改;⑤工况性能测试:获取电池运行实际工况时的电压变化数据,与基于电模型计算出的电池电压变化数据对比验证分析,验证电模型精度。
锂电池电路模型参数辨识
锂电池电路模型参数辨识锂电池是目前广泛应用于移动电子设备和电动汽车等领域的重要能源储存装置之一。
为了更好地了解和掌握锂电池的性能特征,需要对其电路模型进行参数辨识。
本文将介绍锂电池电路模型参数辨识的方法和过程。
一、锂电池电路模型锂电池的电路模型一般可以分为两个部分:电化学模型和电阻模型。
电化学模型主要描述了锂电池内部的化学反应过程,而电阻模型则描述了锂电池内部和外部的电阻特性。
常用的锂电池电路模型有Thevenin模型和Rint模型等。
二、参数辨识方法参数辨识是指通过实验数据分析和处理,确定电路模型中的参数数值。
在锂电池电路模型参数辨识中,常用的方法有静态法和动态法。
1. 静态法静态法是指在锂电池放电或充电过程中采集一系列电压、电流和时间数据,然后通过曲线拟合的方法来确定电路模型的参数。
常用的静态法有开路电压法和恒流放电法。
开路电压法是通过测量锂电池在不同放电状态下的开路电压,然后根据开路电压与电荷状态之间的关系来确定电路模型参数。
恒流放电法则是通过在恒定电流下放电,测量电压随时间的变化关系,从而得到电路模型的参数。
2. 动态法动态法是指通过对锂电池进行脉冲放电或充电,然后测量电压和电流响应的方法来确定电路模型的参数。
常用的动态法有脉冲响应法和频率响应法。
脉冲响应法是通过给锂电池施加一个短脉冲电流,然后测量电压响应,从而得到电路模型的参数。
频率响应法则是通过施加不同频率的交流电流信号,测量电压和电流的相位差和幅度比值,从而获得电路模型参数。
三、参数辨识过程无论是使用静态法还是动态法进行锂电池电路模型参数辨识,都需要经过一系列的实验和数据处理步骤。
1. 实验准备需要准备一组锂电池和相应的测量仪器,如电流表和电压表等。
同时,还需要确定实验的放电或充电条件,如恒定电流值和时间等。
2. 数据采集在实验过程中,需要采集锂电池的电压和电流数据。
这些数据可以通过连接测量仪器来实时记录,或者通过数据采集设备进行离线采集。
battery simulator 使用方法
battery simulator 使用方法Battery Simulator 使用方法Battery Simulator 是一种用于模拟电池放电过程的工具,它可以帮助我们了解电池的性能以及根据不同的负载条件预测电池的寿命。
本文将一步一步介绍Battery Simulator 的使用方法,并提供一些实例和技巧。
1. 模块和接口连接在开始使用Battery Simulator 之前,首先需要确保所有模块和接口正确连接。
确认电池模块的正极和负极连接到相应的接口,并检查接口和设备之间的连接线是否牢固。
2. 设置电池参数在使用Battery Simulator 进行模拟之前,需要设置电池的相关参数,如容量、电压、内阻等。
这些参数决定了电池的性能和模拟结果的准确性。
通常情况下,这些参数可以从电池的规格书或厂家提供的信息中获得。
3. 选择负载条件Battery Simulator 允许我们模拟不同的负载条件,以模拟现实世界中电池的放电过程。
可以选择不同的负载电阻或加载曲线,并根据需要进行设置。
通常,负载电阻越大,电池的放电时间越短。
4. 设置放电模式Battery Simulator 提供了多种放电模式,如恒定电流放电、恒定功率放电、恒定电阻放电等。
根据电池的实际应用场景,选择合适的放电模式。
5. 启动模拟在完成以上的设置之后,可以启动Battery Simulator 进行模拟。
按下启动按钮或者发送指令以开始电池的放电过程。
同时,注意观察电池的实时参数,如电压、电流和温度等,并记录下来以供后续分析和比较。
6. 数据记录和分析在电池放电过程中,Battery Simulator 会实时记录电池的参数,并保存在内部存储器或者连接的电脑中。
一般来说,我们可以通过软件界面或电脑上的数据采集软件实时查看和记录数据。
放电结束后,可以将数据导出并进行分析。
比较不同负载条件下的放电数据,可以得出电池性能和寿命的相关结论。
锂离子电池电化学模型参数拟合
锂离子电池电化学模型参数拟合锂离子电池电化学模型参数拟合1. 引言锂离子电池是一种常见的可充电电池,其在现代社会中得到广泛的应用。
在锂离子电池的设计与研发过程中,准确的电化学模型参数对于预测和改善电池性能至关重要。
2. 电化学模型参数拟合的意义电化学模型参数拟合是通过实验数据来确定一个电池模型中的参数,以准确地描述电池的动态行为。
通过拟合电化学模型的参数,我们可以更好地理解和预测电池的性能、寿命和安全性。
参数拟合还能为电池材料的研发提供有力的支持,帮助优化材料的配方和制备工艺。
3. 锂离子电池的电化学模型锂离子电池的电化学模型通常包括电极动力学,电解质传导和扩散,以及锂离子的迁移等方面。
在拟合电化学模型参数时,我们需要考虑电荷传输过程、离子扩散、极化和阻抗等因素。
通过拟合这些参数,我们可以更准确地描述电池的电化学行为。
4. 电化学模型参数的拟合方法现有的电化学模型参数拟合方法主要包括基于开路电位、循环伏安曲线以及恒流充放电实验的方法。
这些方法可以通过优化算法,如最小二乘法、粒子群优化算法和遗传算法,来拟合电化学模型的参数。
拟合过程中,我们需要选择适当的模型和算法,并根据拟合结果进行模型验证。
5. 锂离子电池电化学模型参数拟合的挑战锂离子电池的电化学行为受多种因素的影响,如电极材料的物理化学性质、电解质和添加剂的组成以及操作条件等。
这些因素的复杂性给参数拟合带来了挑战。
电化学模型本身的复杂性也增加了参数拟合的困难。
6. 个人观点和理解从个人观点来看,锂离子电池的电化学模型参数拟合是一个复杂而关键的任务。
通过准确拟合参数,我们可以更好地理解电池的行为,提高其性能和寿命,并促进电池技术的发展。
在我看来,未来的研究应该注重开发更准确、高效的参数拟合方法,以应对锂离子电池及其他电池系统的发展需求。
7. 总结锂离子电池电化学模型参数拟合是电池研究领域的重要课题。
通过准确拟合参数,我们可以更好地理解和优化电池的性能和寿命。
HIGH-PRECISION BATTERY MODEL PARAMETER IDENTIFICAT
专利名称:HIGH-PRECISION BATTERY MODELPARAMETER IDENTIFICATION METHODAND SYSTEM BASED ON OUTPUTRESPONSE RECONSTRUCTION发明人:ZHANG, Chenghui,张承慧,WEN, Fazheng,温法政,DUAN, Bin,段彬,ZHU, Rui,朱瑞,ZHANG,Junming,张君鸣申请号:CN2020/092937申请日:20200528公开号:WO2020/239030A1公开日:20201203专利内容由知识产权出版社提供摘要:Disclosed are a high-precision battery model parameter identification method and system based on output response reconstruction. The method comprises: on the basis of a relationship between a measured voltage signal and a real voltage signal and a relationship between the real voltage signal and an excitation current signal, determining a reconstructed pulse function; reconstructing a voltage signal using the reconstructed pulse function and the excitation current signal; and on the basis of the reconstructed voltage signal and the excitation current signal, obtaining a battery equivalent circuit model parameter. The beneficial effects of the present invention are: a reconstructed output signal is highly real and parameter identification precision is high; and a process of parameter selection is omitted, so that the process of parameter identification is simpler and clearer.