整式的乘法与因式分解期末复习导学案
2024八年级数学上册第一部分期末单元复习复习4整式的乘法与因式分解习题课件新版新人教版

1. 【新视角·探究题】【知识生成】我们已经知道,通过
计算几何图形的面积可以表示一些代数恒等式,例如
图①可以得到( a + b ) 2 = a 2 +2 ab + b 2 ,基于此,请
解答下列问题:
(2)【类比应用】①若( x -3)( x -4)=1,
则( x -3)2+( x -4)2= 3 ;
13. 王老师给学生出了一道题:
求(2 x + y )(2 x - y )+2(2 x - y )2+(2 xy2-16 x2 y )÷
(-2 x )的值,其中 x = , y =-1.
同学们看了题目后发表不同的看法.
小明说:“条件 y =-1是多余的.”
小亮说:“不给 y =-1这个条件,就不能求出结果,所
2
3
4
③多项式与多项式相乘,先用一个多项式的
1
每
5
相加
每一项
.
乘
3. 整式的除法:①单项式相除,把系数与
同底数幂
分别
相除作为商的因式,对于只在被除式里含有的字母,则连
同它的指数作为商的一个因式.
②多项式除以多项式,先把这个多项式的每一项除以这个
相加
单项式,再把所得的商
1
2
3
4
.
5
a2- b2
点拨:设 x -3= a , x -4= b ,则 a - b =1.
∵( x -3)( x -4)=1,∴ ab =1.
∵( a - b )2= a2-2 ab + b2,∴12= a2+ b2-2.
∴ a2+ b2=3.∴( x -3)2+( x -4)2=3.
第十四章整式的乘法与因式分解导学案

第十四章 整式的乘法与因式分解同底数幂的乘法学习目标:1.熟记同底数幂的乘法的运算性质,了解法则的推导过程.2.能熟练地实行同底数幂的乘法运算. 会逆用公式a m a n =a m+n .3.通过法则的习题教学,训练学生的归纳水平,感悟从未知转化成已知的思想.学习重点:掌握并能熟练地使用同底数幂的乘法法则实行乘法运算.学习难点:对法则推导过程的理解及逆用法则.学习过程:一、知识回顾,引入新课问题二:(用5分钟时间解答问题四9个问题,看谁做的快,思维敏捷!)1.根据乘方的意义填空:(1)23×24 =(2×2×2)×(2×2×2×2)=(2)53×54 =( )×( )=342.猜想:a m ·a n= (,m n 都是正整数)3.验证:a m ·a n =( )×( )=( )=()a4.归纳:同底数幂的乘法法则:a m ×a n = (m 、n 都是正整数)文字语言:5.法则理解:①同底数幂是指底数相同的幂.如(-3)2与(-3)5,(ab 3)2与(ab 3)5,(x-y)2与(x-y)3 等.②同底数幂的乘法法则的表达式中,左边:两个幂的底数相同,且是相乘的关系;右边:得到一个幂,且底数不变,指数相加.6.法则的推广: a m ·a n ·a p = (m,n,p 都是正整数).思考:三个以上同底数幂相乘,上述性质还成立吗?同底数幂的乘法法则可推扩到三个或三个以上的同底数幂的相乘.共( )个a m·a n·a p=a m+n+p,a m·a n·…·a p=a m+n+…+p(m、n…p都是正整数)7.法则逆用能够写成同底数幂的乘法法则也可逆用,能够把一个幂分解成两个同底数幂的积,其中它们的底数与原来幂的底数相同,它的指数之和等于原来幂的指数.如:25=23·22=2·24等.8.应用法则注意的事项:①底数不同的幂相乘,不能应用法则.如:32·23≠32+3;②不要忽视指数为1的因数,如:a·a5≠a0+5.例1.计算:(1)103×104;(2)a •a3 (3)a •a3•a5 (4) x m×x3m+1例2.计算:(1)(-5) (-5)2(-5)3 (2)(a+b)3(a+b)5 (3)-a·(-a)3(4)-a3·(-a)2 (5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)5四、深入探究、活学活用例3. (1)已知a m=3,a m=8,求a m+n 的值.(2)若3n+3=a,请用含a的式子表示3n的值.(3)已知2a=3,2b=6,2c=18,试问a、b、c之间有怎样的关系?请说明理由.五、总结反思,归纳升华通过本节课的学习,你有哪些感悟和收获,与同学交流一下:①学到了哪些知识?②获得了哪些学习方法和学习经验?③与同学的合作交流中,你对自己满意吗?④在学习中,你受到的启发是什么?你认为应该注意的问题是什么?知识梳理:________________________________________________________________;方法与规律:______________________________________________________________;情感与体验:______________________________________________________________;反思与困惑:______________________________________________________________.幂的乘方学习目标:1.理解幂的乘方的运算法则,能灵活使用法则实行计算,并能解决一些实际问题.2.在双向使用幂的乘方运算法则的过程中,培养学生思维的灵活性;3.在探索“幂的乘方的法则”的过程中,让学生体会从特殊到一般的数学归纳思想 .初步培养学生应用“转化”的数学思想方法的水平.学习重点:能灵活使用幂的乘方法则实行计算.学习难点:幂的乘方与同底数幂的乘法运算的区别,提升推理水平和有条理的表达水平.学习过程:一、创设情境,导入新课问题一:我们知道:a a a a a=a 5,那么 类似地a 5a 5a 5a 5a 5能够写成(55)5,⑴上述表达式(55)5是一种什么形式?(幂的乘方)⑵你能根据乘方的意义和同底数幂的乘法法则计算出它的结果吗?二、观察猜想,归纳总结问题二:1.试试看:(1)根据乘方的意义及同底数幂的乘法填空:① ()();22223323=⨯= ②(a m )2=________×_________=__________;③ ()=323 =()3 ④ ()=43a = ()a .2. 类比探究:当n m ,为正整数时,()()()().a a a a a a m m m m m m n m ==•••=++个个观察上面式子左右两端,你发现它们各自有什么样的特点?它们之间有怎样的运算规律?请你概括出来: .3.总结法则 (a m )n =________________(m ,n 都是正整数)幂的乘方,_________________不变,______________________.三、理解使用,巩固提升问题三:1.计算(1)();1053 (2)()43b ; (3)()().3553a a •(4)()()()24432232x x x x •+• (5)()()()()335210254a a a a a -•-•--+(6)()[]()[]4332y x y x +•+ (7)()()()[]22n n m m n n m -•--归纳小结:同底数幂的乘法与幂的乘方的区别:相同点都是不变;不同点,前者是指数 ,后者是指数 .2.(1)已知,2832235x =⨯求x 的值.(2)已知,32=n x 求()23n x 的值. 四、深入探究,活学活用问题四:1.我们知道31=3,它的个位数字是3;32=9它的个位数字是9;33=27它的个位数字是7;34=81它的个位数字是1,……再继续下去看一看,你发现了什么?你能很快说出32012的个位数字是几吗?2. 逆用法则)()(a a am n n m mn ==: (1))()()(64(23(_____)(_____)(____)(___)12a a a a a ==== (2))()((_____)(______)a a a n m mn ===)((__)a m =)((___)a n (3)39(____)3= 五、深入学习,巩固提升1.下列各式中,计算准确的是( )A.()633a a =B. 1644a a a =•C. ()1243a a =D. 743a a a =+2.下列计算准确的是( ) A .x 2+x 2=2x 2 B .x 2x 2=2x 4C .(a 3)3=a 10D .(a m )n =(a n )m 3.13+m x 可写成( )A .()13+m xB .()13+m xC .()x x m •3D .x x m •3 4.(a 2)3a 4 等于( ) A .m 9 B .m 10 C .m 12 D . m 145.填空:()=34x ;()=•523x x ;若()==•y a a a y 则,1135 .6.(1)若,210,310==y x 求代数式y x 4310+的值.(2)()n n 求,39162=的值.7.一个棱长为310的正方体,在某种条件下,其体积以每秒扩大为原来的210倍的速度膨胀,求10秒后该正方体的体积.六、总结反思,归纳升华知识梳理:________________________________________________________________;方法与规律:______________________________________________________________;情感与体验:______________________________________________________________;反思与困惑:______________________________________________________________.积的乘方学习目标:1.会实行积的乘方运算,进而会实行混合运算.2.经历探索积的乘方运算法则的过程,明确积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得来的.3.通过积的乘方法则的探究及应用,让学生继续体会从特殊到一般的认知规律,从一般到特殊的应用规律.学习重点:积的乘方运算法则及其应用.学习难点:各种运算法则的灵活使用.学习过程:一、创设情境,导入新课问题一:1、已知一个正方体的棱长为2×103cm,•你能计算出它的体积是多少吗?列式为:2.讨论:体积应是V=(2×103)3cm3,这个结果是幂的乘方形式吗?底数是,其中一部分是103幂,但总体来看,底数是 .所以(2×103)3应该理解为 .如何计算呢?二、探究学习,获取新知问题二: (用4分钟时间解答问题四4个问题,看谁做的快,思维敏捷!)1.读一读,做一做:(1) (ab)2=(ab)·(ab)=(aa)·(bb)=(2)(ab)3===a( )b( )(3)(ab)4= = = (4)(ab)n===a( )b( )(其中n是正整数)2.总结法则:积的乘方公式:(ab)n =(n为正整数)文字语言:.3.如果是三个或三个以上几个数的积的乘方,这个运算性质还适用吗?如:(abc)n =.4.在使用积的乘方运算时,应注意的问题:积的乘方运算对于三个或三个以上几个数的积的乘方运算,即:(abc)n = a n b nc n;在使用积的乘方运算性质时,①要注意结果的符号;②要注意积中的每一项都要实行乘方,不要掉项.三、理解使用,巩固提升例3 计算:(1)(2b)3(2)(2×a3)2(3)(-a)3(4)(-3x)4(5)(-5b)3(6)(-2x3)4四、深入探究,自我提升活动四完成下列探索1.积的乘方运算性质:(ab)n =a n b n,把这个公式倒过来应该是: .2.倒过来之后的公式说明的意思是什么?你能用自已的语言说明一下吗?3.试一试 (1))125.0()(2012201281⨯ (2)52.055⨯(3)4)25.0(20112011⨯- (4)[(-145)502]4×(254)2009 (5))1()()7(20092011201071--⨯⨯ (6))()()(23751514909090⨯⨯五、总结反思,归纳升华知识梳理:1.积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab )n= a n b n (n 是正整数).2.三个或三个以上的因式的积的乘方也具有这个性质.如(abc )n = a n b n c n (n 是正整数)3.积的乘方法则能够实行逆运算.即a n b n =(ab )n (n 为正整数)方法与规律:______________________________________________________________;情感与体验:______________________________________________________________;反思与困惑:______________________________________________________________.单项式乘以单项式学习目标:1.会熟练利用单项式乘单项式的法则实行相关运算;2.通过对单项式法则的应用,培养观察、比较、归纳及运算的水平.教学重点:单项式与单项式相乘的法则教学难点:计算时注意积的系数、字母及其指数.学习过程:一、知识回顾,导入新课问题一:(用1分钟时间解答下面4个问题,看谁速度快,做的好!)1.同底底数幂的乘法:幂的乘方:积的乘方:同底数幂的除法:2.判断下列计算是否准确,如有错误加以改正.