申请人:SHANDONG UNIVERSITY,山东大学地址:No. 17923, Jingshi Road, Lixia District Jinan, Shandong 250061 CN,中国山东省济南市历下区经十路17923号, Shandong 250061 CN国籍:CN,CN代理人:JINAN SHENGDA INTELLECTUAL PROPERTY AGENCY CO., LTD.,济南圣达知识产权代理有限公司更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & ExhibitionBattery Models Parameter Estimation based on Matlab/Simulink®Mohamed Daowd1, Noshin Omar1, Bavo Verbrugge2, Peter Van Den Bossche2, Joeri Van Mierlo11Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium2Erasmus University College Brussels, IWT Nijverheidskaai 170, 1070 Anderlecht, BelgiumE-mail: mdaowd@vub.ac.beAbstract – Battery characteristics and performances at different operating conditions are crucial in its applications especially in Electrical Vehicles (EVs). With an accurate and efficient battery model it can be predict and optimize battery performance especially under practical runtime usage such as Battery Management Systems (BMS). An accurate method for estimating the battery parameters is needed before constructing the reliable battery model. Three famous battery models; the Partnership for a New Generation of Vehicles (PNGV), Thevenin and second order Battery model, are commonly used for battery modelling.This paper proposes a new method of parameters estimation using Matlab/Simulink® parameter estimation tool for the premonition three battery models. A Lithium Polymer (Li-Po) 12Ah 3.7V battery is tested by specific standard tests at different State of Charge (SoC), temperature and current rate and the three models parameters are estimated according to these conditions. The comparison between PNGV battery parameter estimation spreadsheet method and Matlab/Simulink method for parameter estimation is presented. Copyright Form of EVS25.Keywords – Parameters estimation methods, Matlab/Simulink, Thevenin battery model, PNGV, FreedomCAR battery model.1.IntroductionLithium-Ion (Li-Ion)/Lithium-Polymer (Li-Po) batteries are considered as high-capacity batteries, which can be designed for either high energy or high power applications. While there is a need for a model capable to describes the battery behavior, with a variation of battery conditions such as SoC, temperature, current rates, loading conditions static or dynamic loading and its applications. Three battery models, the Partnership for a New Generation of Vehicles (PNGV), Thevenin and Second order Battery model are commonly used for battery modelling [1-5]. Before selecting the battery model there are two steps that must be done carefully for achieving the best performance from the battery model; the first step applying a standards tests for estimating the battery parameters, the second step is using an accurate method for battery parameters estimation with minimal errors. In recent years, some approaches were proposed with different parameters estimation methods, these methods different according to the processing time for estimating the parameters, its degrees of complexity or using a simple battery model [1], [6] & [7]. The method used in [1] using PHGV battery parameters estimation spreadsheet has a limitation that it is used for only the PNGV battery model. The parameter estimation presented in [6] is complicated by using Extended Kalman Filtering (EKF), the method presented in [7] has