(1)a 3·a 5=a 10 ( ) (2)a·a 2·a 5=a 7;( )(3)(a 3)2=a 9; ( ) (4)(3ab 2)2·a 4=6a 2b 4.( )3.计算:(1)10×102×104=( ); (2) (-2x 2y 3)2=( ).(3) (a +b)·(a+b)3·(a+b)4=( );4.一个长方形的底面积是4xy ,高是3x ,那么这个长方体的体积是多少?请列式: .这是一种什么运算?怎么实行呢?本节我们就来学整式的乘法.二、探究学习,获取新知问题二:(用2分钟时间解答下面3个问题,看谁做的快,思维敏捷!)1.探究: 4xy·3x 如何实行计算?因为:4xy·3x =4·xy·3·x =(4·3)·(x·y)·y =12x 2y.2.仿例计算:(1)3x 2y·(-2xy 3)= = . (2)(-5a 2b 3)·(-4b 2c)= = . (4)3a 2·2a 3 = ( )×( )= .(5)-3m 2·2m 4 =( )×( )= .(6)x 2y 3·4x 3y 2 = ( )×( )= .(7)2a 2b 3·3a 3= ( )×( )= .3.观察第2题的每个小题的式子有什么特点?由此你能得到的结论是:法则:单项式与单项式相乘,三、理解使用,巩固提升问题三:(用6分钟时间解答下面6个问题,看谁做的又快又准确!)1.计算①(13a 2)·(6ab )= ; ②4y· (-2xy 2) = ③(-5a 2b)(-3a)= ; ④(2x 3)·22 = ; ⑤(-3a 2b 3)(-2ab 3c)3= ; ⑥(-3x 2y) ·(-2x)2= .2.归纳总结:(1)通过计算,我们发现单项式乘单项式法则实际分为三点:一是先把各因式的__________相乘,作为积的系数;二是把各因式的_____ 相乘,底数不变,指数相加;三是只在一个因式里出现的________,连同它的________作为积的一个因式.(2)单项式相乘的结果仍是 .3.推广:(1)计算:3a 3b·2ab 2·(-5a 2b 2) = 方法总结:多个单项式相乘,只要把它们的系数相乘作为积的系数,同底数的幂相乘即可.(2)做一做:①(2x 2y) •(- 3xy 3) •(x 2y 2z)②( 4×10 3) •(3×102) • (0.25×104)4.计算⑴=-•---•--)()()31()2(432322x xy xy y x (2)=+•+2)()(2y x y x(3)=-•-•-•2323)()()2(121x y y x xy x 5.卫星绕地球运动的速度(即第一宇宙速度)约7.9×103米/秒,则卫星运行3×102秒所走的路程约是多少?6.探究单项式相乘的几何意义.① 边长是a 的正方形的面积是a·a ,反过来说,a·a 也可以看作是边长为a 的正方形的面积. ②探讨:3a·2a 的几何意义.③探讨:3a ·5ab 的几何意义.四、实践应用,提升技能问题三:(用5分钟时间解答下面5个问题,看谁做的快,方法灵活!)1.判断:①单项式乘以单项式,结果一定是单项式( )②两个单项式相乘,积的系数是两个单项式系数的积( )③两个单项式相乘,积的次数是两个单项式次数的积( )2.下列运算准确的是( )A.()()4435432y x xy xy -=--B. ()122321535a a a =⋅C.()()232101.0x x x -=--D.()n n n 2101021102=⎪⎭⎫ ⎝⎛⨯⨯ 3.计算(1)0.4x 2y•(21xy)2-(-2x)3•xy 3 (2)()b a abc c ab 3322123121⋅⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-4. 已知单项式832+-y x b a 与单项式y x y b a -324的和是单项式,求这两个单项式的积.5已知n m y x 2132+-与m n y x ---364的积与y x 4-是同类项,求m 、n 的值.五、总结反思,归纳升华知识梳理:__________________________________________________________________;方法与规律:________________________________________________________________;情感与体验:________________________________________________________________; 反思与困惑:________________________________________________________________单项式乘以多项式学习目标1.在具体情景中,了解单项式乘以多项式的意义,理解单项式与多项式的乘法法则;2. 能熟练、准确地使用法则实行单项式与多项式的乘法运算.3.经历探索乘法运算法则的过程,让学生体验从“特殊”到“一般”的分析问题的方法,感受“转化思想”、“数形结合思想”,发展观察、归纳、猜测、验证等水平.4.初步学会从数学角度提出问题 ,使用所学知识解决问题,发展应用意识.通过反思,获得解决问题的经验.发展有条理的思考及语言表达水平.学习重点:在经历法则的探究过程中,深刻理解法则从而熟练地使用法则. 学习难点:准确判断单项式与多项式相乘的积的符号.学习过程:一、联系生活 设境激趣 ,⑴有几种算法计算共花了多少钱? ⑵各种算法之间有什么联系?请列式:方法1: ; 方法2: .联系 ……①2.将等式15(5.20+3.40+0.70)=15×5.20+15×3.40+15×0.70 中的数字用字母代替也可得到等式:m (a+b+c )=ma+mb+mc ;……②问题二:如图长方形操场,计算操场面积?方法1: .方法2: .可得到等式 (乘法分配律);二、探究学习,获取新知.1.等式②左右两边有什么特点?2.提炼法则:3.符号语言:a(b+c)=ab+ac 或 m (a+b+c )=ma+mb+mc4.思想方法:剖析法则m (a+b+c )=ma+mb+mc ,得出: 转化单项式 ×多项式 —— → 单项式 ×单项式乘法分配律三、理解使用,巩固提升问题三:1.计算:⑴223(2)(35)a ab ab -⋅- ⑵(32ab 2-2ab ) •ab ⑶品名 单价(元) 数量笔记本 5.20 15 钢笔 3.40 15 贺卡 0.70 15(-2a).(2a 2-3a+1)2.单项式与多项式相乘的步骤:①按乘法分配律把乘积写成 ;②单项式的乘法运算.3.讨论解决:(1)单项式与多项式相乘其依据是 ,使用的数学思想是 . (2)单项式乘多项式的结果仍是多项式,积的项数与原多项式的项数 . (3)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定: 同号相乘得 ,异号相乘得 . 4. 抢答:下列各题的解法是否准确,准确的请打∨错的请打× ,并说明原因.(1)221a(a 2+a+2)=21a 3+21a 2+1 () (2)3a 2b(1-ab 2c)=-3a 3b 3( )(3)5x(2x 2-y)=10x 3-5xy ( ) (4)(-2x).(ax+b-3)=-2ax 2-2bx-6x( )5.计算: ⑴ (5a 2-2b)·(-a 2) ⑵222212()5()2a ab b a a b ab -+--四. 题型探索 中考链接问题四:(2011中考题)先化简,再求值.2a 3b 2(2ab 3-1)-(-32a 2b 2)(3a-29a 2b 3)其中a=31,b=-3.归纳小结:1.用单项式乘多项式法则去括号和单项式乘单项式法则实行计算.2.合并同类项化简. 3.把已知数代入化简式,计算求值.五、联系现实 升华思维问题五:1. 某长方形足球场的面积为(2x 2+500)平方米,长为(2x+10)米和宽为x 米,这个足球场的长与宽分别是多少米? 2.你能用几种方法计算下面图形的面积S ?五、总结反思,归纳升华x2x 2+500 个法则:m (a+b+c )=ma+mb+mc 种思想:“转化”、“数形结合”种运用:化简、解方程(不等式)、实际问题等2x+10知识梳理:多项式乘以多项式学习目标1.理解并经历探索多项式乘以多项式法则的过程.2.熟练应用多项式乘以多项式的法则解决问题3.培养独立思考、主动探索的习惯和初步解决问题的愿望及水平.学习重点:多项式乘以多项式的运算法则与应用.学习难点:多项式乘以多项式法则的得出与理解.学习过程:一、温故知新,导入新课:计算:⑴(-8a 2b )(-3a) ⑵2x·(2xy 2-3xy)使用的知识与方法:二、问题情境,探索发现问题一:1.如下图,某地区退耕还林,将一块长m 米、宽a 米的长方形林区的长、宽分别增加n 米和b 米.求这块林区现在的面积S.(比一比看谁的方法多,运算快)按①②④可得到的结论:按①③④可得到的结论:2.蕴含的代数、几何意义分别是:3.归纳概括, 加深理解:①多项式与多项式相乘的法则:多项式与多项式相乘, ②用字母表示为: .三、理解使用 总结方法问题二:1.计算⑴(x+2)(x -3) ⑵(3x -1)(2x+1) ⑶(x+2)(x+2y -1)四、反馈矫正,注重参与问题三:(下面的计算是否准确?如有错误,请改正)⑴(3x+1)(x -2) ⑵(3x -1)(2x-1) ⑶(x+2)(x -5)=3x 2-6x-2 =6x 2-3x-2x+1 =x 2+5x+2x+10=x 2+7x+10归纳多项式与多项式相乘注意事项:① ② ③五、综合使用 拓展提升a b问题4:(中考链接)有一道题计算(2x +3)(3x +2)-6x (x +3)+5x +16的值,其中x =-666 ,小明把x =-666错抄成x =666,但他的结果也准确,这是为什么?问题5:(联系生活)有一个长方形的长是2x cm,宽比长少4cm,若将长方形的长和宽都增加3cm,面积增加多少? 若x =2 cm,则增加的面积是多少?六、实践使用 巩固新知1.判断下列各题是否准确,并说出理由 .(1).2(31)(2)36x x x x x +-=-+ ( ) (2).2(2)(5)710x x x x +-=++( )(3).22(25)(32)641510a b a b a ab ba b +-=-+- ( )2. 选择题:下列计算结果为 x 2-5x -6的是( )A.(x -2)(x -3)B. (x -6)(x +1)C. (x -2)(x +3)D. (x +2)(x-3)3.如果ax 2+bx +c =(2x +1)(x -2),则a = b = c =4.一个三角形底边长是(5m -4n),底边上的高是(2m +3n) ,则这个三角形的面积是5. 王老汉承包的长方形鱼塘,原长 2x 米,宽 x 米,现在要把四周向外扩展 y 米,问这个鱼塘的面积增加多少?七、总结反思同底数幂的除法学习目标:1.理解同底数幂的除法运算法则,能灵活使用法则实行计算,并能解决实际问题.2.探索推导“同底数幂的除法运算法则”的过程中,让学生体会从特殊到一般的数学归纳思想,继续培养学生的推理水平和语言、符号的表达水平.学习重点:能灵活使用同底数幂的除法运算法则实行计算 .学习难点:应用同底数幂的除法运算法则解决数学问题.学习过程:一、自主学习,导入新课问题一: (用2分钟时间快速解答下面6个问题,看谁反映的快!)1.我们已经知道同底数幂的乘法法则:a m ·a n =a m+n ,那么同底数幂怎么相除呢?2. (1)用你学过的知识完成下面计算.①23·22=2( ) ②103·104=10( ) ③a 4·a 3=a ( )(2)根据上面的计算,由除法和乘法是互为逆运算,你能直接写出下面各题的结果吗?①25÷22= ;②107÷103= ;③a 7÷a 3= (a≠0).3.仿例计算:(用幂的形式填空)①=⨯⨯⨯=÷2222222525个 ; ②=÷371010 = ; ③=÷37a a = .4.类比探究:①一般地,当m 、n 为正整数,且m >n 时()()()a a a a a a a a a nm =••••••=÷个个, ②你还能利用除法的意义来说明这个运算结果吗?③观察上面式子左右两端,你发现它们各自有什么样的特点?它们之间有怎样的运算规律?请你概括出来:5.总结法则:同底数幂的除法性质: a m ÷a n = (m 、n 为正整数,m>n ,a≠0)文字语言:同底数幂相除,.6.(1)32÷32 =9÷9= (2)32÷32 =3( )-( )=3( )=(3)a n ÷a n =a ( )-( )=a ( )=1,也就是说,任何不为0的数的 次幂等于1;字母作底数,如果没有特别说明一般不为0.二、合作学习,获取新知问题二: 1、计算(1)38a a ÷ (2)()()310a a -÷- (3)()()4722a a ÷(4)x 6÷x = ;(6)(-x)4÷(-x) = ;三、深入探究 ,活学活用问题三: 1.你会计算 (a+b)4÷(a+b)2吗?2.在幂的运算中,如果底数是多项式,法则还适用吗?3.做一做 (1)(x – y )7 ÷(x – y ) (2)(– x – y )3÷(x+y )24.由a m ÷a n =a m-n 可知:a m-n =a m ÷a n ,你会逆用这个公式吗?试一试:⑴已知3m =5,3n =4,求32m-n 的值. ⑵已知的值。
42第14章整式的乘法与因式分解小结与复习教案

A.±6 B.±12 C.±18 D.±72
9.若 a+b=5,ab=3,则 2a2+2b2=_____.
10.计算:
(1)(x+2y)(x2-4y2)(x-2y); (2)(a+b-3)(a-b+3); (3)(3x-2y)2(3x+2y)2
解:(1)原式=(x+2y)(x-2y)(x2-4y2)=(x2-4y2)2=x4-8x2y2+16y4
A.2a3÷a=2a2
B.(-a3)2=a6
C.a4·a3=a7
D.a2·a4=a8
2.计算:0.252025×(-4)2025-8100×0.5301
解:原式=[0.25×(-4)]2025-(23)100×0.5300×0.5
=(-1)2025-(2×0.5)300×0.5
=-1-0.5
=-1.5 3.(1)已知 3m=6,9n=2,求 3m+2n,32m-4n 的值.(2)比较大小:420 与 1510. 解:(1)∵ 3m=6,9n=2
第 14 章整式的乘法与因式分解小结与复习
一、教学目标 (一)知识与技能:记住整式乘除的计算法则,平方差公式和完全平方公式,掌握因式分解的 方法和则. (二)过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式. (三)情感态度与价值观:培养学生的独立思考能力和合作交流意识. 二、教学重点、难点 重点:记住公式及法则. 难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解. 三、教学过程 知识梳理 一、幂的乘法运算 1.同底数幂的乘法:底数_____,指数_____. am·an =______. 2.幂的乘方:底数_____,指数_____.(am)n=______. 3.积的乘方:积的每一个因式分别_____,再把所得的幂_____.(ab)n=______. 二、整式的乘法 1.单项式乘单项式: (1)将______________相乘作为积的系数; (2)相同字母的因式,利用__________的乘法,作为积的一个因式; (3)单独出现的字母,连同它的______,作为积的一个因式. 注:单项式乘单项式,积为________. 2.单项式乘多项式: (1)单项式分别______多项式的每一项; (2)将所得的积______. 注:单项式乘多项式,积为多项式,项数与原多项式的项数______. 3.多项式乘多项式: 先用一个多项式的每一项分别乘另一个多项式的______,再把所得的积______. 三、整式的除法 1.同底数幂的除法: 同底数幂相除:底数_____,指数_____. am÷an=______. 任何不等于 0 的数的 0 次幂都等于 1. a0=am÷am=1. 三、整式的除法 2.单项式除以单项式: 单项式相除,把______、____________分别相除后,作为商的因式;对于只在被除式里含有 的字母,则连它的_______一起作为商的一个因式. 3.多项式除以单项式: 多项式除以单项式,就是用多项式的________除以这个________,再把所得的商______. 四、乘法公式 1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差. (a+b)(a-b)=a2-b2 2.完全平方公式: 两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍.
人教版数学八年级上册第14章《《整式的乘法与因式分解复习》》优秀教学案例

在教学过程中,教师应采用问题导向的教学方法,引导学生主动发现问题、提出问题、解决问题。教师可以设计一系列由浅入深、层层递进的问题,如“整式乘法有哪些法则?”“如何判断多项式能否进行因式分解?”“因式分解有哪几种常用方法?”等。通过这些问题,激发学生的思维,培养学生的自主学习能力。
(三)小组合作
2.教师要定期对学生的学习成果进行评价,既要关注学生的知识与技能掌握情况,也要关注学生在学习过程中的表现,如合作意识、创新精神等;
3.教师应采用多元化的评价方式,如口头评价、书面评价、同伴评价等,充分调动学生的积极性,提高学生的自我认知能力;
4.教师要根据评价结果,及时调整教学策略,以提高教学效果。
为了让学生更好地掌握整式的乘法与因式分解,本教学案例将采用以下策略:
1.激活学生已有知识,通过实际例题引导学生自主探究,强化算理理解;
2.采用小组合作学习方式,培养学生团队协作能力,提高课堂互动性;
3.创设生活情境,将数学知识与学生生活实际相结合,提高学生解决实际问题的能力;
4.注重解题策略的指导,培养学生举一反三、触类旁通的数学思维。
(二)过程与方法
1.通过自主探究、合作交流等学习方式,让学生在探究整式的乘法与因式分解过程中,培养独立思考和团队协作的能力;
2.引导学生总结解题方法,掌握解题规律,提高解题效率;
3.注重培养学生的观察能力、分析能力和归纳能力,使学生能够从具体问题中抽象出数学模型,运用数学知识解决问题;
4.激发学生的创新意识,鼓励学生多角度、多维度地思考问题,培养学生解决问题的多样性。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,使学生体会到数学学习的乐趣,培养良好的学习习惯;
2.培养学生面对困难时勇于挑战、积极进取的精神风貌,增强学生的自信心;
《整式的乘法与因式分解复习》导学案

第14章整式的乘法与因式分解复习导学案【学习目标】1、复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系.2、通过练习,熟悉常规题型的运算,并能灵活运用.【重点难点】重点:整式的乘除运算与因式分解难点:灵活进行整式的乘除运算和多项式的因式分解.一、知识梳理1. 有关法则⑴幂的四个运算性质:(2)单项式乘以单项式的法则:把系数、同底数幂分别相乘后,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数一起作为积的一个因式.⑶单项式与多项式相乘的法则:单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,再把所得的积相加.⑷多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.⑸单项式除以单项式的法则:把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑹多项式除以单项式法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加.2. 有关公式:⑴平方差公式:两个数的和与这两个数差的积等于这两个数的平方差,用字母表示为:(a+b)(a-b)= a2- b2.⑵完全平方公式:两个数和(或差)的平方,等于它们的再加上(或减去)这两数的平方,即:(a±b)2=a2±2 a b+ b2.3. 有关概念 ⑴因式分解:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解.⑵提公因式法:把多项式各项的公因式提出来,这种分解因式的方法叫做提公因式法,即am bm cm ++=m (a +b +c ).提公因式法的实质是逆用乘法分配律.⑶公式法:把乘法公式()()a b a b +-= a 2- b 2、2()a b ±= a 2±2 a b + b 2逆用,就得到分解因式的公式22a b -=(a +b )(a -b ),222a ab b ±+=(a ±b )2,这种运用公式分解因式的方法叫做公式法.(4)十字相乘法:pq x q p x +++)(2=(x +p )(x +q )。
整式的乘除法及因式分解复习

八年级上学期数学导学案内容:第十五章章末总结与复习编号 56主备人:武庆裕审核人:八年级数学组班级:姓名:评价:【学习目标】1.理解并掌握整式的乘、除法及因式分解。
2.通过复习,培养学生归纳类比的能力。
3.合作探究,培养学生相互协作精神。
【教学重点】整式的乘法、除法及因式分解。
【教学难点】整式乘除法及因式分解的灵活运用。
【自主学习】(自学课本内容,并填空)同底数幂相乘,__________________________,公式______________幂的运算性质幂的乘方,____________________________,公式______________ 整积的乘方,____________________________,公式______________ 式单项式乘以单项式_____________________________________的单项式乘以多项式_____________________________________,公式______________ 乘多项式乘以多项式_____________________________________,公式______________ 法平方差公式:___________________乘法公式完全平方公式:__________________(x+p)(x+q)型:___________________整同底数幂相除:_______________________________________,公式_____________ 式零指数幂:__________________________________,公式_______________(a≠0)除单项式除以单项式____________________________________________法多项式除以单项式____________________________________________ 定义:___________________________因与整式乘法的关系_______________________式提公因式法:______________________________;公因式_________________ 分方法平方差公式____________________解公式法完全平方公式_________________________;_________________x2+(p+q)x+pq型的二次三项式:________________________【合作探究】1.填空(可口答,此处预计用时15分钟)(1)a2·a3=_____________ a3·a3=_____________ a3+a3=______________(2)(a2)3=______________ (a3)2=_____________(3)(2a 2)3=_____________ 2(a 2)3=____________ (3×102)(5×103)=_____________ (4)2a 2·3a 3=____________ (2a 2)2·3a 3=____________ 2(a 2)2·3a 3=_____________ (5)a 2(a 2+a -1)=___________ -a 2(a 2+a -1)=____________ (-a)2(a 2+a -1)=_____________ (6)(a+b)(c+d)=______________ (a+b)(c -d)=________________ (7)(2x+1)(2x -1)=___________(3x+1)(-3x+1)=___________(-3x -1)(-3x+1)=_________ (8)(2x+1)2=_______________ (21x -1)2=_______________ (x -21)2=_______________ (9)(x+2)(x -3)=_____________ (x -2)(x+3)=_____________ (x -2)(x -3)=_____________ (10)a 6÷a 2=______________ a 5÷a 2=______________ a m ÷a m =______________(a ≠0) (11)2a 3÷a=______________ (2a)3÷a=_____________ (2a)3÷(2a)2=______________ (12)(3a 2+2a)÷a=________________ (4x 3-2x 2+2x)÷2x=________________(13)a 2+2ab+b 2=(a+b)2_______(填“是”或“不是”)因式分解,(a+b)(a -b)=a 2-b 2______(填“是”或“不是”)因式分解(14)因式分解:4x 3+4x 2+2x=________________,12a 3-6a 2+2a 中的公因式是_____________(15)因式分解:x 2-y 2=____________,4x 2-y 2=_____________,4x 2-41y 2=_____________ (16)因式分解:x 2+2xy+y 2=___________,4x 2-4x+1=___________,x 2-x+41=___________(17)因式分解:x 2-x -6=___________,x 2+x -6=____________,x 2-5x+6=_____________ (18)因式分解:2x 3+4x 2+2x=_________________,3x 6-12x 4=__________________,x 3-2x=__________________ 2.