a lot of mathematical expressions for extracting the battery parameters which is relatively complex and leads to a long estimation time.This paper presents new parameter estimation method using Matlab/Simulink® parameter estimation tool, which is easy, fast processing time, useful, powerful tool. The main advantage of this method that it can be used for any battery model, as the user builds, with a full control for estimation progresses. In addition this paper presents a comparison between the three common battery models Thevenin, PNGV, and second order battery model according their battery models parameters estimations. Also simulation the three battery models for their parameters validation with different load current profiles. The paper is organized as follows. Section 2. Battery models and parameter estimation methods. Section 3. Comparison between parameters errors with different parameter estimation methods for the three models. Section 4. Illustrates Battery models parameters estimation using Simulink with the estimated parameters results. Section 5. Models parameters validation. Section 6. Paper conclusion.2.Battery Models and ParameterEstimation Methods2.1.Battery ModelThe three common used equivalent circuits for describing the battery models are Thevenin, which describes the battery with an ideal battery voltage source (V OC), internal resistance (R o), and a parallel capacitance (C Tr), and an over-voltage resistance (R Tr), PNGV, which describes the battery with an Open Circuit Voltage source (OCV), internal resistance (R o), open circuit voltage capacitance (1/OCV’) and a Polarization circuit of shunted capacitance (C), and resistance (R p), and second order battery model, which describes the battery with an battery voltage source (V OC), internal resistance (R o), and two parallel polarization circuits (C Tr1-R Tr1 and C Tr2-R Tr2), as shown in Figure 1. The parameters of these battery models are estimated and validated with the aid of them Simulink modeling.The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition(a) (b)(c)Figure 1: Battery Models (a) Thevenin model (b) PNGV model(c) Second order battery modelStandard tests were done into the battery for extracting its different models parameters such as Capacity test, Dynamic Discharge Performance (DDP) test and a Hybrid Pulse Power Characterization (HPPC) test [1]. These tests were done at different SoC, temperature and C-rates.2.2. PNGV Battery Parameter EstimationSpreadsheet Method: From the premonition tests specially the HPPC test, the PNGV battery model parameters can be estimated using the PNGV battery parameters estimation spreadsheet method, as shown in figure 2.The drawback of this method is the residual values (r 2) must exceed 0.995, in some cases it can’t be reachable according to the tested battery and the testing process. In addition, the main drawback in this method it’s valid only for PNGV battery model parameters.Figure 2: PNGV battery parameters estimation spreadsheet2.3. Simulink Parameter Estimation Method:A new method for estimating the battery parameters using Matlab/Simulink parameter estimation tool [8], under the Simulink environment, is proposed. Any suggested battery model can be built using Simulink simple mathematical blocks as shown in figure 3-a, or using SimPowerSystems blockset as shown in figure 3-b. The battery models build in Simulink shown in figures 3.a and 3.b are based on equations 1 and 2 [1].