已知x+y=7,xy=10,求3x 2+3y 2的值.3.已知一个多项式与单项式-7x 5y 4的积为21x 5y 7-28x 7y 4+7y(2x 3y 2)2,求这个多项式.4.已知x 2+y 2+z 2-xy -xz -yz=0,试判断x ,y ,z 的关系.【课堂检测】1.下列计算结果正确的是( )A .(x 2y) 2=x 2y 2B .2a+3b=5abC .(a+1)2=a 2+1D .(3x 2y+2xy 2)÷xy=3x+2y 2.下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2+y 2D .x 2-y 2 3.已知实数a 满足a 2+2a -8=0,求a(a+2)2-a(a -3)(a -1)+3(5a -2)的值.4.(1)已知a m =3,a n =2,求a 2m -3n的值.(2)已知2a =3,8b =6,求a ,b 之间的数量关系.【课时作业】1.计算20132013080.125)(1)3(⨯-+-的结果是( ) A .3 B .23- C .2D .0 2.如果代数式2a 2-3a+1=9,那么4a 2-6a+1的值为( ) A .17 B .19 C .21 D .-19 3.若x 2+mx -15=(x+3)(x+n),则m 的值为( ) A .0B .5C .-2D .24.x+y=2a ,x -y=2b ,则xy 的值为( ) A .abB .a 2+b 2C .a 2-b 2D .41(a 2+b 2) 5.一个长方体的体积为(a -2b)3,而底面积为(a -2b)2,那么这个长方体的高为( ) A .a+2bB .a -2bC .(a+2b)2D .(a -2b)26.把(a+b)2-4(a+b -1)分解因式的结果为___________________. 7.单项式2m 5b a 43与单项式632b a n -的和是一个单项式,则它们的积为______________. 8.若多项式x 5- (a -2)x 3+5x 2- (b+3)x -1不含x 3和x 项,则a+b=_______________. 9.若x+x 1=15,则x1x -=_______________. 10.计算:(1)(3x -2y+1)(3x+2y -1) (2)(22223z y x 61z y x 41-)÷(z y x 2122-)11.因式分解:(1)x 2-4xy+4y 2-2x+4y -8(2)(x 2-2x)2+2(x 2-2x)+112.化简求值:(x+y)(x -y)+(x -y)2- (6x 2y -2xy 2)÷2y ,其中x=-2,y=31.13.已知a+b+c=1,a 2+b 2+c 2=2,求ab+bc+ac 的值.14.求(3-1)(3+1)(32+1)(34+1)……(332+1)+1的末位数.15.已知不等边△ABC 的三边长为整数a ,b ,c 且满足a 2+b 2-4a -6b+13=0,求c 边的长.。
整式乘除与因式分解复习教案
整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。
通过练习,熟悉常规题型的运算,并能灵活运用。
教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。
教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。
难点整式的除法与因式分解的应用是本课难点。
教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。
本课教学以练习为主。
教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。
人教版八年级数学上册第十四章《整式的乘法与因式分解复习课》第1-2课时学习任务单(导学案)及作业设计
人教版八年级数学上册第十四章《整式的乘法与因式分解复习课》学习任务单及作业设计第一课时【学习目标】1.巩固整式的乘法法则,并利用整式的乘法解决有关问题;2.通过整式的乘法运算,加深对知识的理解,建立比较清晰的知识体系. 【课前学习任务】1.复习整式乘法的法则,梳理本章的知识脉络;2.加强整式乘法的练习,体会与因式分解的联系与区别.【课上学习任务】学习任务一:正用幂的运算法则.例判断下面的计算对不对?如果不对,应该怎样改正?学习任务二:逆用幂的运算法则.巩固练习计算:学习任务三:直接用整式的运算法则与公式.例若定义一种新运算,巩固练习:先化简再求值学习任务四:变形用整式的运算公式如图 1 是一个长为 4b、宽为 a 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图 2).(1)观察图 2,请写出ab之间的数量关系;(2)应用:根据(1)中的结论,若求 x-y 的值.巩固练习:已知长方形 ABCD 的周长为 20,面积为 28,求分别以长方形的长和宽为边长的正方形面积之和是多少?【学习资源】1.收看网络课程:整式的乘法与因式分解全章复习(第一课时);2.阅读课本第 123,124 页相关内容,并在教科书上圈画出本节课的主要知识点.【作业设计】1.计算:2.求证:当 n 是整数时,两个连续奇数的平方差是 8 的倍数.【参考答案】第二课时【学习目标】1.巩固因式分解的定义与方法,并利用因式分解解决有关问题;2.了解型式子因式分解的方法.【课前学习任务】1.梳理一下本章的知识脉络,复习因式分解的定义与方法;2.加强因式分解的练习,体会与整式乘法的联系与区别.【课上学习任务】学习任务一:巩固因式分解的定义与方法.例下列各式中,从左到右的变形属于因式分解的是()例分解因式:巩固练习:分解因式学习任务二:因式分解的应用.例:学习任务三:拓展:型式子因式分解的方法.引例分解因式:例分解因式:巩固练习:分解因式【学习资源】1.收看网络课程:整式的乘法与因式分解全章复习(第二课时);2.阅读课本第 121,123,124 页相关内容,并在教科书上圈画出本节课的主要知点.【作业设计】1.分解因式:2.已知求x-2y的值.【参考答案】。
《整式的乘法与因式分解》全章导学案
第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.掌握同底数幂的乘法的概念及其运算性质,并能运用其熟练地进行运算;2.能利用同底数幂的乘法法则解决简单的实际问题.重点:同底数幂乘法的运算性质.难点:同底数幂乘法的运算性质的灵活运用.一、自学指导自学1:自学课本P95-96页“问题1,探究及例1”,掌握同底数幂的乘法法则,完成下列填空.(7分钟)1.根据乘方的意义填空:(-a)2=a2,(-a)3=-a3;(m-n)2=(n-m)2;(a-b)3=-(b-a)3.2.根据幂的意义解答:52×53=5×5×5×5×5=55;32×34=3×3×3×3×3×3=36;a3·a4=(a·a·a)·(a·a·a·a)=a7;a m·a n=a m+n(m,n都是正整数);a m·a n·a p=a m+n+p(m,n,p都是正整数).总结归纳:同底数幂相乘,底数不变,指数相加.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P96页练习题.2.计算:(1)10·102·104;(2)x2+a·x2a+1;(3)(-x)2·(-x)3;(4)(a+1)(a+1)2.解:(1)10·102·104=101+2+4=107;(2)x2+a·x2a+1=x(2+a)+(2a+1)=x3a+3;(3)(-x)2·(-x)3=(-x)2+3=(-x)5=-x5;(4)(a+1)(a+1)2=(a+1)1+2=(a+1)3.点拨精讲:第(1)题中第一个因式的指数为1,第(4)题(a+2)可以看作一个整体.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1计算:(1)(-x)4·x10;(2)-x4·(-x)8;(3)1000×10a×10a+1;(4)(x-y)·(y-x)3.解:(1)(-x)4·x10=x4·x10=x14;(2)-x4·(-x)8=-x4·x8=-x12;(3)1000×10a×10a+1=103·10a·10a+1=102a+4;(4)(x-y)·(y-x)3=-(y-x)·(y-x)3=-(y-x)4.点拨精讲:应运用化归思想将之化为同底数的幂相乘,运算时要先确定符号.探究2已知a m=3,a n=5(m,n为整数),求a m+n的值.解:a m+n=a m·a n=3×5=15点拨精讲:一般逆用公式有时可使计算简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.计算:(1)a·a2·a4;(2)x·x2+x2·x;(3)(-p)3·(-p)2+(-p)4·p;(4)(a+b)2m(a+b)m+1;(5)(x-y)3(x-y)2(y-x);(6)(-x)4·x7·(-x)3.解:(1)a·a2·a4=a7;(2)x·x2+x2·x=x3+x3=2x3;(3)(-p)3·(-p)2+(-p)4·p=(-p)5+p4·p=-p5+p5=0;(4)(a+b)2m(a+b)m+1=(a+b)3m+1;(5)(x-y)3(x-y)2(y-x)=-(x-y)3(x-y)2(x-y)=-(x-y)6;(6)(-x)4·x7·(-x)3=x4·x7·(-x3)=-x14.点拨精讲:注意符号和运算顺序,第1题中a的指数1千万别漏掉了.2.已知3a+b·3a-b=9,求a的值.解:∵3a+b·3a-b=32a=9,∴32a=32,∴2a=2,即a=1.点拨精讲:左边进行同底数幂的运算后再对比指数.3.已知a m=3,a m+n=6,求a n的值.解:∵a m+n=a m·a n=6,a n=3,∴3×a n=6,∴a n=2.(3分钟)1.化归思想方法(也叫做转化思想方法)是人们学习、生活、生产中的常用方法.遇到新问题时,可把新问题转化为熟知的问题,例如(-a)6·a10转化为a6·a10.2.联想思维方法:要注意公式之间的联系,例如看到a m+n就要联想到a m·a n,它是公式的逆用.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.2幂的乘方1.理解幂的乘方法则;2.运用幂的乘方法则计算.重点:理解幂的乘方法则.难点:幂的乘方法则的灵活运用.一、自学指导自学1:自学课本P96-97页“探究及例2”,理解幂的乘方的法则完成填空.(5分钟)(1)52中,底数是5,指数是2,表示2个5相乘;(52)3表示3个52相乘;(2)(52)3=52×52×52(根据幂的意义)=5×5×5×5×5×5(根据同底数幂的乘法法则)=52×3;(a m)2=a m·a m=a2m(根据a m·a n=a m+n);(a m)n=a m·a m…a m,\s\up6(n个a m)) (根据幂的意义)=a m+m+…+m,\s\up6(n个m)) (根据同底数幂的乘法法则)=a mn(根据乘法的意义).总结归纳:幂的乘方,底数不变,指数相乘.(a m)n=a mn(m,n都是正整数).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P97页练习题.2.计算:(1)(103)2;(2)(x3)5;(3)(-x m)5;(4)(a2)4·a5.解:(1)(103)2=103×2=106;(2)(x3)5=x3×5=x15;(3)(-x m)5=-x5m;(4)(a2)4·a5=a2×4·a5=a8·a5=a13.点拨精讲:遇到乘方与乘法的混算应先乘方再乘法.3.计算:(1)[(-x)3]2;(2)(-24)3;(3)(-23)4;(4)(-a5)2+(-a2)5.解:(1)[(-x)3]2=(-x3)2=x6;(2)(-24)3=-212;(3)(-23)4=212;(4)(-a5)2+(-a2)5=a10-a10=0.点拨精讲:弄清楚底数才能避免符号错误,混合运算时首先确定运算顺序.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若42n=28,求n的值.解:∵4=22,∴42n=(22)2n=24n,∴4n=8,∴n=2点拨精讲:可将等式两边化成底数或指数相同的数,再比较.探究2已知a m=3,a n=4(m,n为整数),求a3m+2n的值.解:a3m+2n=a3m·a2n=(a m)3·(a n)2=33×42=27×16=432.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.填空:108=()2,b27=()9,(y m)3=()m,p2n+2=()2.2.计算:(1)(-x3)5;(2)a6(a3)2·(a2)4;(3)[(x-y)2]3;(4)x2x4+(x2)3.解:(1)(-x3)5=-x15;(2)a6(a3)2·(a2)4=a6·a6·a8=a20;(3)[(x-y)2]3=(x-y)6;(4)x2x4+(x2)3=x6+x6=2x6.3.若x m x2m=3,求x9m的值.解:∵x m x 2m =3,∴x 3m =3,∴x 9m =(x 3m )3=33=27.(3分钟)公式(a m )n 的逆用:a mn =(a m )n =(a n )m .(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.3 积的乘方1.理解积的乘方法则.2.运用积的乘方法则计算.重点:理解积的乘方法则.难点:积的乘方法则的灵活运用.一、自学指导自学1:自学课本P97-98页“探究及例3”,理解积的乘方的法则,完成填空.(5分钟) 填空:(1)(2×3)3=216,23×33=216;(-2×3)3=-216,(-2)3×33=-216.(2)(ab)n =(ab)·(ab)……(ab)(n)个=(a·a ……a)(n)个·(b·b ……b)(n)个=a n b n .总结归纳:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n =a n b n (n 是正整数).推广:(abc)n =a n b n c n (n 是正整数).点拨精讲:积的乘方法则的推导实质是从整体到部分的顺序去思考的.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P98页练习题.2.计算:(1)(ab)3;(2)(-3xy)3;(3)(-2×104)3;(4)(2ab 2)3.解:(1)(ab)3=a 3b 3;(2)(-3xy)3=-27x 3y 3;(3)(-2×104)3=(-2)3×(104)3=-8×1012;(4)(2ab 2)3=8a 3b 6.3.一个正方体的棱长为2×102毫米.(1)它的表面积是多少?(2)它的体积是多少?解:(1)6×(2×102)2=6×(4×104)=2.4×105,则它的表面积是2.4×105平方毫米;(2)(2×102)3=8×106,则它的体积是8×106立方毫米.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 计算:(1)(a 4·b 2)3;(2)(a n b 3n )2+(a 2b 6)n ;(3)[(3a 3)2+(a 2)3]2.解:(1)(a 4·b 2)3=a 12b 6;(2)(a n b 3n )2+(a 2b 6)n =a 2n b 6n +a 2n b 6n =2a 2n b 6n ;(3)[(3a 3)2+(a 2)3]2=(9a 6+a 6)2=(10a 6)2=100a 12.点拨精讲:注意先乘方再乘除后加减的运算顺序.探究2 计算:(1)(99100)2013×(10099)2014; (2)0.12515×(215)3.解:(1)(99100)2013×(10099)2014=(99100)2013×(10099)2013×10099=(99100×10099)2013×10099=10099; (2)0.12515×(215)3=(18)15×(23)15=(18×23)15=1. 点拨精讲:反用(ab)n =a n b n 可使计算简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.计算:(1)-(-3a 2b 3)2;(2)(2a 2b)3-3(a 3)2b 3;(3)(-0.25)2008×(-4)2009.解:(1)-(-3a 2b 3)2=-9a 4b 6;(2)(2a 2b)3-(3a 3)2b 3=8a 6b 3-9a 6b 3=-a 6b 3;(3)(-0.25)2008×(-4)2009=(14)2008×(-42009)=-(14×4)2008×4=-4. 点拨精讲:可从里向外乘方也可从外向内乘方,但要注意符号问题.在计算中如遇底数互为相反数指数相同的,可反用积的乘方法则使计算简便.2.填空:4m a 3m b 2m =(4a 3b 2)m .(3分钟)公式(ab)n =a n b n (n 为正整数)的逆用:a n b n =(ab)n (n 为正整数).(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.4 整式的乘法(1)1.了解单项式与单项式的乘法法则;2.运用单项式与单项式的乘法法则计算.重点:单项式与单项式的乘法法则.难点:运用单项式与单项式的乘法法则计算.一、自学指导自学1:自学课本P98-99页“思考题及例4”,理解单项式与单项式乘法的法则,完成下列填空.(5分钟)1.填空:(ab)c =(ac)b ;a m a n =a m a n =a m +n (m ,n 都是正整数);(a m )n =a mn (m ,n 都是正整数);(ab)n =a n b n (n 都是正整数).2.计算:a 2-2a 2=-a 2,a 2·2a 3=2a 5,(-2a 3)2=4a 6;12x 2yz ·4xy 2=(12×4)·x (2+1)y (1+2)z =2x 3y 3z . 总结归纳:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.点拨精讲:单项式乘以单项式运用乘法的交换律和结合律将数和同底数幂分别结合在一起.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P99页练习题1,2.2.计算:(1)3x 2·5x 3;(2)4y·(-2xy 2);(3)(3x 2y)3·(-4x);(4)(-2a)3·(-3a)2;(5)-6x 2y ·(a-b)3·13xy 2·(b -a)2. 解:(1)3x 2·5x 3=(3×5)·(x 2·x 3)=15x 5;(2)4y·(-2xy 2)=(-4×2)·x·(y·y 2)=-8xy 3;(3)(3x 2y)3·(-4x)=27x 6y 3·(-4x)=(-27×4)·(x·x 6)·y 3=-108x 7y 3;(4)(-2a)3·(-3a)2=(-8a 3)·9a 2=(-8×9)·(a 3·a 2)=-72a 5;(5)-6x 2y ·(a -b)3·13xy 2·(b -a)2=(-6×13)(x 2·x)(y·y 2)[(a -b)3·(a -b)2]=-2x 3y 3(a -b)5.点拨精讲:先乘方再算单项式与单项式的乘法,(a -b)看作一个整体,一般情况选择偶数次幂变形符号简单一些.3.已知单项式-3x 4m -n y 2与12x 3y m +n 的和为一个单项式,则这两个单项式的积是-32x 6y 4.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 若(-2x m +1y 2n -1)·(5x n y m )=-10x 4y 4,求-2m 2n ·(-12m 3n 2)2的值. 解:∵(-2x m +1y 2n -1)·(5x n y m )=-10x 4y 4,∴-10x m +n +1y 2n +m -1=-10x 4y 4,∴⎩⎨⎧m +n +1=4,2n +m -1=4,∴⎩⎨⎧m =1,n =2,∴-2m 2n ·(-12m 3n 2)2=-12m 8n 5=-12×18×25=-16. 探究2 宇宙空间的距离通常以光年作单位,一光年是光在一年内通过的距离,如果光的速度约为3×105千米/秒,一年约为3.2×107秒,则一光年约为多少千米?解:依题意,得(3×105)×(3.2×107)=(3×3.2)·(105×107)=9.6×1012.答:一光年约为9.6×1012千米.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.一种电子计算机每秒可做2×1010次运算,它工作2×102秒可做4×1012次运算.2.已知x 2n =3,则(19x 3n )2·4(x 2)2n 的值是12. 3.小华家新购了一套结构如图的住房,正准备装修.(1)用代数式表示这套住房的总面积为15xy ;(2)若x =2.5 m ,y =3 m ,装修客厅和卧室至少需要112.5平方米的木地板.(3分钟)单项式与单项式相乘:积的系数等于各系数相乘,这部分为数的计算,应该先确定符号,再确定绝对值;积的字母部分运算法则为相同字母不变,指数相加;单个的字母及其指数写下来;单项式与单项式相乘,积仍是单项式;单项式与单项式乘法法则的理论依据是乘法的交换律和结合律.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.4 整式的乘法(2)1.了解单项式与多项式的乘法法则.2.运用单项式与多项式的乘法法则计算.重点:单项式与多项式的乘法法则.难点:灵活运用单项式与多项式的乘法法则计算.一、自学指导自学1:自学课本P99-100页“例5”,理解单项式与多项式乘法的法则,完成下列填空.(5分钟)乘法的分配律:m(a +b +c)=ma +mb +mc .总结归纳:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P100页练习题1,2.2.计算:(1)-5x(2x 3-x -3);(2)2x(32x 3-3x +1); (3)(-2a 3)(4ab 3-2ab 2);(4)(-3m -1)·(-2m)2.解:(1)-5x(2x 3-x -3)=-5x·2x 3+5x·x +5x ×3=-10x 4+3x 2+15x ;(2)2x(32x 3-3x +1)=2x·32x 3-2x·3x +2x·1=3x 4-6x 2+2x ; (3)(-2a 3)(4ab 3-2ab 2)=-2a 3·4ab 3+2a 3·2ab 2=-8a 4b 3+4a 4b 2;(4)(-3m -1)·(-2m)2=(-3m -1)·4m 2=-3m·4m 2-1×4m 2=-12m 3-4m 2.3.要使x(x +a)+3x -2b =x 2+5x +4成立,则a =2,b =-2.4.长方体的长、宽、高分别为4x -3,x 和2x ,它的体积为8x 3-6x 2.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 解方程:8x(5-x)=17-2x(4x -3).解:40x -8x 2=17-8x 2+6x ,34x =17,x =12. 探究2 先化简,再求值:x 2(3-x)+x(x 2-2x)+1,其中x = 3.解:x 2(3-x)+x(x 2-2x)+1=3x 2-x 3+x 3-2x 2+1=x 2+1,当x =3时,原式=(3)2+1=3+1=4.点拨精讲:所谓的化简即去括号、合并同类项.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.解方程:2x(7-2x)+5x(8-x)=3x(5-3x)-39解:14x -4x 2+40x -5x 2=15x -9x 2-39,39x =-39,x =-1.2.求下图所示的物体的体积.(单位:cm)解:x·3x·(5x+2)+2x·x·(5x+2)=3x2·(5x+2)+2x2·(5x+2)=25x3+10x2.答:物体的体积为(25x3+10x2) cm3.3.x为何值时,3(x2-2x+1)与x(3x-4)的差等于5?解:依题意,得3(x2-2x+1)-x(3x-4)=5,3x2-6x+3-3x2+4x=5,-2x=2,x=-1,答:当x=-1时,3(x2-2x+1)与x(3x-4)的差等于5.(3分钟)单项式与多项式相乘:理论依据是乘法的分配律;单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同;计算时都要注意符号问题,多项式中每一项都包括它的符号,同时要注意单项式的符号.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.4整式的乘法(3)1.了解多项式与多项式相乘的法则.2.运用多项式与多项式相乘的法则进行计算.重点:理解多项式与多项式相乘的法则.难点:灵活运用多项式与多项式相乘的法则进行计算.一、自学指导自学1:自学课本P100-101页“问题、例6”,理解多项式乘以多项式的法则,完成下列填空.(5分钟)看图填空:大长方形的长是a+b,宽是m+n,面积等于(a+b)(m+n),图中四个小长方形的面积分别是am,bm,an,bn,由此可得(a+b)(m+n)=am+bm+an+bn.总结归纳:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;点拨精讲:以数形结合的方法解决数学问题更直观.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P102页练习题1,2.2.计算:(1)(a+3)(a-1)+a(a-2);(2)(x+2y)(x-2y)-12y(12x-8y);(3)(x2+3)(x-2)-x(x2-2x-2).