(1) ][][]['∫−−−=p p L O L L I R I R dt I OCV OCV VWhere the polarization current I p is the solution of the differential equation(2))(τp L p I I dtdI −=With a specified initial condition, e.g., I p = 0 at t = 0.Where:OCVAn ideal voltage source that represents “open circuit” battery voltageR o Battery internal “ohmic” resistance R P Battery internal “polarization” resistance C Shunt capacitance around R P τ Polarization time constant, τ = C.R P I L Battery load current I p Current through polarization resistance V L Battery terminal voltage1/OCV' A capacitance that accounts for thevariation in open circuit voltage with the time integral of load current I L.(a)(b)Figure 3: Simulink model for parameters estimation: a-Simulinkmathematic blocks, b-SimPowerSystems BlocksetThe 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & ExhibitionBy using the premonition tests data, such as current and voltage function of time, where the current-time vector used as an input and the voltage-time vector as an output of the model. Also any initial values of the parameters to be estimated and them range which are the inputs of the Simulink model shown above in figure 3, the parameters estimation process can be done, and controlling the estimated parameters such as step time, solver type, which parameters will estimated and which will keep constant, parameters range … etc. The program will find the suitable parameters for fitting the input data with a minimal error between the measured values and the estimated ones.3.Parameters Errors with DifferentParameter Estimation Methods for theThree Models.The battery models parameters were estimated using PNGV parameters estimation spreadsheet (only for PNGV battery model) and using Matlab/Simulink for the three battery models. One study case for the PNGV battery model parameters are estimated by PNGV Spreadsheets and Simulink methods shown in figure 4; the measured and estimated voltage comparison and corresponding errors between the measured and estimated voltage this case was done at 80% SoC and 25 ºC.(a)(b)Figure 4: Example of voltage Error (a) PNGV Spreadsheet, (b) Simulink Parameter Estimation tool.As shown in the figure 4, for the PNGV battery model the two parameters estimation methods nearly have the same error in estimated voltage, but the Simulink method is simpler, more accurate due to controlling the estimation step and faster with a fully control of the estimation process as mention before. In addition, the Simulink method is valid for any model, which makes the Simulink a great tool in parameter estimation and model modification.Also for the other two battery models; Thevenin and Second-order parameters were also estimated using Simulink parameter estimation tool. The results for one study case, the two models estimated parameters error between measured and estimated voltage at 80% SoC and 25 ºC shown in figure 5.The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition(a)(b)Figure 5: Measured and estimated voltage error using Simulink(a) Thevenin (b) Second-order battery model.As shown in figures 4 and 5; the parameters estimation at 80% SoC and 25 ºC for Thevenin battery Model gives a maximum error of 0.045 V (1.2 %), PNGV battery Model gives a maximum error of 0.025 V (0.68 %) and the Second-order battery Model gives a maximum error of 0.01 V (0.27 %).The Second-order battery model gives less error than the PNGV and Thevenin models, that is according to increase in the number of parallel RC networks it increases the accuracy of the predicted battery response [5]. As a result, it can be expected that this model will have the bestresponse during