解:(1)(a+3)(a-1)+a(a-2)=a2-a+3a-3+a2-2a=2a2-3;(2)(x+2y)(x-2y)-12y(12x-8y)=x2-2xy+2xy-4y2-14xy+4y2=x2-14xy;(3)(x2+3)(x-2)-x(x2-2x-2)=x3-2x2+3x-6-x3+2x2+2x=5x-6.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1计算下列各式,然后回答问题:(1)(a+2)(a+3)=a2+5a+6;(2)(a+2)(a-3)=a2-a-6;(3)(a-2)(a+3)=a2+a-6;(4)(a-2)(a-3)=a2-5a+6.从上面的计算中,你能总结出什么规律:(x+m)(x+n)=x2+(m+n)x+mn.点拨精讲:这种找规律的问题要依照整体到部分的顺序,看哪些没变,哪些变了,是如何变的,从而找出规律.探究2在(ax+3y)与(x-y)的积中,不含有xy项,求a2+3a-1的值.解:∵(ax+3y)(x-y)=ax2-axy+3xy-3y2=ax2+(3-a)xy-3y2,依题意,得3-a=0,∴a =3,∴a2+3a-1=32+3×3-1=9+9-1=17.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.先化简,再求值:(x-2y)(x+3y)-(2x-y)(x-4y),其中:x=-1,y=2.解:∵(x-2y)(x+3y)-(2x-y)(x-4y)=x2+3xy-2xy-6y2-(2x2-8xy-xy+4y2)=x2+3xy-2xy-6y2-2x2+8xy+xy-4y2=-x2+10xy-10y2.当x=-1,y=2时,原式=-(-1)2+10×(-1)×2-10×22=-1-20-40=-61.2.计算:(1)(x-1)(x-2);(2)(m-3)(m+5);(3)(x+2)(x-2).解:(1)(x-1)(x-2)=x2-3x+2;(2)(m-3)(m+5)=m2+2m-15;(3)(x+2)(x-2)=x2-4.3.若(x+4)(x-6)=x2+ax+b,求a2+ab的值.解:∵(x+4)(x-6)=x2-2x-24,又∵(x+4)(x-6)=x2+ax+b,∴a=-2,b=-24.∴a2+ab=(-2)2+(-2)×(-24)=4+48=52.点拨精讲:第2题应先将等式两边计算出来,再对比各项,得出结果.(3分钟)在多项式的乘法运算中,必须做到不重不漏,并注意合并同类项.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.4 整式的乘法(4)1.掌握同底数幂的除法运算法则,会熟练运用法则进行运算;并了解零指数幂的意义,并注意对底数的限制条件.2.单项式除以单项式的运算法则及其应用.3.多项式除以单项式的运算法则及其应用.重点:理解单项式除以单项式、多项式除以单项式的运算法则,理解零指数幂的意义. 难点:单项式除以单项式、多项式除以单项式的运算法则及灵活运用.一、自学指导自学1:自学课本P102-103页“例7”,掌握同底数幂的除法、单项式除以单项式的运算法则,完成下列填空.(5分钟)1.填空:26×28=26+8=214,214÷28=214-8=26.总结归纳:同底数幂的除法法则——a m ÷a n =a m -n (a ≠0,n ,m 为正整数,且m >n),即同底数幂相除,底数不变,指数相减.2.∵a m ÷a m =1,而a m ÷a m =a (m -m)=a 0,∴a 0=1(a ≠0).(a 为什么不能等于0?)总结归纳:任何不等于a 的数的0次幂都等于1.3.2a ·4a 2=8a 3;3xy·2x 2=6x 3y ;3ax 2·4ax 3=12a 2x 5;8a 3÷2a =4a 2;6x 3y÷3xy =2x 2.总结归纳:单项式除以单项式法则——单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.自学2:自学课本P103-104页“例8”,掌握多项式除以单项式的运算方法.(5分钟)∵m ·(a +b)=am +bm ,∴(am +bm)÷m =a +b ,又∵am ÷m +bm÷m =a +b ,∴(am +bm)÷m =am÷m +bm ÷m.总结归纳:多项式除以单项式法则——多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P104页练习1,2.2.计算:(1)a 2m +2÷a 2m -1;(2)(2-2)0;(3)(x -y)7÷(y -x)6;(4)x 7÷(x 5÷x 3). 解:(1)a 2m +2÷a 2m -1=a (2m +2)-(2m -1)=a 3;(2)(2-2)0=1;(3)(x -y)7÷(y -x)6=(x -y)7÷(x -y)6=(x -y)7-6=x -y ;(4)x 7÷(x 5÷x 3)=x 7÷x 5-3=x 7÷x 2=x 7-2=x 5. 3.计算:(1)(23a 4b 7-19a 2b 6)÷(-13ab 3)2; (2)[(3a +2b)(3a -2b)+b(4b -4a)]÷2a.解:(1)(23a 4b 7-19a 2b 6)÷(-13ab 3)2=(23a 4b 7-19a 2b 6)÷19a 2b 6=23a 4b 7÷19a 2b 6-19a 2b 6÷19a 2b 6=6a 2b -1; (2)[(3a +2b)(3a -2b)+b(4b -4a)]÷2a =(9a 2-4ab)÷2a =9a 2÷2a -4ab÷2a =92a -2b.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 已知x m =4,x n =9,求x 3m -2n 的值.解:x 3m -2n =x 3m ÷x 2n =(x m )3÷(x n )2=43÷92=6481. 点拨精讲:这里反用了同底数幂的除法法则.探究2 一种被污染的液体每升含有2.4×1013个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死4×1010个细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少毫升?(注:15滴=1毫升)解:依题意,得(2.4×1013)÷(4×1010)÷15=6×102÷15=40(毫升),答:需要这种杀菌剂40毫升.点拨精讲:要把2.4×1013和4×1010看作单项式形式,其中2.4和4可当作系数.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.计算:(1)[(a 2)5·(-a 2)3]÷(-a 4)4;(2)(a -b)3÷(b -a)2+(-a -b)5÷(a +b)4. 解:(1)[(a 2)5·(-a 2)3]÷(-a 4)4=[a 10·(-a 6)]÷a 16=-a 16÷a 16=-1;(2)(a -b)3÷(b -a)2+(-a -b)5÷(a +b)4=(a -b)3÷(a -b)2-(a +b)5÷(a +b)4=(a -b)-(a +b)=-2b.2.先化简再求值:(a 2b -2ab 2-b 3)÷b -(a +b)(a -b),其中a =12,b =-1.解:(a 2b -2ab 2-b 3)÷b -(a +b)(a -b)=a 2-2ab -b 2-a 2+b 2=-2ab ,当a =12,b =-1时,原式=-2×12×(-1)=1.3.一个多项式除以(2x 2+1),商式为x -1,余式为5x ,求这个多项式? 解:依题意,得(2x 2+1)(x -1)+5x =2x 3-2x 2+x -1+5x =2x 3-2x 2+6x -1.(3分钟)1.在运算时要注意结构和符号,多个同底数幂相除要按运算顺序依次计算,首先取号,再运算.2.先确定运算顺序,先乘方后乘除,再加减,有括号先算括号里面的,同级运算按从左到右的运算依次进行计算.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.2 乘法公式14.2.1 平方差公式1.掌握平方差公式.2.会用平方差公式简化并计算解决简单的实际问题.重点:掌握平方差公式.难点:灵活运用平方差公式简化并计算解决简单的实际问题.一、自学指导自学1:自学课本P107-108页“探究与思考与例1、例2”,掌握平方差公式,完成下列填空.(5分钟)计算:(x +2)(x -2)=x 2-4;(1+3a)(1-3a)=1-9a 2;(x +5y)(x -5y)=x 2-25y 2.上面三个算式中的每个因式都是多项式;等式的左边都是两个单项式的和与差的积,等式的右边是这两个数的平方差.总结归纳:两数的和乘以这两数的差的积等于这两个数的平方差;公式:(a +b)(a -b)=a 2-b 2. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟) 1.课本P108页练习题1,2.2.填空:(3a -2b)(____+2b)=9a 2-4b 2.3.计算:(1)(-a +b)(a +b);(2)(-13x -y)(13x -y)解:(1)(-a +b)(a +b)=b 2-a 2;(2)(-13x -y)(13x -y)=(-y)2-(13x)2=y 2-19x 2.点拨精讲:首先判断是否符合平方差公式的结构,确定式子中的“a ,b ”,a 是公式中相同的数,b 是其中符号相反的数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 计算:(1)(x -y)(x +y)(x 2+y 2); (2)(12xy -5z)(-5z -0.5xy). 解:(1)(x -y)(x +y)(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4; (2)(12xy -5z)(-5z -0.5xy)=(-5z)2-(12xy)2=25z 2-14x 2y 2. 点拨精讲:在多个因式相乘时可将符合平方差结构的因式交换结合进行计算. 探究2 计算:10014×9934.解:10014×9934=(100+14)(100-14)=10000-116=99991516.点拨精讲:可将两个因数写成相同的两个数的和与差,构成平方差公式结构.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.若M·(2x -3y)=9y 2-4x 2,则M =-2x -3y .2.计算:(1)(2+1)(22+1)(24+1)(28+1); (2)(3a -b)(3b +a)-(a -b)(a +b). 解:(1)(2+1)(22+1)(24+1)(28+1) =(2-1)(2+1)(22+1)(24+1)(28+1) =(22-1)(22+1)(24+1)(28+1) =(24-1)(24+1)(28+1) =(28-1)(28+1) =216-1;(2)(3a -b)(3b +a)-(a -b)(a +b) =3a 2+8ab -3b 2-(a 2-b 2) =3a 2+8ab -3b 2-a 2+b 2 =2a 2+8ab -2b 2.点拨精讲:运用平方差公式计算后要合并同类项. 3.计算:(1)102×98;(2)39.8×40.2.解:(1)102×98=(100+2)(100-2)=10000-4=9996; (2)39.8×40.2=(40-0.2)(40+0.2)=1600-0.04=1599.96. 4.已知a -b =40,b -c =50,a +c =20,求a 2-c 2的值.解:∵a-b=40,b-c=50,∴a-c=90,∵(a+c)(a-c)=a2-c2,∴a2-c2=(a+c)(a-c)=20×90=1800.(3分钟)利用平方差公式来计算某些特殊多项式相乘,速度快、准确率高,但必须注意平方差公式的结构特征,找准a,b.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.2.2 完全平方公式(1)1.理解完全平方公式,掌握两个公式的结构特征. 2.熟练运用公式进行计算.重点:理解完全平方公式,掌握两个公式的结构特征. 难点:灵活运用公式进行计算.一、自学指导 自学1:自学课本P109-110页“探究、思考1及例3”,掌握完全平方公式,完成下列填空.(5分钟)1.计算:(a +1)2=(a +1)(a +1)=a 2+2a +1;(a -1)2=(a -1)(a -1)=a 2-2a +1; (m -3)2=(m -3)(m -3)=m 2-6m +9.2.用图中的字母表示出图中白色和黑色部分面积的和(a +b)2=a 2+2ab +b 2.总结归纳:两数的和(差)的平方等于这两个数的平方和,加上(减去)这两个数乘积的2倍;(a +b)2=a 2+2ab +b 2,(a -b)2=a 2-2ab +b 2.自学2:自学课本P110页“例4,思考2”,灵活运用完全平方公式.(5分钟) 填空:(-2)2=22,(a)2=(-a)2.总结归纳:互为相反数的两个数(式)的同偶次幂相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟) 1.