the validation process.4. Models Estimated Parameters UsingSimulink Parameter Estimation:The estimated parameters for the three battery models using Simulink parameter estimation tool shown in figures 5-7. They are function of SoC and Temperature.Another estimated parameters for the Second-order battery model as function of SoC and C-rates at 25 ºC is shown in figure 8.Figure 5: Thevenin battery model estimated parameters.Figure 6: PNGV battery model estimated parametersFigure 7: Second-order battery model estimated parameters function of SoC and TemperatureFigure 8: Second-order battery model estimated parameters function of SoC and C-ratesThe 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition5. Models parameters validation.The three models were simulated using Simulink for validating their estimated parameters, the validation done using two current profiles the first using HPPC test profile and the second using constant current 12A. Figure 9; shows the error between the measured and estimated voltage for the three models under the two loading conditions.Figure 9: Validation profiles voltage errors for the three batterymodels with the estimated parameters.6. ConclusionThe standard battery tests for parameters estimation wererepresented with different battery models parametersestimation methods. A new method for parameterestimation is proposed for any battery model using Matlab/Simulink. This method is based on Matlab/Simulink parameter estimation tool. Its advantages are low processing time, easy, powerful tool. It also gives accurate results. The main advantage of this method that; it can be used for any battery model as the user need with afull control for estimation progresses. It’s applied forestimating the battery model parameters for three differentbattery models; Thevenin, PNGV and Second-orderbattery models.The parameters of the three models are estimated and compared at different SoC, temperature and C-rates. The Second-order battery model gives the best result than the compared battery models, where for the parameters estimation process the Thevenin battery Model gives a maximum voltage error of 0.045 V (1.2%), PNGV battery model gives a maximum error of 0.025 V (0.68 %) and Second-order battery Model gives a maximum error of 0.01 V (0.27 %), which gives the best response into thebattery simulation modeling. Also it gives the bestresponse during the validation simulations. The validationprofile proof that the Simulink parameter estimation method is accurate and valid for any battery model parameter estimation.7. AcknowledgmentsThe authors would like to thank Miguel Dhaens, Stijn Pauwels and Wouter De Nijs from Flanders Drive. And Grietus Mulder from VITO, for their support during battery testing.8. References[1] Idaho National Engineering & Environmental laboratory,FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles, Oct. 2003. [2] Min Chen, Rincon-Mora, G.A., “Accurate Electrical BatteryModel Capable of Predicting Runtime and I–V Performance” IEEE Transactions on Energy Conversion, Vol. 21, No. 2, June 2006, pp: 504-511. [3] Ryan C. Kroeze, Philip T. Krein, “Electrical Battery Modelfor Use in Dynamic Electric Vehicle Simulations” IEEE Power Electronics Specialists Conference, 2008, pp: 1336-1342. [4] Rao, R., Vrudhula, S., Rakhmatov, “Battery Modeling forEnergy-Aware System Design” IEEE Computer Society December 2003 pp: 77-87.[5] B. Schweighofer, K. M. Raab, and G. Brasseur “Modeling ofHigh Power Automotive Batteries by the Use of an Automated Test System” IEEE Trans. on Instrumentation and Measurement Vol. 52, 2003 , pp. 1087-1091.