课本P110页练习题1,2. 2.填空:(1-3x)2=1-6x +9x 2.点拨精讲:完全平方公式的反用,关键要确定a ,b ,也可以是(3x -1)2. 3.下列各式中,能由完全平方公式计算得到的有①④⑤.①x 2-x +14;②m 2-mn +n 2;③116a 2+a +9;④x 2+4y 2+4xy ;⑤14x 2y 2-xy +1.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟) 探究1 若多项式x 2+kx +16是某个整式的平方,求k 的值. 解:由题意,得(k 2)2=16,∴k 24=16,∴k 2=64,∴k 2=±8.探究2 计算:9982.解:9982=(100-2)2=1002-2×100×2+22=10000-400+4=9604. 点拨精讲:可将该式变形为完全平方公式的结构可简便运算.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.若(x -5)2=x 2+kx +25,求k 的值. 解:∵(x -5)2=x 2-10x +25,∴k =-10.2.计算:(1)1012;(2)(-m-2n)2.解:(1)1012=(100+1)2=1002+2×100×1+12=10000+200+1=10201;(2)(-m-2n)2=(m+2n)2=m2+2·m·2n+(2n)2=m2+4mn+4n2.3.填空:(a+b)2=(a-b)2+4ab,(a-b)2=(a+b)2+(-4ab).(3分钟)1.利用完全平方公式计算某些特殊多项式相乘,速度快,准确率高,但必须注意完全平方公式的结构特征;2.利用完全平方公式,可得到a+b,ab,a-b,a2+b2有下列关系:①a2+b2=(a+b)2-2ab=(a-b)2+2ab;②(a+b)2-(a-b)2=4ab.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.2.2完全平方公式(2)1.掌握添括号法则;2.综合运用乘法公式进行计算.重点:灵活运用乘法公式进行计算.难点:掌握添括号法则.一、自学指导自学1:自学课本P111页“例5”,掌握添括号法则,完成下列填空.(5分钟)a+(b+c)=a+b+c;a-(b+c)=a-b-c.根据以上运算结果可知:a+b+c=a+(b+c);a-b-c=a-(b+c).总结归纳:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.有些整式相乘需要先作适当变形,然后再用公式.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P111页练习题1.2.下列等式中,不成立的是(C)A.a-b+c=-(-a+b-c)B.a-b+c=a-(b-c)C.a-b+c=-(-a+b-c)D.a-b+c=a+(-b+c)3.填空:2mn-2n2+1=2mn-(2n2-1);a+b+c-d=a+(b+c-d);a-b+c-d=a-(b-c+d);x+2y-3z=x-(-2y+3z).4.按要求将2x2+3x-6变形.(1)写成一个单项式与一个二项式的和;(2)写成一个单项式与一个二项式的差.点拨精讲:答案不唯一,第1题括号前是正号;第2题括号前是负号.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1计算:(1)(a-m+2n)2;(2)(x-y-m+n)(x-y+m-n);(3)(2x-y-3)(2x-y+3);(4)(x-2y-z)2.解:(1)(a-m+2n)2=[(a-m)+2n]2=(a-m)2+2·(a-m)·2n+(2n)2=a2-2am+m2+4an-4mn +4n2;(2)(x-y-m+n)(x-y+m-n)=[(x-y)-(m-n)][(x-y)+(m-n)]=(x-y)2-(m-n)2=x2-2xy+y2-(m2-2mn+n2)=x2-2xy+y2-m2+2mn-n2;(3)(2x-y-3)(2x-y+3)=[(x-2y)-3][(x-2y)+3]=(x-2y)2-32=x2-4xy+4y2-9;(4)(x-2y-z)2=[(x-2y)-z]2=(x-2y)2-2(x-2y)·z+z2=x2-4xy+4y2-2xz+4yz+z2.点拨精讲:此式需用添括号变形成公式结构,再运用公式使计算简便.探究2设m+n=10,mn=24,求m2+n2和(m-n)2.解:当m+n=10,mn=24时,m2+n2=(m+n)2-2mn=102-2×24=100-48=52,(m-n)2=(m+n)2-4mn=102-4×24=100-96=4.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.课本P111页练习题2.2.在下列()里填上适当的项,使其符合(a+b)(a-b)的形式.(1)(a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)];(2)(2a-b-c)(-2a-b+c)=[(-b)+(2a-c)][(-b)-(2a-c)].点拨精讲:添括号可用在多项式变形中,主要是将多项式变成乘法公式的结构;3.计算:(1)(x+y+2)(x+y-2);(2)(a-2b-3c)2.解:(1)(x+y+2)(x+y-2)=[(x+y)+2][(x+y)-2]=(x+y)2-4=x2+2xy+y2-4;(2)(a-2b-3c)2=[(a-2b)-3c]2=(a-2b)2-2(a-2b)·3c+(3c)2=a2-4ab+4b2-6ac+6bc+9c2.(3分钟)1.添括号与去括号法则类似,注意符号.2.要灵活运用公式,如a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab,和(差)的平方是可以互相转化的.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.3因式分解14.3.1提公因式法1.明确提公因式法分解因式与单项式乘多项式的关系.2.能正确找出多项式的公因式,熟练用提公因式法分解简单的多项式.重点:能正确找出多项式的公因式.难点:熟练用提公因式法分解简单的多项式.一、自学指导自学1:自学课本P114页“探究”,理解因式分解与整式乘法之间的区别与联系,完成下列填空.(5分钟)把下列多项式写成整式的积的形式:x 2+x =x(x +1);x 2-1=(x +1)(x -1);ma +mb +mc =m(a +b +c).总结归纳:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解(或分解因式).因式分解与整式乘法的关系:多项式 因式分解整式乘法整式的乘法. 总结归纳:整式的乘法与因式分解是两种互逆的变形,整式乘法的结果是和,因式分解的结果是积.自学2:自学课本P114-115“例1和例2”,掌握利用提公因式法分解因式.(5分钟) 多项式2x 2+6x 3中各项的公因式2x 2;多项式x(a -3)+y(a -3)2中各项的公因式是a -3. 总结归纳:一个多项式中各项都含有的因式叫做这个多项式各项的公因式.公因式的确定方法:对于数字取各项系数的最大公约数;对于字母(含字母的多项式),取各项都含有的字母(含字母的多项式),相同的字母(含字母的多项式)的指数,取次数的最低的.提取公因式:把一个多项式分解成两个因式积的形式,其中的一个因式是各项的公因式,另一个因式是多项式除以这个公因式的商.点拨精讲:在将多项式分解因式的时候首先提取公因式,分解要彻底. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(3分钟) 1.课本P115页练习题1.2.下列各式从左到右的变形属于因式分解的是(D )A .a 2+1=a(a +1a)B .(x +1)(x -1)=x 2-1C .a 2+a -5=(a -2)(a +3)+1D .x 2y +xy 2=xy(x +y)小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 分解因式:(1)(x +2y)2-x -2y ; (2)5x(x -3y)3-15y(3y -x)3.解:(1)(x +2y)2-x -2y =(x +2y)2-(x +2y)=(x +2y)(x +2y -1);(2)5x(x -3y)3-15y(3y -x)3=5x(x -3y)3+15y(x -3y)3=5(x -3y)3(x +3y). 点拨精讲:遇到第1题的多项式可以利用交换律重新组合后再找公因式,第2小题先将(x -3y)3和(3y -x)3化成同底数幂,变形时注意符号.探究2 已知2x -y =13,xy =2,求2x 4y 3-x 3y 4的值.解:∵2x 4y 3-x 3y 4=x 3y 3(2x -y),当2x -y =13,xy =2时,∴原式=x 3y 3(2x -y)=23×13=83.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.课本P115页练习题2,3.2.计算:(1)m(3-m)+2(m-3);(2)a(a-b-c)+b(c-a+b)+(b+c-a).解:(1)m(3-m)+2(m-3)=-m(m-3)+2(m-3)=(m-3)(2-m);(2)a(a-b-c)+b(c-a+b)+(b+c-a)=a(a-b-c)-b(a-b-c)-(a-b-c)=(a-b-c)(a-b -c)=(a-b-c)2.3.计算:(1)(-2)201+(-2)202;(2)ab+a+b+1.解:(1)(-2)201+(-2)202=(-2)201×(1-2)=-(-2)201=2201;(2)ab+a+b+1=a(b+1)+(b+1)=(b+1)(a+1).(3分钟)1.提公因式法分解因式,关键在于找公因式.2.提公因式法分解因式的步骤是:先排列;找出公因式并写出来作为一个因式;另一个因式为原式与公因式的商(某一项是公因式时,提公因式后为1或-1,不能遗漏).3.因为因式分解是恒等变形,所以,把分解的结果乘出来看是否得到原式,就可以辨别分解的正确与错误.4.因式分解的结果应该是整式的积.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.3.2公式法(1)1.能直接利用平方差公式因式分解.2.掌握利用平方公式因式分解的步骤.重点:利用平方差公式因式分解.难点:能熟练运用平方差公式因式分解.一、自学指导自学1:自学课本P116-117页“思考及例3,例4”,完成下列填空.(5分钟)计算:(x+2)(x-2)=x2-4;(y+5)(y-5)=y2-25.根据上述等式填空:x2-4=(x+2)(x-2);y2-25=(y+5)(y-5);总结归纳:两个数的平方差等于这两个数的和与这两个数的差的积;a2-b2=(a+b)(a-b).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P117练习题1,2.2.下列多项式能否用平方差公式来分解因式?为什么?①x2+y2;②x2-y2;③-x2+y2;④-x2-y2.解:(略)点拨精讲:判断是否符合平方差公式结构.3.分解因式:(1)a2b-4b;(2)(x+1)2-1;(3)x4-1;(4)-2(m-n)2+32;(5)(x+y+z)2-(x-y+z)2.解:(1)a 2b -4b =b(a 2-4)=b(a +2)(a -2); (2)(x +1)2-1=(x +1+1)(x +1-1)=x(x +2); (3)x 4-1=(x 2+1)(x 2-1)=(x 2+1)(x +1)(x -1);(4)-2(m -n)2+32=-2[(m -n)2-16]=-2(m -n +4)(m -n -4);(5)(x +y +z)2-(x -y +z)2=[(x +y +z)+(x -y +z)][(x +y +z)-(x -y +z)]=(x +y +z +x -y +z)(x +y +z -x +y -z)=(2x +2z)·2y =4y(x +z).点拨精讲:有公因式的先提公因式,然后再运用公式;一直要分解到不能分解为止.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 求证:当n 是正整数时,两个连续奇数的平方差一定是8的倍数.证明:由题意,得(2n +1)2-(2n -1)2=[(2n +1)+(2n -1)][(2n +1)-(2n -1)]=(2n +1+2n -1)(2n +1-2n +1)=8n ,∴当n 是正整数时,两个连续奇数的平方差一定是8的倍数.探究2 已知x -y =2,x 2-y 2=8,求x ,y 的值.解:∵x 2-y 2=(x +y)(x -y)=8,x -y =2,∴x +y =4,∴⎩⎨⎧x +y =4,x -y =2,∴⎩⎪⎨⎪⎧x =3,y =1.点拨精讲:先将x 2-y 2分解因式后求出x +y 的值,再与x -y 组成方程组求出x ,y 的值.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.