[6] Gregory L. Plett “Extended Kalman filtering for batterymanagement systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation,” Journal of Power Sources, Volume 134, Issue 2, August 2004, pp: 277-292. [7] Livint, G.; Ratoi, M.; Horga, V.; Albu, M. “Estimation ofBattery Parameters based on Continuous-Time Model,” IEEE Signals, Circuits and Systems, 2007, pp: 1-4. 9. Author Mohamed DAOWD Born in Giza/Egypt in 1974. BSc, MSc graduation “Electrical Machines and Power Engineering” from Helwan University Cairo/Egypt in 1999 and 2006 respectively.Currently PhD Researcher, department ofElectrical Engineering and Energy Technology (ETEC), Vrije Universiteit Brussel, Belgium.Research interests include batteries in EVs specially BMS.Pleinlaan 2, 1050 Brussel, Belgium. VUB, Building Z, ETEC. Tel: +3226293396 Fax: +3226293620 Email: mdaowd@vub.ac.beNoshin Omar Was born in Kurdistan, in 1982. He obtained the M.S. degree in Electronics and Mechanics from Hogeschool Erasmus inBrussels. He is currently pursuing the PHD degree in the department of Electrical Engineering and Energy Technology ETEC, at the Vrije Universiteit Brussel, Belgium. His research interests include applicationsof supercapacitors and batteries in HEVs.The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Bavo VerbruggeGraduated as a Master in industrialengineering in 2007. At this time he worksas a PhD. candidate at the free University ofBrussels (VUB), where he’s currentlyperforming research on integratedmodelling of batteries and EDLC’s.Peter Van den BosscheHe graduated as civil mechanical-electrotechnical engineer from the VrijeUniversiteit Brussel and defended his PhD atthe same institution with the thesis "TheElectric Vehicle: raising the standards". He iscurrently lecturer at the engineering facultiesof the Erasmushogeschool Brussel and theVrije Universiteit Brussel, and in charge ofco-ordinating research and demonstration projects for electricvehicles in collaboration with the international associationsCITELEC and AVERE. His main research interest is electricvehicle standardization, in which quality he is involved ininternational standards committees such as IEC TC69, of whichhe is Secretary, and ISO TC22 SC21.Prof. Dr. ir. Joeri Van Mierlo obtainedhis Ph.D. in electromechanical EngineeringSciences from the Vrije Universiteit Brusselin 2000. He is now a full-time professor atthis university, where he leads the MOBI -Mobility and automotive technologyresearch group. Currently he is in charge ofthe research related to the development ofhybrid propulsion systems (powerconverters, supercapacitors, energy management, etc.) as well asto the environmental comparison of vehicles with different kindof drive trains and fuels (LCA, WTW). He is the author ofmore than 100 scientific publications. He is Editor in Chief of theWorld electric Vehicle Journal and co-editor of the Journal ofAsian Electric Vehicles. Prof. Van Mierlo chairs the EPE“Hybrid and electric vehicles” chapter (European PowerElectronics and Drive Association, ).He is board member of AVERE and its Belgian section ABSE(European Association for Battery, Hybrid and Fuel Cell ElectricVehicles, ). He is an active member of EARPA(association of automotive R&D organizations). Furthermore heis member of Flanders Drive and of Flemish Cooperative onhydrogen and Fuels Cells (VSWB). Finally Prof. Van Mierlo wasChairman of the International Program Committee of theInternational Electric, hybrid and fuel cell symposium (EVS24).。