因式分解:(1)-1+0.09x 2;(2)x 2(x -y)+y 2(y -x);(3)a 5-a ;(4)(a +2b)2-4(a -b)2.解:(1)-1+0.09x 2=(0.3x +1)(0.3x -1);(2)x 2(x -y)+y 2(y -x)=(x -y)(x 2-y 2)=(x -y)(x +y)(x -y)=(x +y)(x -y)2; (3)a 5-a =a(a 4-1)=a(a 2+1)(a 2-1)=a(a 2+1)(a +1)(a -1);(4)(a +2b)2-4(a -b)2=[(a +2b)+2(a -b)][(a +2b)-2(a -b)]=(a +2b +2a -2b)(a +2b -2a +2b)=3a(4b -a).2.计算:(1-122)(1-132)(1-142)…(1-11992)(1-12002).解:原式=(1-12)(1+12)(1-13)(1+13)…(1-1199)(1+1199)(1-1200)(1+1200)=12×32×23×43×…×198199×200199×199200×201200=201400.点拨精讲:先分解因式后计算出来,再约分.(3分钟)1.分解因式的步骤:先排列,第一项系数不为负;然后提取公因式;再运用公式分解,最后检查各因式是否能再分解.2.不能直接用平方差公式分解的,应考虑能否通过变形,创设应用平方差公式的条件.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.3.2 公式法(2)1.会判断完全平方式.2.能直接利用完全平方式因式分解.重点:掌握完全平方公式分解因式的方法. 难点:能灵活运用公式法分解因式.一、自学指导自学1:自学课本P117-118页“思考及例5,例6”,完成下列填空.(5分钟) (1)计算:(a +b)2=a 2+2ab +b 2;(a -b)2=a 2-2ab +b 2.(2)根据上面的式子填空:a 2+2ab +b 2=(a +b)2,a 2-2ab +b 2=(a -b)2.总结归纳:形如a 2+2ab +b 2与a 2-2ab +b 2的式子称为完全平方式;完全平方公式:a 2±2ab +b 2=(a±b)2;两个数的平方和加上(减去)这两个数积的2倍,等于这两个数的和(差)的平方.自学2:自学课本P121阅读与思考,填空.(5分钟) (1)计算:(x +1)(x +2)=x 2+3x +2; (x -1)(x -2)=x 2-3x +2; (x -1)(x +2)=x 2+x -2; (x +1)(x -2)=x 2-x -2.(2)根据上面的式子填空:x 2+3x +2=(x +1)(x +2); x 2-3x +2=(x -1)(x -2); x 2+x -2=(x -1)(x +2); x 2+x -2=(x +1)(x -2).总结归纳:x 2+(p +q)x +pq =(x +p)(x +q).点拨精讲:常数项拆成的两个因数,绝对值较大因数的符号与一次项的符号相同. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟) 1.课本P119页练习题1,2.点拨精讲:完全平方式其中有两项能写成两数或式子的平方的形式,另一项为这两个数或式子积的2倍或2倍的相反数.多项式有公因式的先提公因式,再确定其属于哪个公式结构.2.分解因式:(1)(a -b)2-6(b -a)+9; (2)(x 2-2x)2+2(x 2-2x)+1; (3)y 2-7y +12; (4)x 2+7x -18.解:(1)(a -b)2-6(b -a)+9=(a -b)2+6(a -b)+9=(a -b +3)2; (2)(x 2-2x)2+2(x 2-2x)+1=(x 2-2x +1)2=(x -1)4; (3)y 2-7y +12=(y -3)(y -4); (4)x 2+7x -18=(x -2)(x +9).点拨精讲:第(1)(2)题先要把括号里的式子看作一个整体,分解后要继续分解到不能分解为止;第(3)(4)题要从常数项入手,拆分时主要是符号的问题.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 已知x +1x =4,求值:(1)x 2+1x 2;(2)(x -1x )2.解:(1)x 2+1x 2=(x +1x )2-2=42-2=14;(2)(x -1x )2=(x +1x)2-4=42-4=12.点拨精讲:这里需要活用公式,将两个完全平方公式进行互相转化.探究2分解因式:(1)x2-2xy+y2-9;(2)x4+x2y2+y4解:(1)x2-2xy+y2-9=(x2-2xy+y2)-9=(x-y)2-9=(x-y+3)(x-y-3);(2)x4+x2y2+y4=x4+2x2y2+y4-x2y2=(x2-y2)2-x2y2=(x2-y2+xy)(x2-y2-xy).点拨精讲:分组与拆项是分解因式中的常用方法,其原则是分组与拆项后便于提取公因式或用公式法进一步分解因式.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.利用因式分解计算:2022+202×196+982.解:2022+202×196+982=(202+98)2=3002=90000.2.如果x2+mxy+9y2是一个完全平方式,那么m的值是±3.3.分解因式:(1)x2-xy+y-x;(2)a4+3a2b2+4b4;(3)(a-b)2-6(a-b)+8.解:(1)x2-xy+y-x=(x2-xy)-(x-y)=x(x-y)-(x-y)=(x-y)(x-1);(2)a4+3a2b2+4b4=(a4+4a2b2+4b4)-a2b2=(a2+2b2)2-a2b2=(a2+ab+2b2)(a2-ab+2b2);(3)(a-b)2-6(a-b)+8=(a-b-2)(a-b-4).(3分钟)1.分解因式的步骤:有公因式的先提公因式,提完公因式如果是二项式就考虑平方差公式,三项式看是否符合完全平方公式或者能否运用十字相乘法,不能用完全平方公式和十字相乘法的多项式要考虑拆项;超过三项的多项式要采用分组分解法,分组的原则是分组后能提公因式或运用公式继续分解.2.分解一定要彻底,分解的结果一定是积的形式,且不含公因式或能继续分解的因式.3.检查分解是否正确的方法是把分解的结果乘回去看是否得到原式.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)。
整式乘法与因式分解复习课教案
《第九章整式乘法与因式分解》复习课(教案)
教学目标
知识与技能
了解本章的知识框架,通过“做一做想一想”、“怎样做最简便”、“灵活运用”等环节,使学生理解本章各知识点并总结归纳各知识点运用过程中的注意点、易错点,在此过程中培养总结归纳、取长补短、查漏补缺的数学学习方法。
过程与方法、情感态度与价值观
本章各环节注重培养学生归纳总结各知识点的学习方法,在全体合作的基础上,对自身进行查漏补缺,取长补短。
在归纳、探索最简方法等活动中,激发学生学习数学的热情,充分调动学生的自主性,培养学生的合作意识和团队精神。
教学重难点
重点
归纳总结本章各知识点
难点
对本章各知识点易错点、注意点的归纳及灵活运用
突破方法:采用教师引导和学生合作的教学方法。
教学手段
多媒体辅助教学
教学过程
板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法与因式分解期末复习导学案
一、 整式的乘法
(一)幂的乘法运算
1、同底数幂相乘:=∙n m a a
2、幂的乘方:()=n m a
3、积的乘方:()=n
ab
例1、(同底数幂相乘)计算:(1)52x x ⋅ (2)m m a a
+-⋅11
例2、(幂的乘方)计算:(1)(103)
5 (2)23)(m a -
(3)()
[]522y x - (4) 532])][()[(m n n m --
例3、(积的乘方)计算:(1)(ab )
2 (2)(-3x )2 (3)332)3(c b a -
(4)()3233y
x - (5)32222)2()2(b a b a -⋅- (6) ()()10
54125.0∙-
(二)整式的乘法
1、单项式单项式 (1)系数相乘作为积的系数
(2)相同字母的因式,利用同底数幂的乘法,作为一个因式
(3)单独出现的字母,连同它的指数,作为一个因式
注意点:单项式与单项式相乘,积仍然是一个单项式 2、单项式⨯多项式
①单项式分别乘以多项式的各项;
②将所得的积相加
注意:单项式与多项式相乘,积仍是一个多项式,项数与多项式的项数相同
3、多项式⨯多项式
先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
注意:运算的结果一般按某一字母的降幂或升幂排列。
例1、计算:(1)abc b a ab 2)31(322⋅-⋅ (2))34432()23(22y xy y x xy +-⋅-
(3)(x-3y)(x+7y) (4))1)(1)(1(2++-x x x
例2、先化简,后求值:(x -4)(x -2)-(x -1)(x +3),其中25-
=x 。
(三)乘法公式
()()=-+b a b a ;
变式:(1)=+-+))((a b b a ; (2)=++-))((b a b a ;
(3)))((b a b a --+-= ; (4)))((b a b a ---= 。
2、完全平方公式:2)(b a ±= 。
公式变形:(1)ab b a ab b a b a 2)(2)(2222+-=-+=+
(2)ab b a b a 4)()(22+-=+; (3)ab b a b a 4)()(22-+=-
(4)ab b a b a 4)()(22=--+; (5))(2)()(2222b a b a b a +=-++
例2、计算:(1)(x +2)(x -2) (2)(5+a)(-5+a) (3))52)(52(y x y x +---
(4)()()222233x y y
x ++- (5) 20021998⨯ (6)
()()()4222+-+x x x
1、直接写出结果:(1)(x -ab )(x +ab )= ; (2)(2x +5y )(2x -5y )= ;
(3)(-x -y )(-x +y )= ;(4)(12+b 2)(b 2
-12)=______ ;
(5) (-2x+3)(3+2x)= ;(6)(a 5-b 2)(a 5+b 2)= 。
2、在括号中填上适当的整式:
(1)(m -n )( )=n 2-m 2; (2)(-1-3x )( )=1-9x 2
3、如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是 。
4、已知02,622=-+=-y x y x ,求5--y x 的值。
例3、填空:(1)x 2-10x +______=( -5)2;(2)x 2+______+16=(______-4)2;
(3)x 2-x +______=(x -____ )2; (4)4x 2+______+9=(______+3)2.
例4、若k x x +6-2
是完全平方式,则k=
例5、计算:(1)()222)2(y x y x -++ (2)(x+错误!未找到引用源。
)2
(3)22)121(-x (4)2999
例6、已知x x +
=13,求()1122x x +;()()212x x -
例7、化简求值()()()()2232323232b a b a b a b a ++-+--,其中:3
1,2=-=b a 。
三、因式分解
1、定义:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解。
2、因式分解的方法:
(1)提公因式法
(2)公式法:平方差公式:22()()a
b a b a b -=+- 完全平方公式:2222)(b ab a b a +±=± (3)十字相乘法:pq x q p x +++)(2= 。
3、因式分解一般思路:
先看有无公因式,在看能否套公式;首先提取公因式,无论如何要试试;
提取无比全提出,特别注意公约数;公因提出后计算,因式不含同类项;
同类合并后看看,是否再有公因现;无公考虑第二关,套用公式看项数;
项数多少算一算,选准公式是关键;二项式,平方差,底数相加乘以差;
无差交换前后项,奇迹可能就出现;三项式,无定法,完全平方先比划;
前平方,后平方,还有两倍在中央。
例1、分解因式:(1)x 2-2x 3
(2)3y 3-6y 2
+3y
(3))(3)(2b a y b a x --- (4)3x (m -n )+2(m -n )
(5)y (x -y )2-(y -x )
3 (6)23(3)(3)a a a ---
例3、分解因式:(1)4a 2-9b 2 (2)2
69a a ++
(3)22)1(16)2(-++-x x (4)1)25(2)25(2+---y x y x
例4、分解因式:(1)a 3-ab 2 (2)ab b a b a ++2
32
例5、在实数范围内分解因式:
(1)52-a (2)322-a。